首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forty-eight isolates resistant to at least two antibiotics were selected from 53 antibiotic-resistant enterococci from chicken and pig meat and faeces and analysed for specific resistance determinants. Of the 48 multidrug-resistant (MDR) strains, 31 were resistant to two antibiotics (29 to erythromycin and tetracycline, 1 to erythromycin and vancomycin, 1 to vancomycin and tetracycline), 14 to three (erythromycin, tetracycline and vancomycin or ampicillin) and 3 to four (erythromycin, vancomycin, ampicillin and gentamicin). erm(B), tet(M), vanA and aac (6′)-Ie aph (2′′)-Ia were the antibiotic resistance genes most frequently detected. All 48 MDR enterococci were susceptible to linezolid and daptomycin. Enterococcus faecalis (16), Enterococcus faecium (8), Enterococcus mundtii (2) and Enterococcus gallinarum (1) were identified in meat, and E. faecium (13) and Enterococcus durans (13) in faeces. Clonal spread was not detected, suggesting a large role of gene transfer in the dissemination of antibiotic resistance. Conjugative transfer of resistance genes was more successful when donors were enterococcal strains isolated from faeces; co-transfer of vanA and erm(B) to a human E. faecium occurred from both E. faecium and E. durans pig faecal strains. These data show that multidrug resistance can be found in food and animal species other than E. faecium and E. faecalis, and that these species can efficiently transfer antibiotic resistance to human strains in inter-specific matings. In particular, the occurrence of MDR E. durans in the animal reservoir could have a role in the emergence of human enterococcal infections difficult to eradicate with antibiotics.  相似文献   

2.
Large amounts of tylosin, zinc-bacitracin, and avilamycin are currently used as prophylactics in New Zealand broiler production. Avoparcin was also used from 1977 to 2000. A total of 382 enterococci were isolated from 213 fecal samples (147 individual poultry farms) using enrichment broths plated on m-Enterococcus agar lacking antimicrobials. These isolates were then examined to determine the prevalence of antimicrobial resistance. Of the 382 isolates, 5.8% (22 isolates) were resistant to vancomycin, and 64.7% were resistant to erythromycin. The bacitracin MIC was ≥256 μg/ml for 98.7% of isolates, and the avilamycin MIC was ≥8 μg/ml for 14.9% of isolates. No resistance to ampicillin or gentamicin was detected. Of the 22 vancomycin-resistant enterococci (VRE) isolates, 18 (81.8%) were Enterococcus faecalis, 3 were Enterococcus faecium, and 1 was Enterococcus durans. However, when the 213 fecal enrichment broths were plated on m-Enterococcus agar containing vancomycin, 86 VRE were recovered; 66% of these isolates were E. faecium and the remainder were E. faecalis. Vancomycin-resistant E. faecium isolates were found to have heterogenous pulsed-field gel electrophoresis (PFGE) patterns of SmaI-digested DNA, whereas the PFGE patterns of vancomycin-resistant E. faecalis isolates were identical or closely related, suggesting that this VRE clone is widespread throughout New Zealand. These data demonstrate that vancomycin-resistant E. faecalis persists in the absence and presence of vancomycin-selective pressure, thus explaining the dominance of this VRE clone even in the absence of avoparcin.  相似文献   

3.

Background  

Enterococci have become major nosocomial pathogens due to their intrinsic and acquired resistance to a broad spectrum of antibiotics. Their increasing drug resistance prompts us to search for prominent antigens to develop vaccines against enterococci. Given the success of polysaccharide-based vaccines against various bacterial pathogens, we isolated and characterized the immunochemical properties of polysaccharide antigens from five strains of Enterococcus faecalis and one strain of vancomycin-resistant E. faecium.  相似文献   

