首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.

Background

The objective of this study was to compare the pharmacokinetic profile of a novel, once-daily, controlled-release formulation of hydromorphone (OROS® hydromorphone) under fasting conditions with that immediately after a high-fat breakfast in healthy volunteers. The effect of the opioid antagonist naltrexone on fasting hydromorphone pharmacokinetics also was evaluated.

Methods

In an open-label, three-way, crossover study, 30 healthy volunteers were randomized to receive a single dose of 16 mg OROS® hydromorphone under fasting conditions, 16 mg OROS® hydromorphone under fed conditions, or 16 mg OROS® hydromorphone under fasting conditions with a naltrexone 50-mg block. Plasma samples taken pre-dose and at regular intervals up to 48 hours post-dose were assayed for hydromorphone concentrations. Analysis of variance was performed on log-transformed data; for mean ratios of 0.8 to 1.2 (20%), differences were considered minimal. Bioequivalence was reached if 90% confidence intervals (CI) of treatment mean ratios were between 80% and 125%.

Results

The mean geometric ratios of the fed and fasting treatment groups for maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC0-t; AUC0-∞) were within 20%. Confidence intervals were within 80% to 125% for AUC0-t and AUC0-∞ but were slightly higher for Cmax (105.9% and 133.3%, respectively). With naltrexone block, the hydromorphone Cmax increased by 39% and the terminal half-life decreased by 4.5 hours. There was no significant change in Tmax, AUC0-t or AUC0-∞.

Conclusion

Standard bioavailability measures show minimal effect of food on the bioavailability of hydromorphone from OROS® hydromorphone. Naltrexone co-administration results in a slight increase in the rate of absorption but not the extent of absorption.

Trial Registration

Clinical Trials.gov NCT00399295
  相似文献   

2.

Background

Alpha1-antitrypsin (AAT) deficiency is characterized by low blood levels of alpha1-proteinase inhibitor (alpha1-PI) and may lead to emphysema. Alpha1-PI protects pulmonary tissue from damage caused by the action of proteolytic enzymes. Augmentation therapy with Prolastin® (Alpha1-Proteinase Inhibitor [Human]) to increase the levels of alpha1-PI has been used to treat individuals with AAT deficiency for over 20 years. Modifications to the Prolastin manufacturing process, incorporating additional purification and pathogen-reduction steps, have led to the development of an alpha1-PI product, designated Prolastin®-C (Alpha1-Proteinase inhibitor [Human]). The pharmacokinetic comparability of Prolastin-C to Prolastin was assessed in subjects with AAT deficiency.

Methods

In total, 24 subjects were randomized to receive 60 mg/kg of functionally active Prolastin-C or Prolastin by weekly intravenous infusion for 8 weeks before crossover to the alternate treatment for another 8 weeks. Pharmacokinetic plasma samples were drawn over 7 days following last dose in the first treatment period and over 10 days following the last dose in the second period. The primary end point for pharmacokinetic comparability was area under the plasma concentration versus time curve over 7 days post dose (AUC0-7 days) of alpha1-PI determined by potency (functional activity) assay. The crossover phase was followed by an 8-week open-label treatment phase with Prolastin-C only.

Results

Mean AUC0-7 days was 155.9 versus 152.4 mg*h/mL for Prolastin-C and Prolastin, respectively. The geometric least squares mean ratio of AUC0-7 days for Prolastin-C versus Prolastin had a point estimate of 1.03 and a 90% confidence interval of 0.97-1.09, demonstrating pharmacokinetic equivalence between the 2 products. Adverse events were similar for both treatments and occurred at a rate of 0.117 and 0.078 per infusion for Prolastin-C (double-blind treatment phase only) and Prolastin, respectively (p = 0.744). There were no treatment-emergent viral infections in any subject for human immunodeficiency virus, hepatitis B or C, or parvovirus B19 during the course of the study.

Conclusion

Prolastin-C demonstrated pharmacokinetic equivalence and a comparable safety profile to Prolastin.

