共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Many tools have been developed to visualize protein structures. Tools that have been based on Java 3D((TM)) are compatible among different systems and they can be run remotely through web browsers. However, using Java 3D for visualization has some performance issues with it. The primary concerns about molecular visualization tools based on Java 3D are in their being slow in terms of interaction speed and in their inability to load large molecules. This behavior is especially apparent when the number of atoms to be displayed is huge, or when several proteins are to be displayed simultaneously for comparison. RESULTS: In this paper we present techniques for organizing a Java 3D scene graph to tackle these problems. We have developed a protein visualization system based on Java 3D and these techniques. We demonstrate the effectiveness of the proposed method by comparing the visualization component of our system with two other Java 3D based molecular visualization tools. In particular, for van der Waals display mode, with the efficient organization of the scene graph, we could achieve up to eight times improvement in rendering speed and could load molecules three times as large as the previous systems could. AVAILABILITY: EPV is freely available with source code at the following URL: http://www.cs.ucsb.edu/~tcan/fpv/ 相似文献
2.
ProSAT (for Protein Structure Annotation Tool) is a tool to facilitate interactive visualization of non-structure-based functional annotations in protein 3D structures. It performs automated mapping of the functional annotations onto the protein structure and allows functional sites to be readily identified upon visualization. The current version of ProSAT can be applied to large datasets of protein structures for fast visual identification of active and other functional sites derived from the SwissProt and Prosite databases. 相似文献
3.
Automated discovery of 3D motifs for protein function annotation 总被引:2,自引:0,他引:2
MOTIVATION: Function inference from structure is facilitated by the use of patterns of residues (3D motifs), normally identified by expert knowledge, that correlate with function. As an alternative to often limited expert knowledge, we use machine-learning techniques to identify patterns of 3-10 residues that maximize function prediction. This approach allows us to test the assumption that residues that provide function are the most informative for predicting function. RESULTS: We apply our method, GASPS, to the haloacid dehalogenase, enolase, amidohydrolase and crotonase superfamilies and to the serine proteases. The motifs found by GASPS are as good at function prediction as 3D motifs based on expert knowledge. The GASPS motifs with the greatest ability to predict protein function consist mainly of known functional residues. However, several residues with no known functional role are equally predictive. For four groups, we show that the predictive power of our 3D motifs is comparable with or better than approaches that use the entire fold (Combinatorial-Extension) or sequence profiles (PSI-BLAST). AVAILABILITY: Source code is freely available for academic use by contacting the authors. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. 相似文献
4.
Athul Vijayan Soeren Strauss Rachele Tofanelli Tejasvinee Atul Mody Karen Lee Miltos Tsiantis Richard S Smith Kay Schneitz 《Plant physiology》2022,189(3):1278
A fundamental question in biology concerns how molecular and cellular processes become integrated during morphogenesis. In plants, characterization of 3D digital representations of organs at single-cell resolution represents a promising approach to addressing this problem. A major challenge is to provide organ-centric spatial context to cells of an organ. We developed several general rules for the annotation of cell position and embodied them in 3DCoordX, a user-interactive computer toolbox implemented in the open-source software MorphoGraphX. 3DCoordX enables rapid spatial annotation of cells even in highly curved biological shapes. Using 3DCoordX, we analyzed cellular growth patterns in organs of several species. For example, the data indicated the presence of a basal cell proliferation zone in the ovule primordium of Arabidopsis (Arabidopsis thaliana). Proof-of-concept analyses suggested a preferential increase in cell length associated with neck elongation in the archegonium of Marchantia (Marchantia polymorpha) and variations in cell volume linked to central morphogenetic features of a trap of the carnivorous plant Utricularia (Utricularia gibba). Our work demonstrates the broad applicability of the developed strategies as they provide organ-centric spatial context to cellular features in plant organs of diverse shape complexity.Spatial context is essential to draw biological insight from 3D image data, and 3DCoordX is an intuitive, open-source computational tool that provides this context for plant organs with complex shapes. 相似文献
5.
SUMMARY: The Gandr (gene annotation data representation) knowledgebase is an ontological framework for laboratory-specific gene annotation. Gandr uses Protege 2000 for editing, querying and visualizing microarray data and annotations. Genes can be annotated with provided, newly created or imported ontological concepts. Annotated genes can inherit assigned concept properties and can be related to each other. The resulting knowledgebase can be visualized as interactive network of nodes and edges representing genes and their functional relationships. This allows for immediate and associative gene context exploration. Ontological query techniques allow for powerful data access. 相似文献
6.
