首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Pattern-recognition receptors (PRRs), including Toll-like receptors (TLRs), NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs), recognize microbial components and trigger a host defense response. Respiratory tract infections are common causes of asthma exacerbations, suggesting a role for PRRs in this process. The present study aimed to examine the expression and function of PRRs on human airway smooth muscle cells (HASMCs).

Methods

Expression of TLR, NLR and RLR mRNA and proteins was determined using real-time RT-PCR, flow cytometry and immunocytochemistry. The functional responses to ligand stimulation were investigated in terms of cytokine and chemokine release, cell surface marker expression, proliferation and proteins regulating the contractile state.

Results

HASMCs expressed functional TLR2, TLR3, TLR4, TLR7 and NOD1. Stimulation with the corresponding agonists Pam3CSK4, poly(I:C), LPS, R-837 and iE-DAP, respectively, induced IL-6, IL-8 and GM-CSF release and up-regulation of ICAM-1 and HLA-DR, while poly(I:C) also affected the release of eotaxin and RANTES. The proliferative response was slightly increased by LPS. Stimulation, most prominently with poly(I:C), down-regulated myosin light chain kinase and cysteinyl leukotriene 1 receptor expression and up-regulated β2-adrenoceptor expression. No effects were seen for agonist to TLR2/6, TLR5, TLR8, TLR9, NOD2 or RIG-I/MDA-5.

Conclusion

Activation of TLR2, TLR3, TLR4, TLR7 and NOD1 favors a synthetic phenotype, characterized by an increased ability to release inflammatory mediators, acquire immunomodulatory properties by recruiting and interacting with other cells, and reduce the contractile state. The PRRs might therefore be of therapeutic use in the management of asthma and infection-induced disease exacerbations.  相似文献   

2.

Background

Interleukin-17 (IL-17) acts as a key regulator in central nervous system (CNS) inflammation. γδ T cells are an important innate source of IL-17. Both IL-17+ γδ T cells and microglia, the major resident immune cells of the brain, are involved in various CNS disorders such as multiple sclerosis and stroke. Also, activation of Toll-like receptor (TLR) signaling pathways contributes to CNS damage. However, the mechanisms underlying the regulation and interaction of these cellular and molecular components remain unclear.

Objective

In this study, we investigated the crosstalk between γδ T cells and microglia activated by TLRs in the context of neuronal damage. To this end, co-cultures of IL-17+ γδ T cells, neurons, and microglia were analyzed by immunocytochemistry, flow cytometry, ELISA and multiplex immunoassays.

Results

We report here that IL-17+ γδ T cells but not naïve γδ T cells induce a dose- and time-dependent decrease of neuronal viability in vitro. While direct stimulation of γδ T cells with various TLR ligands did not result in up-regulation of CD69, CD25, or in IL-17 secretion, supernatants of microglia stimulated by ligands specific for TLR2, TLR4, TLR7, or TLR9 induced activation of γδ T cells through IL-1β and IL-23, as indicated by up-regulation of CD69 and CD25 and by secretion of vast amounts of IL-17. This effect was dependent on the TLR adaptor myeloid differentiation primary response gene 88 (MyD88) expressed by both γδ T cells and microglia, but did not require the expression of TLRs by γδ T cells. Similarly to cytokine-primed IL-17+ γδ T cells, IL-17+ γδ T cells induced by supernatants derived from TLR-activated microglia also caused neurotoxicity in vitro. While these neurotoxic effects required stimulation of TLR2, TLR4, or TLR9 in microglia, neuronal injury mediated by bone marrow-derived macrophages did not require TLR signaling. Neurotoxicity mediated by IL-17+ γδ T cells required a direct cell-cell contact between T cells and neurons.

Conclusion

Taken together, these results point to a crucial role for microglia activated through TLRs in polarization of γδ T cells towards neurotoxic IL-17+ γδ T cells.  相似文献   

3.

Background  

Despite the importance of glucocorticoids in suppressing immune and inflammatory responses, their role in enhancing host immune and defense response against invading bacteria is poorly understood. Toll-like receptor 2 (TLR2) has recently gained importance as one of the major host defense receptors. The increased expression of TLR2 in response to bacteria-induced cytokines has been thought to be crucial for the accelerated immune response and resensitization of epithelial cells to invading pathogens.  相似文献   

4.

Background

Coxsackievirus B3 (CVB3) induces myocarditis, an inflammatory heart disease, which affects men more than women. Toll-like receptor (TLR) signaling has been shown to determine the severity of CVB3-induced myocarditis. No direct role for signaling through TLR2 had been shown in myocarditis although published studies show that cardiac myosin is an endogenous TLR2 ligand and stimulates pro-inflammatory cytokine expression by dendritic cells in vitro. The goal of this study is to determine which TLRs show differential expression in CVB3 infected mice corresponding to male susceptibility and female resistance in this disease.