4.
In last decade methicillin-resistant Staphylococcus aureus with high level of vancomycin-resistance (VRSA) have been reported and generally the patients with VRSA infection were also infected with a vancomycin-resistant Enterococcus (VRE). Considering that the high level of vancomycin-resistance in VRSA isolates seems to involve the horizontal transfer of Tn1546 transposon containing vanA gene from coinfecting VRE strains, the authors have studied the “in vitro” conjugative transfer of this resistance from VanA enterococci to S. aureus. Out of 25 matings performed combining five vancomycin-resistant enterococci as donors (three Enterococcus faecalis and two Enterococcus faecium), and five S. aureus as recipients, all clinical isolates, two have been successful using E. faecalis as donor. The transfer of vancomycin-resistance was confirmed by vanA gene amplification in both transconjugants and the resistance was expressed at lower levels (MIC 32 μg/ml) in comparison with the respective VRE donors (MIC > 128 μg/ml). The vancomycin-resistance of trasconjugants was maintained even after subsequent overnight passages on MSA plates containing subinhibitory levels of vancomycin. This study shows that the vanA gene transfer can be achieved through techniques “in vitro” without the use of laboratory animals employed, in the only similar experiment previously carried out by other authors, as substrate for the trasconjugant growth. Moreover, in that previous experiment, contrary to this study, the vancomycin resistant S. aureus trasconjugants were selected on erythromycin agar and not by direct vancomycin agar selection.  相似文献   

5.
Compared with other developed countries, vancomycin‐resistant enterococci (VRE) are not widespread in clinical environments in Japan. There have been no VRE outbreaks and only a few VRE strains have sporadically been isolated in our university hospital in Gunma, Japan. To examine the drug susceptibility of Enterococcus faecalis and nosocomial infection caused by non‐VRE strains, a retrospective surveillance was conducted in our university hospital. Molecular epidemiological analyses were performed on 1711 E. faecalis clinical isolates collected in our hospital over a 6‐year period [1998–2003]. Of these isolates, 1241 (72.5%) were antibiotic resistant and 881 (51.5%) were resistant to two or more drugs. The incidence of multidrug resistant E. faecalis (MDR‐Ef) isolates in the intensive care unit increased after enlargement and restructuring of the hospital. The major group of MDR‐Ef strains consisted of 209 isolates (12.2%) resistant to the five drug combination tetracycline/erythromycin/kanamycin/streptomycin/gentamicin. Pulsed‐field gel electrophoresis analysis of the major MDR‐Ef isolates showed that nosocomial infections have been caused by MDR‐Ef over a long period (more than 3 years). Multilocus sequence typing showed that these strains were mainly grouped into ST16 (CC58) or ST64 (CC8). Mating experiments suggested that the drug resistances were encoded on two conjugative transposons (integrative conjugative elements), one encoded tetracycline‐resistance and the other erythromycin/kanamycin/streptomycin/gentamicin‐resistance. To our knowledge, this is the first report of nosocomial infection caused by vancomycin‐susceptible MDR‐Ef strains over a long period in Japan.  相似文献   

6.
Enterococcus faecalis and Enterococcus faecium are both human intestinal colonizers frequently used in medical bacteriology teaching laboratories in order to train students in bacterial identification....  相似文献   

7.
Increasing antibiotic resistance in enterococci is among the most serious public health problems worldwide. The new naturally occurring antibacterial agents were explored. This study, therefore, investigated the antibacterial potential of Stephania suberosa extract (SSE) and its synergism with ampicillin (AMP) or vancomycin (VAN) against AMP- and VAN-resistant Enterococcus faecium. Disc diffusion assay revealed that SSE inhibited E. faecium DMST 12829, 12852, 12970, and a reference strain of Enterococcus faecalis ATCC 29,212 in a dose-dependent manner. The minimum inhibitory concentration (MIC) of SSE against all E. faecium isolates was 0.5 mg/mL. E. faecium DMST 12,829 and 12,852 were highly resistant to AMP, as indicated by high MIC values, and E. faecium DMST 12,829 and 12,970 were resistant to VAN. Enterococcus spp. were killed by SSE at the minimum bactericidal concentrations (MBCs) ranging from 0.5 to 4 mg/mL. Checkerboard determination showed that SSE plus AMP and SSE plus VAN combinations exhibited synergistic interaction against E. faecium isolates. The killing curve assay of E. faecium isolates confirmed the antibacterial and synergistic activities of combined agents by dramatically reducing the viable counts compared to a single agent. Scanning electron microscope elucidated the cell damage and abnormal cell division. Enterococcal proteases were also inhibited by SSE. These findings support that SSE could reverse the activity of AMP and VAN. Moreover, it can synergistically inhibit AMP- and VAN-resistant E. faecium. Our combined agents could be attractive candidates for developing new combinatorial agents to resurrect the efficacy of antibiotics for treating AMP- and VAN-resistant E. faecium infections.  相似文献   