We offer a tool, denoted VISTAL, for two-dimensional visualization of protein structural alignments. VISTAL describes aligned structures as a series of matched secondary structure elements, colored according to the three-dimensional distance of their Calpha atoms. AVAILABILITY: VISTAL can be downloaded from http://trantor.bioc.columbia.edu/~kolodny/software.html. 相似文献
7.
Artemis: sequence visualization and annotation 总被引:31,自引:0,他引:31
Rutherford K Parkhill J Crook J Horsnell T Rice P Rajandream MA Barrell B 《Bioinformatics (Oxford, England)》2000,16(10):944-945
SUMMARY: Artemis is a DNA sequence visualization and annotation tool that allows the results of any analysis or sets of analyses to be viewed in the context of the sequence and its six-frame translation. Artemis is especially useful in analysing the compact genomes of bacteria, archaea and lower eukaryotes, and will cope with sequences of any size from small genes to whole genomes. It is implemented in Java, and can be run on any suitable platform. Sequences and annotation can be read and written directly in EMBL, GenBank and GFF format. AVAILABITLTY: Artemis is available under the GNU General Public License from http://www.sanger.ac.uk/Software/Artemis 相似文献
8.
Annotation of any newly determined protein sequence depends on the pairwise sequence identity with known sequences. However,
for the twilight zone sequences which have only 15–25% identity, the pair-wise comparison methods are inadequate and the annotation
becomes a challenging task. Such sequences can be annotated by using methods that recognize their fold. Bowie et al. described
a 3D1D profile method in which the amino acid sequences that fold into a known 3D structure are identified by their compatibility
to that known 3D structure. We have improved the above method by using the predicted secondary structure information and employ
it for fold recognition from the twilight zone sequences. In our Protein Secondary Structure 3D1D (PSS-3D1D) method, a score
(w) for the predicted secondary structure of the query sequence is included in finding the compatibility of the query sequence
to the known fold 3D structures. In the benchmarks, the PSS-3D1D method shows a maximum of 21% improvement in predicting correctly
the α + β class of folds from the sequences with twilight zone level of identity, when compared with the 3D1D profile method.
Hence, the PSS-3D1D method could offer more clues than the 3D1D method for the annotation of twilight zone sequences. The
web based PSS-3D1D method is freely available in the PredictFold server at . 相似文献
9.
Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes. 相似文献
10.
Bimolecular fluorescence complementation (BiFC) is an approach used to analyze protein–protein interaction in vivo, in which non-fluorescent N-terminal and C-terminal fragments of a fluorescent protein are reconstituted to emit fluorescence only when they are brought together by interaction of two proteins to fuse both fragments. A method for simultaneous visualization of two protein complexes by multicolor BiFC with fragments from green fluorescent protein (GFP) and its variants such as cyan and yellow fluorescent proteins (CFP and YFP) was recently reported in animal cells. In this paper we describe a new strategy for simultaneous visualization of two protein complexes in plant cells using the multicolor BiFC with fragments from CFP, GFP, YFP and a red fluorescent protein variant (DsRed-Monomer). We identified nine different BiFC complexes using fragments of CFP, GFP and YFP, and one BiFC complex using fragments of DsRed-Monomer. Fluorescence complementation did not occur by combinations between fragments of GFP variants and DsRed-Monomer. Based on these findings, we achieved simultaneous visualization of two protein complexes in a single plant cell using two colored fluorescent complementation pairs (cyan/red, green/red or yellow/red). 相似文献
11.
12.
A new potential energy function representing the conformational preferences of sequentially local regions of a protein backbone is presented. This potential is derived from secondary structure probabilities such as those produced by neural network-based prediction methods. The potential is applied to the problem of remote homolog identification, in combination with a distance-dependent inter-residue potential and position-based scoring matrices. This fold recognition jury is implemented in a Java application called JThread. These methods are benchmarked on several test sets, including one released entirely after development and parameterization of JThread. In benchmark tests to identify known folds structurally similar to (but not identical with) the native structure of a sequence, JThread performs significantly better than PSI-BLAST, with 10% more structures identified correctly as the most likely structural match in a fold library, and 20% more structures correctly narrowed down to a set of five possible candidates. JThread also improves the average sequence alignment accuracy significantly, from 53% to 62% of residues aligned correctly. Reliable fold assignments and alignments are identified, making the method useful for genome annotation. JThread is applied to predicted open reading frames (ORFs) from the genomes of Mycoplasma genitalium and Drosophila melanogaster, identifying 20 new structural annotations in the former and 801 in the latter. 相似文献
14.