Trial Registration

ClinicalTrials.gov Identifier: NCT00295061
  相似文献   

3.

Background

Overwintering (breeding) reindeer (Rangifer tarandus tarandus) are commonly treated with ivermectin against parasitic infestations once yearly in autumn-winter roundups. The only preparations registered to reindeer are those for subcutaneous injection. However, also oral extra-label ivermectin administration is used. Twenty-six, 8-month-old reindeer calves were randomly allocated into three groups. Group 1 (n = 9) received oral ivermectin mixture (Ivomec® vet mixt. 0.8 mg/ml, oral ovine liquid drench formulation), Group 2 (n = 9) oral ivermectin paste (Ivomec® vet 18.7 mg/g equine paste), and Group 3 (n = 8) subcutaneous injection of ivermectin (Ivomec® 10 mg/ml vet inj.), each group at a dose of 200 μg/kg body weight. Blood samples were collected at treatment and at days 1, 2, 3, 6, 9 and 16 post treatment. Plasma concentrations of ivermectin were determined by high-pressure liquid chromatography (HPLC) with fluorescence detection.

Results

The peak plasma concentration (Cmax) was reached by 2 days after each treatment. The Cmax and Area Under Curve (AUC) differed significantly between the groups: Cmax was 30.2 ± 3.9, 14.9 ± 5.7 and 63.1 ± 13.1 ng/ml, and AUC was 2881 ± 462, 1299 ± 342 and 6718 ± 1620 ng*h/ml for groups 1, 2 and 3, respectively (mean ± standard deviation).

Conclusions

The differences in plasma concentrations of ivermectin are concomitant with earlier observed differences in antiparasitic efficacy, which discounts the use of the equine paste in reindeer in favour of the oral ovine liquid drench formulation, or preferably, the reindeer-registered subcutaneous injection formulation.
  相似文献   

4.

Background

Growth hormone (GH) is used to treat growth hormone deficiency (GHD, adult and paediatric), short bowel syndrome in patients on a specialized diet, HIV-associated wasting and, in children, growth failure due to a number of disorders including Turner's syndrome and chronic renal failure, and in children born small for gestational age. Different brands and generic forms of recombinant human growth hormone (r-hGH) are approved for varying indications in different countries. New ways of administering GH are required because the use of a needle and syringe or a device where a patient still has to insert the needle manually into the skin on a daily basis can lead to low adherence and sub-optimal treatment outcomes. The objective of this study was to assess the relative bioavailability of r-hGH (Saizen®, Merck Serono) administered by a new needle-free device, cool.click? 2, and a standard needle and syringe.

Methods

The study was performed with 38 healthy volunteers who underwent pituitary somatotrope cell down-regulation using somatostatin, according to a randomized, two-period, two-sequence crossover design. Following subcutaneous administration of r-hGH using cool.click? 2 or needle and syringe, pharmacokinetic parameters were analysed by non-compartmental methods. Bioequivalence was assessed based on log-transformed AUC and Cmax values.

Results

The 90% confidence intervals for test/reference mean ratio of the plasma pharmacokinetic variables Cmax and AUC0-inf were 103.7–118.3 and 97.1–110.0, respectively, which is within the accepted bioequivalence range of 80–125%. r-hGH administered by cool.click? 2 is, therefore, bioequivalent to administration by needle and syringe with respect to the rate and extent of GH exposure. Treatment using cool.click? 2 was found to be well tolerated. With cool.click? 2 the tmax was less (3.0 hours) than for needle and syringe delivery (4.5 hours), p = 0.002 (Friedman test), although this is unlikely to have any clinical implications.

Conclusion

These results demonstrate that cool.click? 2 delivers subcutaneous r-hGH exposure that is bioequivalent to the conventional mode of injection. The new device has the additional advantage of being needle-free, and should help to increase patient adherence and achieve good therapeutic outcomes from r-hGH treatment.
  相似文献   

5.