8.

Objectives

This study investigated the antimicrobial resistance of Escherichia coli and enterococci isolated from free-ranging Tibetan pigs in Tibet, China, and analyzed the influence of free-ranging husbandry on antimicrobial resistance.

Methods

A total of 232 fecal samples were collected from Tibetan pigs, and the disk diffusion method was used to examine their antimicrobial resistance. Broth microdilution and agar dilution methods were used to determine minimum inhibitory concentrations for antimicrobial agents for which disks were not commercially available.

Results

A total of 129 E. coli isolates and 84 Enterococcus isolates were recovered from the fecal samples. All E. coli isolates were susceptible to amoxicillin/clavulanic acid, and 40.4% were resistant to tetracycline. A small number of isolates were resistant to florfenicol (27.9%), ampicillin (27.9%), sulfamethoxazole/trimethoprim (19.4%), nalidixic acid (19.4%), streptomycin (16.2%) and ceftiofur (10.9%), and very low resistance rates to ciprofloxacin (7.8%), gentamicin (6.9%), and spectinomycin (2.3%) were observed in E. coli. All Enterococcus isolates, including E. faecium, E. faecalis, E. hirae, and E. mundtii, were susceptible to amoxicillin/clavulanic acid and vancomycin, but showed high frequencies of resistance to oxacillin (92.8%), clindamycin (82.1%), tetracycline (64.3%), and erythromycin (48.8%). Resistance rates to florfenicol (17.9%), penicillin (6.0%), ciprofloxacin (3.6%), levofloxacin (1.2%), and ampicillin (1.2%) were low. Only one high-level streptomycin resistant E. faecium isolate and one high-level gentamicin resistant E. faecium isolate were observed. Approximately 20% and 70% of E. coli and Enterococcus isolates, respectively, were defined as multidrug-resistant.

Conclusions

In this study, E. coli and Enterococcus isolated from free-ranging Tibetan pigs showed relatively lower resistance rates than those in other areas of China, where more intensive farming practices are used. These results also revealed that free-range husbandry and absence of antibiotic use could decrease the occurrence of antimicrobial resistance to some extent.  相似文献   

9.
The potential impact of food animals in the production environment on the bacterial population as a result of antimicrobial drug use for growth enhancement continues to be a cause for concern. Enterococci from 82 farms within a poultry production region on the eastern seaboard were isolated to establish a baseline of susceptibility profiles for a number of antimicrobials used in production as well as clinical environments. Of the 541 isolates recovered, Enterococcus faecalis (53%) and E. faecium (31%) were the predominant species, while multiresistant antimicrobial phenotypes were observed among all species. The prevalence of resistance among isolates of E. faecalis was comparatively higher among lincosamide, macrolide, and tetracycline antimicrobials, while isolates of E. faecium were observed to be more frequently resistant to fluoroquinolones and penicillins. Notably, 63% of the E. faecium isolates were resistant to the streptogramin quinupristin-dalfopristin, while high-level gentamicin resistance was observed only among the E. faecalis population, of which 7% of the isolates were resistant. The primary observations are that enterococci can be frequently isolated from the poultry production environment and can be multiresistant to antimicrobials used in human medicine. The high frequency with which resistant enterococci are isolated from this environment suggests that these organisms might be useful as sentinels to monitor the development of resistance resulting from the usage of antimicrobial agents in animal production.  相似文献   