《Expert review of proteomics》2013,10(3):219-221
Evaluation of: Leuchowius KJ, Clausson CM, Grannas K et al. Parallel visualization of multiple protein complexes in individual cells in tumor tissue. Mol. Cell Proteomics doi:10.1074/mcp.O112.023374 (2013) (Epub ahead of print).Techniques for in situ detection and quantification of proteins in fixed tissue remain an important element of both basic biological analyses and clinical biomarker research. The practical importance of such techniques can be exemplified by the everyday clinical use of immunohistochemical detection of the estrogen receptor and HER2 in tissues from breast cancer patients. Several techniques are currently available for detection of single proteins and post-translational modifications, but very few are suitable for detection of protein complexes. Methods that enable simultaneous detection and quantification of protein complexes provide novel possibilities for understanding the biological role(s) of protein complexes and may open new opportunities to improve clinical biomarker research. Leuchowius et al. describe an improved proximity ligation assay for in situ detection of protein complexes, which is able to detect and quantify several protein complexes simultaneously in the same tissue specimen. 相似文献
15.
Alex J. L. Morgan Lorena Hidalgo San Jose William D. Jamieson Jennifer M. Wymant Bing Song Phil Stephens David A. Barrow Oliver K. Castell 《PloS one》2016,11(4)
The uptake of microfluidics by the wider scientific community has been limited by the fabrication barrier created by the skills and equipment required for the production of traditional microfluidic devices. Here we present simple 3D printed microfluidic devices using an inexpensive and readily accessible printer with commercially available printer materials. We demonstrate that previously reported limitations of transparency and fidelity have been overcome, whilst devices capable of operating at pressures in excess of 2000 kPa illustrate that leakage issues have also been resolved. The utility of the 3D printed microfluidic devices is illustrated by encapsulating dental pulp stem cells within alginate droplets; cell viability assays show the vast majority of cells remain live, and device transparency is sufficient for single cell imaging. The accessibility of these devices is further enhanced through fabrication of integrated ports and by the introduction of a Lego®-like modular system facilitating rapid prototyping whilst offering the potential for novices to build microfluidic systems from a database of microfluidic components. 相似文献
16.
17.
Literature mining and database annotation of protein phosphorylation using a rule-based system 总被引:3,自引:0,他引:3
Hu ZZ Narayanaswamy M Ravikumar KE Vijay-Shanker K Wu CH 《Bioinformatics (Oxford, England)》2005,21(11):2759-2765
MOTIVATION: A large volume of experimental data on protein phosphorylation is buried in the fast-growing PubMed literature. While of great value, such information is limited in databases owing to the laborious process of literature-based curation. Computational literature mining holds promise to facilitate database curation. RESULTS: A rule-based system, RLIMS-P (Rule-based LIterature Mining System for Protein Phosphorylation), was used to extract protein phosphorylation information from MEDLINE abstracts. An annotation-tagged literature corpus developed at PIR was used to evaluate the system for finding phosphorylation papers and extracting phosphorylation objects (kinases, substrates and sites) from abstracts. RLIMS-P achieved a precision and recall of 91.4 and 96.4% for paper retrieval, and of 97.9 and 88.0% for extraction of substrates and sites. Coupling the high recall for paper retrieval and high precision for information extraction, RLIMS-P facilitates literature mining and database annotation of protein phosphorylation. 相似文献
18.
19.
即使细菌基因组的基因结构较为简单,但在注释过程中也可能出现基因遗漏的现象。当潜在基因在高质量数据库中没有显著同源序列时,基于知识库的基因预测方法就会遇到困难。本文希望通过系统扫描基因组所有可能ORF的蛋白质序列模式来搜索遗漏基因。为验证该方法的可行性,作者系统分析了重要的工业发酵微生物谷氨酸棒杆菌的基因组,发现了25个候选疑似基因。它们具有显著的蛋白质序列模式,但在Swiss-Prot中元显著同源序列,并且在GenBank中仍未注释。深入分析发现,25个候选疑似基因中19个为可能基因,3个为可能假基因,3个为疑似基因序列。这些结果说明本文的分析方法可以有效地用于无显著同源序列基因的搜索。 相似文献
20.