Background

Bloodstream infections are responsible for thousands of deaths each year. The rapid identification of the microorganisms causing these infections permits correct therapeutic management that will improve the prognosis of the patient. In an attempt to reduce the time spent on this step, microorganism identification devices have been developed, including the VITEK® 2 system, which is currently used in routine clinical microbiology laboratories.

Methods

This study evaluated the accuracy of the VITEK® 2 system in the identification of 400 microorganisms isolated from blood cultures and compared the results to those obtained with conventional phenotypic and genotypic methods. In parallel to the phenotypic identification methods, the DNA of these microorganisms was extracted directly from the blood culture bottles for genotypic identification by the polymerase chain reaction (PCR) and DNA sequencing.

Results

The automated VITEK® 2 system correctly identified 94.7 % (379/400) of the isolates. The YST and GN cards resulted in 100 % correct identifications of yeasts (15/15) and Gram-negative bacilli (165/165), respectively. The GP card correctly identified 92.6 % (199/215) of Gram-positive cocci, while the ANC card was unable to correctly identify any Gram-positive bacilli (0/5).

Conclusions

The performance of the VITEK® 2 system was considered acceptable and statistical analysis showed that the system is a suitable option for routine clinical microbiology laboratories to identify different microorganisms.
  相似文献   

6.

Background

In this study, we optimized the process for enhancing amylase production from Pseudomonas balearica VITPS19 isolated from agricultural lands in Kolathur, India.

Methods

Process optimization for enhancing amylase production from the isolate was carried out by Response Surface Methodology (RSM) with optimized chemical and physical sources using Design expert v.7.0. A central composite design was used to evaluate the interaction between parameters. Interaction between four factors–maltose (C-source), malt extract (Nsource), pH, and CaCl2 was studied.

Results

The factors pH and CaCl2 concentration were found to affect amylase production. Validation of the experiment showed a nearly twofold increase in alpha amylase production.

Conclusion

Amylase production was thus optimized and increased yield was achieved.
  相似文献   

7.

Introduction

Exercise-associated metabolism in type 1 diabetes (T1D) remains under-studied due to the complex interplay between exogenous insulin, counter-regulatory hormones and insulin-sensitivity.

Objective

To identify the metabolic differences induced by two exercise modalities in T1D using ultra high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC–HRMS) based metabolomics.

Methods

Twelve T1D adults performed intermittent high-intensity (IHE) and continuous-moderate-intensity (CONT) exercise. Serum samples were analysed by UHPLC–HRMS.

Results

Metabolic profiling of IHE and CONT highlighted exercise-induced changes in purine and acylcarnitine metabolism.

Conclusion

IHE may increase beta-oxidation through higher ATP-turnover. UHPLC–HRMS based metabolomics as a data-driven approach without an a priori hypothesis may help uncover distinctive metabolic effects during exercise in T1D.Clinical trial registration number is www.clinicaltrials.gov: NCT02068638.
  相似文献   

8.

Introduction

Cupriavidus necator H16 is a gram-negative bacterium, capable of lithoautotrophic growth by utilizing hydrogen as an energy source and fixing carbon dioxide (CO2) through Calvin–Benson–Bassham (CBB) cycle. The potential to utilize synthesis gas (Syngas) and the prospects of rerouting carbon from polyhydroxybutyrate synthesis to value-added compounds makes C. necator an excellent chassis for industrial application.

Objectives

In the context of lack of sufficient quantitative information of the metabolic pathways and to advance in rational metabolic engineering for optimized product synthesis in C. necator H16, we carried out a metabolic flux analysis based on steady-state 13C-labelling.

Methods

In this study, steady-state carbon labelling experiments, using either d-[1-13C]fructose or [1,2-13C]glycerol, were undertaken to investigate the carbon flux through the central carbon metabolism in C. necator H16 under heterotrophic and mixotrophic growth conditions, respectively.

