首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We reported recently that albumin is a suitable drug carrier for targeted delivery of methotrexate (MTX) to tumors. Due to pathophysiological conditions in neoplastic tissue, high amounts of albumin accumulate in tumors and are metabolized by malignant cells. MTX, covalently coupled to human serum albumin (MTX-HSA) for cancer treatment, is currently being evaluated in phase II clinical trials. Because synovium of patients with rheumatoid arthritis (RA) shares various features observed also in tumors, albumin-based drug targeting of inflamed joints might be an attractive therapeutic approach. Therefore, the pharmacokinetics of albumin and MTX in a mouse model of arthritis was examined. Additionally, uptake of albumin by synovial fibroblasts of RA patients and the efficacy of MTX and MTX-HSA in arthritic mice were studied. The results show that when compared with MTX, significantly higher amounts of albumin accumulate in inflamed paws, and significantly lower amounts of albumin are found in the liver and the kidneys. The protein is metabolized by human synovial fibroblasts in vitro and in vivo. MTX-HSA was significantly more effective in suppression of the onset of arthritis in mice than was MTX. In conclusion, albumin appears to be a suitable drug carrier in RA, most likely due to effects on synovial fibroblasts, which might increase therapeutic efficacy and reduce side effects of MTX.  相似文献   

2.
Liposomes prepared from naturally occurring biodegradable and nontoxic lipids are good candidates for local delivery of therapeutic agents. Treatment of arthritis by intra-articular administration of anti-inflammatory drugs encapsulated in liposomes prolongs the residence time of the drug in the joint. We have previously shown that intra-articular injection of human lactoferrin (hLf), a glycoprotein that possesses anti-inflammatory and antimicrobial activities, into mice with collagen-induced arthritis reduces inflammation. We have now investigated the possibility of using liposome-entrapped hLf as a delivery system to prolong hLf retention at sites of local inflammation such as the rheumatoid joint. Entrapment of hLf in negatively charged liposomes enhanced its accumulation in cultured human synovial fibroblasts from rheumatoid arthritis (RA) patients, compared with positively charged formulations or free protein. However, in the presence of synovial fluid, positively charged liposomes with entrapped hLf were more stable than the negatively charged formulations. In vivo experiments in mice with collagen-induced arthritis showed that the positive liposomes were more efficient in prolonging the residence time of hLf in the inflamed joint as compared with other liposomes. Thus, the amount of hLf retained in the joint after 2 hr was 60% of the injected dose in the case of positive liposomes and only 16% for negative pH-sensitive liposomes. The results suggest that entrapment of hLf in positively charged liposomes may modify its pharmacodynamic profile and be of therapeutic benefit in the treatment of RA and other local inflammatory conditions.  相似文献   

3.
The aim of the study was to visualize chronic experimental arthritis with near-infrared fluorescence imaging (NIRF) in a murine experimental arthritis model of rheumatoid arthritis (RA) (flare-up arthritis). The flare-up arthritis model is a modification of the primary antigen-induced arthritis (AIA) model. NIRF was done for two preparations of the fluorochrome Cy5.5, one native and the other albumin conjugated. Histological features of flare-up arthritis were evaluated.AIA was induced in 16 mice (strain C57/Bl6); flare-up arthritis was induced in a subgroup of eight. On day 7 after induction of flare-up arthritis, four mice received 50 nmol/kg native dye and four mice equimolar concentrations of the dye as albumin-dye conjugate intravenously. NIRF imaging was performed immediately before injection (baseline) and until 72 h thereafter. Arthritis severity was evaluated histologically for primary AIA and flare-up arthritis mice.NIRF imaging revealed higher fluorochrome uptake in all inflamed knees compared to contralateral ones. The signal intensities induced by native Cy5.5 were higher than those generated by albumin-Cy5.5 conjugate. Histological evaluation of arthritic joints showed similar abnormalities in flare-up arthritis and in primary AIA joints.Imaging of flare-up arthritis in the near-infrared range was successful for both fluorochrome preparations, but albumin conjugation prior to injection does not improve the uptake of dye in arthritic joints. Flare-up arthritis is a feasible model of chronic relapse of arthritis in human RA.  相似文献   

4.