Methods

Male and female C57Bl/6 mice were infected with 102 PFU CVB3 and killed on day 3 or 6 post infection. Hearts were evaluated for virus titer, myocardial inflammation, and TLR mRNA expression by PCR array and microarray analysis. Splenic lymphocytes only were evaluated by flow cytometry for the number of TLR+/CD3+, TLR+/CD4+, TLR+F4/80+ and TLR+/CD11c+ subpopulations and the mean fluorescence intensity to assess upregulation of TLR expression on these cells. Mice were additionally treated with PAM3CSK4 (TLR2 agonist) or ultrapure LPS (TLR4 agonist) on the same day as CVB3 infection or 3 days post infection to confirm their role in myocarditis susceptibility.

Results

Despite equivalent viral titers, male C57Bl/6 mice develop more severe myocarditis than females by day 6 after infection. Microarray analysis shows a differential expression of TLR2 at day 3 with female mice having higher levels of TLR2 gene expression compared to males. Disease severity correlates to greater TLR4 protein expression on splenic lymphocytes in male mice 3 days after infection while resistance in females correlates to preferential TLR2 expression, especially in spleen lymphocytes. Treating male mice with PAM reduced mortality from 55% in control CVB3 infected animals to 10%. Treating female mice with LPS increased mortality from 0% in control infected animals to 60%.

Conclusion

CVB3 infection causes an up-regulation of TLR2 in female and of TLR4 in male mice and this differential expression between the sexes contributes to disease resistance of females and susceptibility of males. While previous reports demonstrated a pathogenic role for TLR4 this is the first report that TLR2 is preferentially up-regulated in CVB3 infected female mice or that signaling through this TLR directly causes myocarditis resistance.
  相似文献   

5.

Background

The irritable bowel syndrome (IBS) is a functional gastrointestinal disorder whose pathogenesis is not completely understood. Its high prevalence and the considerable effects on quality of life make IBS a disease with high social cost. Recent studies suggest that low grade mucosal immune activation, increased intestinal permeability and the altered host-microbiota interactions that modulate innate immune response, contribute to the pathophysiology of IBS. However, the understanding of the precise molecular pathophysiology remains largely unknown.

Methodology and Findings

In this study our objective was to evaluate the TLR expression as a key player in the innate immune response, in the colonic mucosa of IBS patients classified into the three main subtypes (with constipation, with diarrhea or mixed). TLR2 and TLR4 mRNA expression was assessed by real time RT-PCR while TLRs protein expression in intestinal epithelial cells was specifically assessed by flow cytometry and immunofluorescence. Mucosal inflammatory cytokine production was investigated by the multiplex technology. Here we report that the IBS-Mixed subgroup displayed a significant up-regulation of TLR2 and TLR4 in the colonic mucosa. Furthermore, these expressions were localized in the epithelial cells, opening new perspectives for a potential role of epithelial cells in host-immune interactions in IBS. In addition, the increased TLR expression in IBS-M patients elicited intracellular signaling pathways resulting in increased expression of the mucosal proinflammatory cytokines IL-8 and IL1β.

Conclusions

Our results provide the first evidence of differential expression of TLR in IBS patients according to the disease subtype. These results offer further support that microflora plays a central role in the complex pathophysiology of IBS providing novel pharmacological targets for this chronic gastrointestinal disorder according to bowel habits.  相似文献   

6.

Aims

Aim was to elucidate the specific role of pattern recognition receptors in vascular dysfunction during polymicrobial sepsis (colon ascendens stent peritonitis, CASP).

Methods and Results

Vascular contractility of C57BL/6 (wildtype) mice and mice deficient for Toll-like receptor 2/4/9 (TLR2-D, TLR4-D, TLR9-D) or CD14 (CD14-D) was measured 18 h following CASP. mRNA expression of pro- (Tumor Necrosis Factor-α (TNFα), Interleukin (IL)-1β, IL-6) and anti-inflammatory cytokines (IL-10) and of vascular inducible NO-Synthase (iNOS) was determined using RT-qPCR. Wildtype mice exhibited a significant loss of vascular contractility after CASP. This was aggravated in TLR2-D mice, blunted in TLR4-D animals and abolished in TLR9-D and CD14-D animals. TNF-α expression was significantly up-regulated after CASP in wildtype and TLR2-D animals, but not in mice deficient for TLR4, -9 or CD14. iNOS was significantly up-regulated in TLR2-D animals only. TLR2-D animals showed significantly higher levels of TLR4, -9 and CD14. Application of H154-ODN, a TLR9 antagonist, attenuated CASP-induced cytokine release and vascular dysfunction in wildtype mice.