10.
Fifty antibiotic-resistant Enterococcus strains were isolated from raw sewage of a wastewater treatment plant and from the same sewage after trickling through a 25-cm sand column, which retained >99% of the initial population. All 50 Enterococcus isolates were resistant against triple sulfa and trimethoprim/sulfamethoxazole and none were resistant against vancomycin. Most of the isolates from raw sewage were resistant to more antibiotics than the isolates from sand column effluent. One Enterococcus isolate from raw sewage (no. 61) and one Enterococcus isolate from sand column effluent (no. 95) had ten antibiotic resistances each. Isolate no. 95 maintained its resistances in the absence of antibiotics during the whole study. It was compared with isolate no. 70, which was one of the isolates, being resistant only against the two sulfonamides. Phenotypically and biochemically, the two organisms were strains of Enterococcus faecalis. Sequence analysis of partical 16S rDNA allowed alignment of isolate no. 95 as a strain of Enterococcus faecium and of isolate no. 70 as a strain of E. faecalis. E. faecium strain no. 95 carried at least six different plasmids, whereas for E. faecalis strain no. 70, no discrete plasmid band was seen on the gels.  相似文献   

11.
Aims: To analyse the occurrence of faecal carriage of vancomycin‐resistant enterococci (VRE) in Buteo buteo and to study the associated resistance and virulence genes. Methods and Results: The presence of VRE was investigated in 33 faecal samples of B. buteo. Samples were seeded in Slanetz–Bartley agar plates supplemented with vancomycin for VRE recovery. Genes encoding antimicrobial resistance and virulence were studied by polymerase chain reaction. Vancomycin‐resistant Enterococcus faecium isolates were characterized by multilocus sequence typing. VRE with an acquired mechanism of resistance (vanA genotype) were detected in 9% of samples analysed (Ent. faecium and Enterococcus durans). In addition, 27% of samples contained VRE with an intrinsic mechanism of resistance (Enterococcus gallinarum, vanC1). All vanA‐containing isolates showed resistance to tetracycline and erythromycin and harboured the tet(M) and/or tet(L) genes, in addition to the ermB gene. The vat(E) and/or vat(D), cat(A) and aph(3′)‐IIIa genes were identified in quinupristin–dalfopristin‐, chloramphenicol‐, and kanamycin‐resistant vanA‐containing strains, respectively. The sequence types ST273 and ST5 were identified in two vanA‐positive Ent. faecium isolates, and the presence of hyl, gelE, cylA, cylL and cylM virulence genes and gelatinase activity were identified in Ent. faecium ST5 strain. Conclusions: The intestinal tract of B. buteo could be a reservoir of vanA‐positive enterococci. Significance and Impact of the Study: First study focused to define the occurrence of vanA‐containing Enterococcus strains in B. buteo.  相似文献   

12.

Background  

Vancomycin resistant enterococci are a frequent cause of nosocomial infections and their presence among farm animals is unwanted. Using media supplemented with vancomycin an increase in the proportion of samples from Swedish broilers positive for vancomycin resistant enterococci has been detected. The situation at farm level is largely unknown. The aims of this study were to obtain baseline knowledge about environmental contamination with vancomycin resistant enterococci in Swedish broiler production and the association between environmental contamination and colonisation of birds.  相似文献   

13.
The present study aimed to characterize Enterococcus faecalis (n = ?6) and Enterococcus faecium (n = 1) isolated from healthy chickens to find a novel perspective probiotic candidate that antagonize Clostridium botulinum types A, B, D, and E. The isolated enterococci were characterized based on phenotypic properties, PCR, and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF). The virulence determinants including hemolytic activity on blood agar, gelatinase activity, sensitivity to vancomycin, and presence of gelatinase (gelE) and enterococcal surface protein (esp) virulence genes were investigated. Also, the presence of enterocin structural genes enterocin A, enterocin B, enterocin P, enterocin L50A/B, bacteriocin 31, enterocin AS48, enterocin 1071A/1071B, and enterocin 96 were assessed using PCR. Lastly, the antagonistic effect of the selected Enterococcus spp. on the growth of C. botulinum types A, B, D, and E was studied. The obtained results showed that four out of six E. faecalis and one E. faecium proved to be free from the tested virulence markers. All tested enterococci strains exhibited more than one of the tested enterocin. Interestingly, E. faecalis and E. faecium significantly restrained the growth of C. botulinum types A, B, D, and E. In conclusion, although, the data presented showed that bacteriocinogenic Enterococcus strains lacking of virulence determinants could be potentially used as a probiotic candidate against C. botulinum in vitro; however, further investigations are still urgently required to verify the beneficial effects of the tested Enterococcus spp. in vivo.  相似文献   