Introduction  

Mouse models of rheumatoid arthritis (RA) have proven critical for identifying genetic and cellular mechanisms of the disease. Upon discovering mice in our breeding colony that had spontaneously developed inflamed joints reminiscent of RA, we established the novel IIJ (inherited inflamed joints) strain. The purpose of this study was to characterize the histopathological, clinical, genetic and immunological properties of the disease.  相似文献   

5.
类风湿关节炎(RA)是全世界难治性自身免疫疾病,其治疗药物虽不断发展,但病灶药物浓度达不到有效水平导致药物疗效不理想或存在各种毒副反应,因此,基于新技术、新方法研究开发针对RA的安全、高效新型制剂是必要的.研究表明,纳米技术的运用可提高药物生物利用度,经皮给药可改善口服和注射带来的毒副作用.对近年来基于经皮给药系统治疗...  相似文献   

6.
7.
Microparticles (MPs) are small membrane‐vesicles that accumulate in the synovial fluids of patients with rheumatoid arthritis (RA). In the arthritic joints, MPs induce a pro‐inflammatory and invasive phenotype in synovial fibroblasts (SFs). The present study investigated whether activation of SFs by MPs stimulates angiogenesis in the inflamed joints of patients with RA. MPs were isolated from Jurkat cells and U937 cells by differential centrifugation. SFs were co‐cultured with increasing numbers of MPs. The effects of supernatants from co‐cultures on endothelial cells were studied in vitro and in vivo using MTT assays, annexin V and propidium iodide staining, trans‐well migration assays and modified matrigel pouch assays. MPs strongly induced the expression of the pro‐angiogenic ELR+ chemokines CXCL1, CXCL2, CXCL3, CXCL5 and CXCL6 in RASFs. Other vascular growth factors were not induced. Supernatants from co‐cultures enhanced the migration of endothelial cells, which could be blocked by neutralizing antibodies against ELR+ chemokines. Consistent with the specific induction of ELR+ chemokines, proliferation and viability of endothelial cells were not affected by the supernatants. In the in vivo bio‐chamber assay, supernatants from RASFs co‐cultured with MPs stimulated angiogenesis with a significant increase of vessels infiltrating into the matrigel chamber. We demonstrated that MPs activate RASFs to release pro‐angiogenic ELR+ chemokines. These pro‐angiogenic mediators enhance migration of endothelial cells and stimulate the formation of new vessels. Our data suggest that MPs may contribute to the hypervascularization of inflamed joints in patients with rheumatoid arthritis.  相似文献   

8.

Introduction

We previously demonstrated that a single-chain fragment variable (scFv) specific to collagen type II (CII) posttranslationally modified by reactive oxygen species (ROS) can be used to target anti-inflammatory therapeutics specifically to inflamed arthritic joints. The objective of the present study was to demonstrate the superior efficacy of anti-inflammatory cytokines when targeted to inflamed arthritic joints by the anti-ROS modified CII (anti-ROS-CII) scFv in a mouse model of arthritis.

Methods

Viral interleukin-10 (vIL-10) was fused to anti-ROS-CII scFv (1-11E) with a matrix-metalloproteinase (MMP) cleavable linker to create 1-11E/vIL-10 fusion. Binding of 1-11E/vIL-10 to ROS-CII was determined by enzyme-linked immunosorbent assay (ELISA), Western blotting, and immune-staining of arthritic cartilage, whereas vIL-10 bioactivity was evaluated in vitro by using an MC-9 cell-proliferation assay. Specific in vivo localization and therapeutic efficacy of 1-11E/vIL-10 was tested in the mouse model of antigen-induced arthritis.

Results

1-11E/vIL-10 bound specifically to ROS-CII and to damaged arthritic cartilage. Interestingly, the in vitro vIL-10 activity in the fusion protein was observed only after cleavage with MMP-1. When systemically administered to arthritic mice, 1-11E/vIL-10 localized specifically to the arthritic knee, with peak accumulation observed after 3 days. Moreover, 1-11E/vIL-10 reduced inflammation significantly quicker than vIL-10 fused to the control anti-hen egg lysozyme scFv (C7/vIL10).

Conclusions

Targeted delivery of anti-inflammatory cytokines potentiates their anti-arthritic action in a mouse model of arthritis. Our results further support the hypothesis that targeting biotherapeutics to arthritic joints may be extended to include anti-inflammatory cytokines that lack efficacy when administered systemically.  相似文献   

9.
Rheumatoid arthritis (RA) is a chronic and systemic autoimmune inflammatory disease. Typical pathological findings of RA include persistent synovitis and bone degradation in the peripheral joints. Equol, a metabolite of the major soybean isoflavone daidzein, shows superior bioactivity than other isoflavones. We investigated the effects of equol administration on inflammatory response and bone erosion in mice with collagen-induced arthritis (CIA). The severity of arthritis symptoms was significantly low in the equol-administered CIA mice. In addition, equol administration improved the CIA-induced bone mineral density decline. In the inflamed area of CIA mice, equol administration suppressed the expression of interleukin-6 and its receptor. Furthermore, equol reduced the expression of genes associated with bone formation inhibition, osteoclast and immature osteoblast specificity and cartilage destruction. These results suggest that equol suppresses RA development and RA-induced bone erosion by regulating inflammation and bone metabolism.  相似文献   

10.
Context: Surface-modified pH-sensitive liposomal system may be useful for intracellular delivery of chemotherapeutics.