Results

We found that the CBB cycle is active even under heterotrophic condition, and growth is indeed mixotrophic. While Entner–Doudoroff (ED) pathway is shown to be the major route for sugar degradation, tricarboxylic acid (TCA) cycle is highly active in mixotrophic condition. Enhanced flux is observed in reductive pentose phosphate pathway (redPPP) under the mixotrophic condition to supplement the precursor requirement for CBB cycle. The flux distribution was compared to the mRNA abundance of genes encoding enzymes involved in key enzymatic reactions of the central carbon metabolism.

Conclusion

This study leads the way to establishing 13C-based quantitative fluxomics for rational pathway engineering in C. necator H16.
  相似文献   

9.

Objectives

To search for a novel glutamate decarboxylase (GAD) with an optimum pH towards near-neutrality in order to improve production of gamma-aminobutyric acid (GABA) in recombinant hosts.

Results

A novel glutamate decarboxylase, BmGAD, from Bacillus megaterium was overexpressed and purified. BmGAD was approximately 53 kDa by SDS-PAGE analysis. Its optimum activity was at pH 5 and 50 °C. BmGAD had a specific activity of 59 ± 5.2 U mg?1 at pH 6, which is the highest value reported so far. The apparent Km and Vmax values of BmGAD were 8 ± 0.5 mM and 150 ± 4.7 U mg?1, respectively. Through site-directed mutagenesis, two BmGAD mutants (E294R and H467A) showed higher Vmax values than that of wild-type, with the values of 210 ± 6.9 and 180 ± 4.1 U mg?1 at pH 5 and 50 °C, respectively.

Conclusions

The unusual high activity of BmGAD at pH 6 makes it an attractive GABA-producing candidate in industrial application.
  相似文献   

10.

Background and aims

We examined changes in soil organic matter arising from conversion of a 45-year old pasture to a 10 yr. old native tree plantation in Panamá, to evaluate the effect of monoculture and mixtures.

Methods

We intensively sampled the soil 0–10 cm depth in the pasture in 2001 and in 22 plantation plots in 2011, ranging from 5 monocultures to 3- and 6-species treatments; samples were also taken from an undisturbed forest site. Soil analyses included organic carbon (SOC) and δ13C.

Results

Conversion of the pasture to tree plantation resulted in an overall loss of SOC of 0.6 kg m?2 (18%) in the top 10 cm, but neither tree species nor diversity had a significant effect. End-member δ13C values suggested that the contribution of C3 plants to SOC was increased from 26% in the pasture to 55% after 10 years of plantation and SOC turnover times were calculated to be 21–36 yr.

Conclusions

The magnitude of the loss in soil SOC is smaller than the increases in tree biomass (~3 kg C m?2) and litter (~0.3 kg C m?2) in the plantation, but still a significant part of the ecosystem C balance.
  相似文献   

11.

Background

The objectives of this study were to evaluate the effects of two commercial feed supplements, Egusin 250® [E-250] and Egusin SLH® [E-SLH], on gastric ulcer scores, gastric fluid pH, and blood gas values in stall-confined horses undergoing feed-deprivation.

Methods

Nine Thoroughbred horses were used in a three-period crossover study. For the three treatment groups, sweet feed was mixed with E-250, E-SLH, or nothing (control group) and fed twice daily. Horses were treated for 21 days, then an additional 7 days while on an alternating feed-deprivation model to induce or worsen ulcers (period one). In periods two and three, horses (n=6) were treated for an additional 7 days after feed-deprivation. Gastroscopies were performed on day -1 (n=9), day 21 (n=9), day 28 (n=9) and day 35 (n=6). Gastric juice pH was measured and gastric ulcer scores were assigned. Venous blood gas values were also measured.

Results

Gastric ulcers in control horses significantly decreased after 21 days, but there was no difference in ulcer scores when compared to the Egusin® treated horses. NG gastric ulcer scores significantly increased in E-250 and control horses on day 28 compared to day 21 as a result of intermittent feed-deprivation, but no treatment effect was observed. NG ulcer scores remained high in the control group but significantly decreased in the E-SLH- and E-250-treated horses by day 35. Gastric juice pH values were low and variable and no treatment effect was observed. Mean blood pCO2 values were significantly increased two hours after feeding in treated horses compared to controls, whereas mean blood TCO2 values increased in the 24 hour sample, but did not exceed 38 mmol/l.