14.
Aims: The contribution of dogs and cats as reservoirs of antimicrobial resistant enterococci remains largely undefined. This is increasingly important considering the possibility of transfer of bacteria from companion animals to the human host. In this study, dogs and cats from veterinary clinics were screened for the presence of enterococci. Methods and Results: A total of 420 enterococci were isolated from nasal, teeth, rectal, belly and hindquarters sites of 155 dogs and 121 cats from three clinics in Athens, GA. Eighty per cent (124 out of 155) of the dogs and 60% (72 out of 121) of the cats were positive for enterococci. From the total number of dog samples (n = 275), 32% (n = 87) were from hindquarter, 31% (n = 86) were rectal, and 29% (n = 79) were from the belly area. The majority of isolates originated from rectal samples (53 out of 145; 37%) from cats. The predominant species identified was Enterococcus faecalis (105 out of 155; 68%) from dogs and E. hirae (63 out of 121; 52%) from cats. Significantly more E. faecalis were isolated from rectal samples than any other enterococcal species (P < 0·05) for both dogs and cats suggesting site specific colonization of enterococcal species. The highest levels of resistance were to ciprofloxacin in E. faecium (9 out of 10; 90%), chloramphenicol resistance in E. faecalis (17 out of 20; 85%) and gentamicin resistance in E. faecalis (19 out of 24; 79%) from dog samples and nitrofurantoin resistance in E. faecium (15 out of 19; 79%) from cats. Multi‐drug resistance (MDR) (resistance ≥2 antimicrobials) was observed to as few as two and as many as eight antimicrobials regardless of class. Conclusion: This study demonstrated that dogs and cats are commonly colonized with antimicrobial resistant enterococci. Significance and Impact of the Study: Dogs and cats may act as reservoirs of antimicrobial resistance genes that can be transferred from pets to people.  相似文献   

15.
Enterococci isolated from a bison population on a native tall-grass prairie preserve in Kansas were characterized and compared to enterococci isolated from pastured cattle. The species diversity was dominated by Enterococcus casseliflavus in bison (62.4%), while Enterococcus hirae was the most common isolate from cattle (39.7%). Enterococcus faecalis was the second most common species isolated from bison (16%). In cattle, E. faecalis and Enterococcus faecium were isolated at lower percentages (3.2% and 1.6%, respectively). No resistance to ampicillin, chloramphenicol, gentamicin, or high levels of vancomycin was detected from either source. Tetracycline and erythromycin resistance phenotypes, encoded by tetO and ermB, respectively, were common in cattle isolates (42.9% and 12.7%, respectively). A significant percentage of bison isolates (8% and 4%, respectively) were also resistant to these two antibiotics. The tetracycline resistance genes from both bison and cattle isolates resided on mobile genetic elements and showed a transfer frequency of 10−6 per donor, whereas erythromycin resistance was not transferable. Resistance to ciprofloxacin was found to be higher in enterococci from bison (14.4%) than in enterococci isolated from cattle (9.5%). The bison population can serve as a sentinel population for studying the spread and origin of antibiotic resistance.  相似文献   