Objective: Achieving site-specific targeting with over-expressed hyaluronic acid (HA) receptors along with using pH sensitive liposome carrier for intracellular drug delivery was the aim of this study.

Materials and methods: Stealth HA-targeted pH-sensitive liposomes (SL-pH-HA) were developed and evaluated to achieve effective intracellular delivery of doxorubicin (DOX) vis–a-vis enhanced antitumor activity.

Results: The in vitro release studies demonstrated that the release of DOX from SL-pH-HA was pH-dependent, i.e. faster at mildly acidic pH ~5, compared to physiological pH ~7.4. SLpH-HA was evaluated for their cytotoxicity potential on CD44 receptor expressing MCF-7 cells. The half maximal inhibitory concentration (IC50) of SL-pH-HA and SL-HA were about 1.9 and 2.5?μM, respectively, after 48?h of incubation. The quantitative uptake study revealed higher localization of targeted liposomes in the receptor positive cells, which was further confirmed by fluorescent microscopy. The antitumor efficacy of the DOX-loaded HA-targeted pH-sensitive liposomes was also verified in a tumor xenograft mouse model.

Discussion: DOX was efficiently delivered to the tumor site by active targeting via HA and CD44 receptor interaction. The major side-effect of conventional DOX formulation, i.e. cardiotoxicity was also estimated by measuring serum enzyme levels of LDH and CPK and found to be minimized with developed formulation. Overall, HA targeted pH-sensitive liposomes were significantly more potent than the non-targeted liposomes in cells expressing high levels of CD44.

Conclusion: Results strongly implies the promise of such liposomal system as an intracellular drug delivery carrier developed for potential anticancer treatment.  相似文献   

11.
A novel pH-sensitive and biodegradable composite hydrogel, based on a methacrylated and succinic derivative of dextran, named Dex-MA-SA, and a methacrylated and succinic derivative of alpha,beta-poly( N-2-hydroxyethyl)- DL-aspartamide (PHEA), named PHM-SA, was produced by photocross-linking. The goal was to obtain a colon-specific drug delivery system, exploiting both the pH-sensitive behavior and the colon-specific degradability. The hydrogel prepared with a suitable ratio between the polysaccharide and the polyaminoacid was characterized regarding its swelling behavior in gastrointestinal simulated conditions, chemical and enzymatic degradability, interaction with mucin, and cell compatibility on CaCo-2 cells. Moreover, 2-methoxyestradiol was chosen as a model of anticancer drug and release studies, were performed in the absence or in the presence of dextranase and esterase. The obtained hydrogel, due to its pH-sensitive swelling and enzymatic degradability, together with mucoadhesion and cell compatibility, could be potentially useful as system for the oral treatment of colonic cancer.  相似文献   

12.
13.
Rheumatoid arthritis (RA) is characterized by an abnormal cellular and cytokine infiltration of inflamed joints. This study addresses a previously unrecognized interaction between neutrophilic-myeloperoxidase (MPO) and macrophages (Mphi) which could explain the perpetuation of inflammation associated with RA. A monoarticular arthritis was induced in female Lewis rats by injection of streptococcal cell wall extracts (PG-APS). After swelling and erythema subsided, joints were re-injected with one of the following: porcine MPO or partially inactivated MPO (iMPO). Injection with either MPO or iMPO induced a ''flare'' of experimental RA. Blocking the Mphi-mannose receptor by mannans, ablated exacerbation of disease. These results indicate that MPO or iMPO can play a pivotal role in the perpetuation but not initiation of this RA model.  相似文献   

14.
Zhang  Xiaoyu  Zhao  Wenxiang  Zhao  Yihan  Zhao  Zeda  Lv  Zhangsheng  Zhang  Zhen  Ren  Hua  Wang  Qin  Liu  Mingyao  Qian  Min  Du  Bing  Qin  Juliang 《中国科学:生命科学英文版》2022,65(5):953-968

Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the joints and is associated with excessive immune cell infiltration. However, the complex interactions between the immune cell populations in the RA synovium remain unknown. Here, we demonstrate that inflammatory macrophages in the synovium exacerbate neutrophil-driven joint damage in RA through ADP/P2Y1 signaling. We show that extracellular ADP (eADP) and its receptors are obviously increased in synovial tissues of RA patients as well as collagen-induced arthritis (CIA) mice, and eADP enhances neutrophil infiltration into joints through macrophages producing the chemokine CXCL2, aggravating disease development. Accordingly, the arthritis mouse model had more neutrophils in inflamed joints following ADP injection, whereas P2Y1 deficiency and pharmacologic inhibition restored arthritis severity to basal levels, suggesting a dominant role of ADP/P2Y1 signaling in RA pathology. Moreover, cellular activity of ADP/P2Y1-mediated CXCL2 production was dependent on the Gαq/Ca2+-NF-κB/NFAT pathway in macrophages. Overall, this study reveals a non-redundant role of eADP as a trigger in the pathogenesis of RA through neutrophil recruitment and disrupted tissue homeostasis and function.

  相似文献   

15.
For the treatment of rheumatoid arthritis, efficient drug delivery methods to the inflamed joints need to be developed. Because T cells expressing an appropriate autoantigen-specific receptor can migrate to inflamed lesions, it has been reasoned that they can be employed to deliver therapeutic agents. To examine the ability and efficiency of such T cells as a vehicle, we employed an experimentally induced model of arthritis. Splenic T cells from DO11.10 TCR transgenic mice specific for OVA were transduced with murine IL-10. Adoptive transfer of the IL-10-transduced DO11.10 splenocytes ameliorated OVA-induced arthritis despite the presence of around 95% nontransduced cells. Using green fluorescent protein as a marker for selection, the number of transferred cells needed to ameliorate the disease was able to be reduced to 10(4). Preferential accumulation of the transferred T cells was observed in the inflamed joint, and the improvement in the disease was not accompanied by impairment of the systemic immune response to the Ag, suggesting that the transferred T cells exert their anti-inflammatory task locally, mainly in the joints where the Ag exists. In addition, IL-10-transduced DO11.10 T cells ameliorated methylated BSA-induced arthritis when the arthritic joint was coinjected with OVA in addition to methylated BSA. These results suggest that T cells specific for a joint-specific Ag would be useful as a therapeutic vehicle in rheumatoid arthritis for which the arthritic autoantigen is still unknown.  相似文献   

16.
Nanoparticles (NPs) have emerged as a potential tool to improve cancer treatment. Among the proposed uses in imaging and therapy, their use as a drug delivery scaffold has been extensively highlighted. However, there are still some controversial points which need a deeper understanding before clinical application can occur. Here the use of gold nanoparticles (AuNPs) to detoxify the antitumoral agent cisplatin, linked to a nanoparticle via a pH-sensitive coordination bond for endosomal release, is presented. The NP conjugate design has important effects on pharmacokinetics, conjugate evolution and biodistribution and results in an absence of observed toxicity. Besides, AuNPs present unique opportunities as drug delivery scaffolds due to their size and surface tunability. Here we show that cisplatin-induced toxicity is clearly reduced without affecting the therapeutic benefits in mice models. The NPs not only act as carriers, but also protect the drug from deactivation by plasma proteins until conjugates are internalized in cells and cisplatin is released. Additionally, the possibility to track the drug (Pt) and vehicle (Au) separately as a function of organ and time enables a better understanding of how nanocarriers are processed by the organism.  相似文献   

17.
Arthritis is a heterogeneous disease comprising a group of inflammatory and non-inflammatory conditions that can cause pain, stiffness and swelling in the joints. Mouse models of rheumatoid arthritis (RA) have been critical for identifying genetic and cellular mechanisms of RA and several new mouse models have been produced. Various methods have been applied to induce experimental models of arthritis in animals that would provide important insights into the etiopathogenetic mechanisms of human RA. Adipue and colleagues recently discovered that mice in their breeding colony spontaneously developed inflamed joints reminiscent of RA and may, therefore, have found a new model to examine pathogenic mechanisms and test new treatments for this human inflammatory disease.  相似文献   