Conclusions

The feed-deprivation model increased NG gastric ulcer severity in the horses. However, by day 35, Egusin® treated horses had less severe NG gastric ulcers compared to untreated control horses. After 35 days, Egusin® products tested here ameliorate the severity of gastric ulcers in stall-confined horses after feed stress.
  相似文献   

12.

Introduction

Nitroproston® is a novel multi-target drug bearing natural prostaglandin E2 (PGE2) and nitric oxide (NO)-donating fragments for treatment of inflammatory and obstructive diseases (i.e., asthma and obstructive bronchitis).

Objectives

To investigate the effects of Nitroproston® administration on plasma metabolomics in vivo.

Methods

Experimental in vivo study randomly assigning the target drug (treatment group) or a saline solution without the drug (vehicle control group) to 12 rabbits (n?=?6 in each group). Untargeted (5880 initial features; 1869 negative–4011 positive ion peaks; UPLC–IT–TOF/MS) and 84 targeted moieties (Nitroproston® related metabolites, prostaglandins, steroids, purines, pyrimidines and amino acids; HPLC–QQQ–MS/MS) were measured from plasma at 0, 2, 4, 6, 8, 12, 18, 24, 32 and 60 min after administration.

Results

PGE2, 13,14-dihydro-15-keto-PGE2, PGB2, 1,3-GDN and 15-keto-PGE2 increased in the treatment group. Steroids (i.e., cortisone, progesterone), organic acids, 3-oxododecanoic acid, nicotinate d-ribonucleoside, thymidine, the amino acids serine and aspartate, and derivatives pyridinoline, aminoadipic acid and uric acid increased (p?<?0.05 AUCROC curve?>?0.75) after treatment. Purines (i.e., xanthine, guanine, guanosine), bile acids, acylcarnitines and the amino acids l-tryptophan and l-phenylalanine were decreased. Nitroproston® impacted steroidogenesis, purine metabolism and ammonia recycling pathways, among others.

Conclusion

Nitroproston®, a multi action novel drug based on natural prostaglandins, altered metabolites (i.e., guanine, adenine, cortisol, cortisone and aspartate) involved in purine metabolism, urea and ammonia biological cycles, steroidogenesis, among other pathways. Suggested mechanisms of action, metabolic pathway interconnections and useful information to further understand the metabolic effects of prostaglandin administration are presented.
  相似文献   

13.

Introduction

Mass spectrometry imaging (MSI) is a technology that enables the visualization of the spatial distribution of hundreds to thousands of metabolites in the same tissue section simultaneously. Roots are below-ground plant organs that anchor plants to the soil, take up water and nutrients, and sense and respond to external stresses. Physiological responses to salinity are multifaceted and have predominantly been studied using whole plant tissues that cannot resolve plant salinity responses spatially.

Objectives

This study aimed to use a comprehensive approach to study the spatial distribution and profiles of metabolites, and to quantify the changes in the elemental content in young developing barley seminal roots before and after salinity stress.

Methods

Here, we used a combination of liquid chromatography–mass spectrometry (LC–MS), inductively coupled plasma mass spectrometry (ICP–MS), and matrix-assisted laser desorption/ionization (MALDI–MSI) platforms to profile and analyze the spatial distribution of ions, metabolites and lipids across three anatomically different barley root zones before and after a short-term salinity stress (150 mM NaCl).

Results

We localized, visualized and discriminated compounds in fine detail along longitudinal root sections and compared ion, metabolite, and lipid composition before and after salt stress. Large changes in the phosphatidylcholine (PC) profiles were observed as a response to salt stress with PC 34:n showing an overall reduction in salt treated roots. ICP–MS analysis quantified changes in the elemental content of roots with increases of Na+ and decreases of K+ content.