16.
The presence of bacteriocin structural genes (entA, entB, entP, entQ, entAS-48, entL50A/B, bac31, and cylL) encoding different bacteriocins (enterocin A, enterocin B, enterocin P, enterocin Q, enterocin AS-48, enterocin L50A/B, bacteriocin 31 and cytolysin L, respectively), and the production of bacteriocin activity were analysed in 139 E. faecalis and 41 E. faecium clinical isolates of Tunisia. Forty-eight of 139 E. faecalis isolates (34%) and 7 of 41 of E. faecium isolates (17%) were bacteriocin producers. Sixty-two per cent of the bacteriocin-producing enterococci showed inhibitory activity against L. monocytogenes. Different combinations of entA, entB, entP, and entL50A/B genes were detected among the seven bacteriocin-producer E. faecium isolates, and more that one gene were identified in all the isolates. The entA gene was associated in most of the cases with entB gene in E. faecium isolates. Cyl LS were the unique genes detected among E. faecalis (in 24 of 48 bacteriocin-producer isolates, 50%). A β-hemolytic activity was demonstrated in 19 of the 24 cyl LS -positive E. faecalis isolates (79%), this activity being negative in the remaining five isolates. The presence of different bacteriocin structural genes and the production of antimicrobial activities seems to be a common trait of clinical enterococci.  相似文献   

17.
We studied the usefulness of flow cytometry for detection of vancomycin resistance in Enterococcus faecalis by direct binding of commercially available fluorescent vancomycin to cells obtained from culture. The cells were stained with Vancomycin@FL, sonicated and additionally stained with propidium iodide (PI). Regarding to inductive mechanism of vanA-mediated vancomycin resistance, resistant reference strain was also pre-incubated with vancomycin. PI staining divided cells into two subpopulations. There were significantly lower mean FL1 fluorescence values and mean fluorescence per particle (FL1/FSC) in reference vancomycin-resistant strain than in reference and clinical strains sensitive to this antibiotic. Pre-incubation with vancomycin of vancomycin resistant enterococci strain modified Vancomycin@FL binding, however, cells remained easy to differ. We have demonstrated new, quick and sensitive method for detection of vancomycin resistant strains of E. faecalis. The study proved possibility of detection of vancomycin resistance caused by presence of vanA gene by staining cells with Vancomycin@FL. Flow cytometry approach study of E. faecalis vancomycin resistance by detection of Vancomycin@FL binding to the bacterial cells.  相似文献   

18.
Aims: To determine the presence of antibiotic‐resistant faecal Escherichia coli and Enterococcus spp. in feral pigeons (Columba livia forma domestica) in the Czech Republic. Methods and Results: Cloacal swabs of feral pigeons collected in the city of Brno in 2006 were cultivated for antibiotic‐resistant E. coli. Resistance genes, class 1 and 2 integrons, and gene cassettes were detected in resistant isolates by polymerase chain reaction (PCR). The samples were also cultivated for enterococci. Species status of enterococci isolates was determined using repetitive extragenic palindromic‐PCR. Resistance genes were detected in resistant enterococci by PCR. E. coli isolates were found in 203 of 247 pigeon samples. Antibiotic resistance was recorded in three (1·5%, nE. coli = 203) isolates. Using agar containing ciprofloxacin, 12 (5%, nsamples = 247) E. coli strains resistant to ciprofloxacin were isolated. No ESBL‐producing E. coli isolates were detected. A total of 143 enterococci were isolated: Ent. faecalis (36 isolates), Ent. faecium (27), Ent. durans (19), Ent. hirae (17), Ent. mundtii (17), Ent. gallinarum (12), Ent. casseliflavus (12) and Ent. columbae (3). Resistance to one to four antibiotics was detected in 45 (31%) isolates. Resistances were determined by tetK, tetL, tetM, tetO, aac(6′)aph(2′′), ant(4′)‐Ia, aph(3′)‐IIIa, ermB, pbp5, vanA and vanC1 genes. Conclusions: Antibiotic‐resistant E. coli and Enterococcus spp. occurred in feral pigeons in various prevalences. Significance and Impact of the Study: Feral pigeon should be considered a risk species for spreading in the environment antimicrobial resistant E. coli and enterococci.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号