18.
Traditional treatments, including a variety of thermal therapies have been known since ancient times to provide relief from rheumatoid arthritis (RA) symptoms. However, a general absence of information on how heating affects molecular or immunological targets relevant to RA has limited heat treatment (HT) to the category of treatments known as “alternative therapies”. In this study, we evaluated the effectiveness of mild HT in a collagen-induced arthritis (CIA) model which has been used in many previous studies to evaluate newer pharmacological approaches for the treatment of RA, and tested whether inflammatory immune activity was altered. We also compared the effect of HT to methotrexate, a well characterized pharmacological treatment for RA. CIA mice were treated with either a single HT for several hours or daily 30 minute HT. Disease progression and macrophage infiltration were evaluated. We found that both HT regimens significantly reduced arthritis disease severity and macrophage infiltration into inflamed joints. Surprisingly, HT was as efficient as methotrexate in controlling disease progression. At the molecular level, HT suppressed TNF-α while increasing production of IL-10. We also observed an induction of HSP70 and a reduction in both NF-κB and HIF-1α in inflamed tissues. Additionally, using activated macrophages in vitro, we found that HT reduced production of pro-inflammatory cytokines, an effect which is correlated to induction of HSF-1 and HSP70 and inhibition of NF-κB and STAT activation. Our findings demonstrate a significant therapeutic benefit of HT in controlling arthritis progression in a clinically relevant mouse model, with an efficacy similar to methotrexate. Mechanistically, HT targets highly relevant anti-inflammatory pathways which strongly support its increased study for use in clinical trials for RA.  相似文献   

19.
Fibroblast-like synoviocytes (FLS) play a major role in the pathogenesis of rheumatoid arthritis (RA). FLS isolated from patients with RA (FLS-RA) express B cell-activating factor belonging to the TNF family (BAFF), a cytokine that has been associated with the onset and progression of RA. Glucocorticoids are powerful anti-inflammatory drugs used in the treatment of RA. In the present study, we examined the effect of dexamethasone (Dex) on constitutive and TNF-alpha- and IFN-gamma-induced BAFF expression in FLS-RA. BAFF mRNA expression and soluble BAFF were determined by RT-PCR and ELISA, respectively. The results showed that constitutive BAFF mRNA expression was inhibited by Dex in a dose- and time-dependent manner. Also, Dex inhibited the secretion of BAFF in a time-dependent manner reaching 76% of inhibition 72 h after treatment. Moreover, Dex suppressed both mRNA and protein BAFF expression induced by TNF-alpha but had no effect on IFN-gamma-induced BAFF expression. In comparison with B cells cultured alone, B cells co-cultured with FLS-RA exhibited a higher survival, which was inhibited when FLS-RA were pretreated with Dex. However, the enhanced B cell survival was reestablished by the addition of rhBAFF. Therefore, Dex is a potent inhibitor of constitutive and TNF-alpha-induced BAFF expression in FLS-RA.  相似文献   

20.
Rheumatoid arthritis (RA) is characterized by a pre-vascular seriously inflammatory phase, followed by a vascular phase with high increase in vessel growth. Since angiogenesis has been considered as an essential event in perpetuating inflammatory and immune responses, as well as supporting pannus growth and development of RA, inhibition of angiogenesis has been proposed as a novel therapeutic strategy for RA. Triptolide, a diterpenoid triepoxide from Tripterygium wilfordii Hook F, has been extensively used in treatment of RA patients. It also acts as a small molecule inhibitor of tumor angiogenesis in several cancer types. However, it is unclear whether triptolide possesses an anti-angiogenic effect in RA. To address this problem, we constructed collagen-induced arthritis (CIA) model using DA rats by the injection of bovine type II collagen. Then, CIA rats were treated with triptolide (11–45 µg/kg/day) starting on the day 1 after first immunization. The arthritis scores (P<0.05) and the arthritis incidence (P<0.05) of inflamed joints were both significantly decreased in triptolide-treated CIA rats compared to vehicle CIA rats. More interestingly, doses of 11∼45 µg/kg triptolide could markedly reduce the capillaries, small, medium and large vessel density in synovial membrane tissues of inflamed joints (all P<0.05). Moreover, triptolide inhibited matrigel-induced cell adhesion of HFLS–RA and HUVEC. It also disrupted tube formation of HUVEC on matrigel and suppressed the VEGF-induced chemotactic migration of HFLS–RA and HUVEC, respectively. Furthermore, triptolide significantly reduced the expression of angiogenic activators including TNF-α, IL-17, VEGF, VEGFR, Ang-1, Ang-2 and Tie2, as well as suppressed the IL1-β-induced phosphorylated of ERK, p38 and JNK at protein levels. In conclusion, our data suggest for the first time that triptolide may possess anti-angiogenic effect in RA both in vivo and in vitro assay systems by downregulating the angiogenic activators and inhibiting the activation of mitogen-activated protein kinase downstream signal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号