Conclusion

Our results established the suitability of combining three mass spectrometry platforms to analyze and map ionic and metabolic responses to salinity stress in plant roots and to elucidate tolerance mechanisms in response to abiotic stress, such as salinity stress.
  相似文献   

14.
15.

Background and aims

The measurement of electrical capacitance in root–soil system (CR) is a useful method for estimating the root system size (RSS) in situ; however, CR–RSS regressions are often poor. It was hypothesized that this weak relationships could be partly due to the variable energy-loss rate, indicated by the dissipation factor (DF).

Methods

The values of CR and the associated DF were measured in six plant species grown in quasi-hydroponic pumice medium, arenosol and chernozem soil. The dielectric properties of the plant growth media were also recorded. A modified root–soil capacitance, CDF, was calculated from each CR/DF pair according to the formula CDF = CR·(DF/DFmean)α by estimating α with a standard nonlinear minimization of the sum of squared residuals for CDF–RSS regressions.

Results

The capacitive behavior of the medium improved (mean DF decreased) but fluctuated increasingly as the substrate became more complex. The mean DF values in plant–substrate systems were chiefly determined by the plant and were the most variable in chernozem soil. This strengthening substrate effect on CR measurements appeared as a decreasing trend in the R2 values obtained for the CR–RSS regressions. The regression slope was influenced by plant species and medium, while the y-intercept differed only between substrate types. The proposed use of CDF in place of CR could significantly improve the R2 of CDF–RSS regressions, particularly in chernozem soil (R2 increased by 0.07–0.31).

Conclusions

The application of CDF will provide more reliable and accurate RSS estimations and more efficient statistical comparisons. The findings are worth considering in future investigations using the root capacitance method.
  相似文献   

16.

Background

Long-acting muscarinic antagonists (LAMAs) are recommended for the treatment of chronic obstructive pulmonary disease (COPD). Glycopyrrolate/eFlow® is an investigational drug–device combination of the LAMA glycopyrrolate administered by an eFlow® Closed System (eFlow® CS) nebulizer. The GOLDEN 2 (NCT01706536) and GOLDEN 6 (NCT02038829) Phase II, multicenter studies were conducted to inform dose selection for the GOLDEN Phase III clinical trials. Bronchodilator responses and safety assessments supported dose selection.

Methods

Subjects with moderate-to-severe COPD were randomized into 28-day parallel-group (GOLDEN 2) or 7-day crossover (GOLDEN 6) studies and received placebo, glycopyrrolate (3, 6.25, 12.5, 25, 50 or 100 μg twice daily [BID]) or aclidinium bromide 400 μg BID. The primary endpoint of both studies was change from baseline in trough forced expiratory volume in 1 s (FEV1). Safety assessments included the incidence of treatment-emergent adverse events (TEAEs), treatment-emergent serious adverse events, and discontinuation due to TEAE. Lung function data collected in both studies were pooled.

Results

The combined GOLDEN 2 (n?=?282) and GOLDEN 6 (n?=?96) studies included 378 subjects. On Days 7 and 28 there were dose-ordered, statistically significant and clinically important lung function improvements in glycopyrrolate treatment groups. Specifically, on Day 7, glycopyrrolate produced >0.100 L placebo-adjusted changes from baseline in trough FEV1 (12.5 μg BID: 0.122 L; 25 μg BID: 0.123 L; 50 μg BID: 0.137 L) and FEV1 AUC0–12 (12.5 μg BID: 0.145 L; 25 μg BID: 0.178 L; 50 μg BID: 0.180 L). The improvements in lung function for the glycopyrrolate 25 and 50 μg BID doses were comparable to those with aclidinium bromide 400 μg BID (FEV1: 0.149 L; FEV1 AUC0?12: 0.172 L). Acceptable safety profiles were observed across all groups in both studies.

Conclusions

The efficacy and safety findings supported selection of glycopyrrolate 25 and 50 μg BID doses for the Phase III GOLDEN studies and provided preliminary evidence for the use of nebulized glycopyrrolate as a maintenance therapy for COPD.
  相似文献   

17.

Introduction

Untargeted metabolomics is a powerful tool for biological discoveries. To analyze the complex raw data, significant advances in computational approaches have been made, yet it is not clear how exhaustive and reliable the data analysis results are.

Objectives

Assessment of the quality of raw data processing in untargeted metabolomics.

Methods

Five published untargeted metabolomics studies, were reanalyzed.

Results

Omissions of at least 50 relevant compounds from the original results as well as examples of representative mistakes were reported for each study.

Conclusion

Incomplete raw data processing shows unexplored potential of current and legacy data.
  相似文献   

18.

Objectives

The purpose of this study was to develop a facile and efficient method to enhance the stability and activity of lactoperoxidase (LPO) by using its immobilization on graphene oxide nanosheets (GO-NS).

Methods

Following the LPO purification from bovine whey, it was immobilized onto functionalized GO-NS using glutaraldehyde as cross-linker. Kinetic properties and stability of free and immobilized LPO were investigated.

Results

LPO was purified 59.13 fold with a specific activity of 5.78 U/mg protein. The successful immobilization of LPO on functionalized GO-NS was confirmed by using dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FT-IR). The overall results showed that the stability of the immobilized LPO was considerably improved compared to free LPO. Apparent Km and Vmax of LPO also indicated that the immobilized enzyme had greater affinity to the substrate than the native enzyme.

Conclusions

Graphene oxide nanosheets are effective means for immobilization of LPO.
  相似文献   

19.

Introduction

Availability of large cohorts of samples with related metadata provides scientists with extensive material for studies. At the same time, recent development of modern high-throughput ‘omics’ technologies, including metabolomics, has resulted in the potential for analysis of large sample sizes. Representative subset selection becomes critical for selection of samples from bigger cohorts and their division into analytical batches. This especially holds true when relative quantification of compound levels is used.

Objectives

We present a multivariate strategy for representative sample selection and integration of results from multi-batch experiments in metabolomics.

Methods

Multivariate characterization was applied for design of experiment based sample selection and subsequent subdivision into four analytical batches which were analyzed on different days by metabolomics profiling using gas-chromatography time-of-flight mass spectrometry (GC–TOF–MS). For each batch OPLS-DA® was used and its p(corr) vectors were averaged to obtain combined metabolic profile. Jackknifed standard errors were used to calculate confidence intervals for each metabolite in the average p(corr) profile.

Results

A combined, representative metabolic profile describing differences between systemic lupus erythematosus (SLE) patients and controls was obtained and used for elucidation of metabolic pathways that could be disturbed in SLE.

Conclusion

Design of experiment based representative sample selection ensured diversity and minimized bias that could be introduced at this step. Combined metabolic profile enabled unified analysis and interpretation.
  相似文献   

20.

Background

Some studies indicate that the commonly recommended 30 s application time for the post contamination treatment of hands may not be necessary as the same effect may be achieved with some formulations in a shorter application time such as 15 s.

Method

We evaluated the bactericidal activity of an ethanol-based hand gel (Sterillium® Comfort Gel) within 15 s in a time-kill-test against 11 Gram-positive, 16 Gram-negative bacteria and 11 emerging bacterial pathogens. Each strain was evaluated in quadruplicate.

Results

The hand gel (85% ethanol, w/w) was found to reduce all 11 Gram-positive and all 16 Gram-negative bacteria by more than 5 log10 steps within 15 s, not only against the ATCC test strains but also against corresponding clinical isolates. In addition, a log10 reduction > 5 was observed against all tested emerging bacterial pathogens.

Conclusion

The ethanol-based hand gel was found to have a broad spectrum of bactericidal activity in only 15 s which includes the most common species causing nosocomial infections and the relevant emerging pathogens. Future research will hopefully help to find out if a shorter application time for the post contamination treatment of hands provides more benefits or more risks.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号