Conclusions

Within our model, CD14 and TLR9 play a decisive role for the development of vascular dysfunction and thus can be effectively antagonized using H154-ODN. TLR2-D animals are more prone to polymicrobial sepsis, presumably due to up-regulation of TLR4, 9 and CD14.  相似文献   

7.
Cardiac fibroblasts (CF) act as sentinel cells responding to chemokines, cytokines and growth factors released in cardiac tissue in cardiac injury events, such as myocardial infarction (MI). Cardiac injury involves the release of various damage-associated molecular patterns (DAMPs) including heparan sulfate (HS), a constituent of the extracellular matrix (ECM), through the TLR4 receptor activation triggering a strong inflammatory response, inducing leukocytes recruitment. This latter cells are responsible of clearing cell debris and releasing cytokines that promote CF differentiation to myofibroblast (CMF), thus initiating scar formation.CF were isolated from adult male rats and subsequently stimulated with HS or LPS, in the presence or absence of chemical inhibitors, to evaluate signaling pathways involved in ICAM-1 and VCAM-1 expression. siRNA against ICAM-1 and VCAM-1 were used to evaluate participation of these adhesion molecules on leukocytes recruitment.HS through TLR4, PI3K/AKT and NF-ΚB increased ICAM-1 and VCAM-1 expression, which favored the adhesion of spleen mononuclear cells (SMC) and bone marrow granulocytes (PMN) to CF. These effects were prevented by siRNA against ICAM-1 and VCAM-1. Co-culture of CF with SMC increased α-SMA expression, skewing CF towards a pro-fibrotic phenotype, while CF pretreatment with HS partially reverted this effect.

Conclusion

These data show the dual role of HS during the initial stages of wound healing. Initially, HS enhance the pro-inflammatory role of CF increasing cytokines secretion; and later, by increasing protein adhesion molecules allows the adhesion of SMC on CF, which trigger CF-to-CMF differentiation.  相似文献   

8.

Background

Toll-like receptors (TLRs) on T cells can modulate their responses, however, the extent and significance of TLR expression by lung T cells, NK cells, or NKT cells in chronic obstructive pulmonary disease (COPD) is unknown.

Methods

Lung tissue collected from clinically-indicated resections (n = 34) was used either: (a) to compare the expression of TLR1, TLR2, TLR2/1, TLR3, TLR4, TLR5, TLR6 and TLR9 on lung CD8+ T cells, CD4+ T cells, NK cells and NKT cells from smokers with or without COPD; or (b) to isolate CD8+ T cells for culture with anti-CD3ε without or with various TLR ligands. We measured protein expression of IFN-γ, TNF-α, IL-13, perforin, granzyme A, granzyme B, soluble FasL, CCL2, CCL3, CCL4, CCL5, CCL11, and CXCL9 in supernatants.

Results

All the lung subsets analyzed demonstrated low levels of specific TLR expression, but the percentage of CD8+ T cells expressing TLR1, TLR2, TLR4, TLR6 and TLR2/1 was significantly increased in COPD subjects relative to those without COPD. In contrast, from the same subjects, only TLR2/1 and TLR2 on lung CD4+ T cells and CD8+ NKT cells, respectively, showed a significant increase in COPD and there was no difference in TLR expression on lung CD56+ NK cells. Production of the Tc1 cytokines IFN-γ and TNF-α by lung CD8+ T cells were significantly increased via co-stimulation by Pam3CSK4, a specific TLR2/1 ligand, but not by other agonists. Furthermore, this increase in cytokine production was specific to lung CD8+ T cells from patients with COPD as compared to lung CD8+ T cells from smokers without COPD.

Conclusions

These data suggest that as lung function worsens in COPD, the auto-aggressive behavior of lung CD8+ T cells could increase in response to microbial TLR ligands, specifically ligands against TLR2/1.  相似文献   

9.

Introduction  

B cells have many different roles in systemic lupus erythematosus (SLE), ranging from autoantigen recognition and processing to effector functions (for example, autoantibody and cytokine secretion). Recent studies have shown that intracellular nucleic acid-sensing receptors, Toll-like receptor (TLR) 7 and TLR9, play an important role in the pathogenesis of SLE. Dual engagement of rheumatoid factor-specific AM14 B cells through the B-cell receptor (BCR) and TLR7/9 results in marked proliferation of autoimmune B cells. Thus, strategies to preferentially block innate activation through TLRs in autoimmune B cells may be preferred over non-selective B-cell depletion.  相似文献   

10.
11.

Background

The respiratory epithelium is a major portal of entry for pathogens and employs innate defense mechanisms to prevent colonization and infection. Induced expression of human β-defensin 2 (HBD2) represents a direct response by the epithelium to potential infection. Here we provide evidence for the critical role of Toll-like receptor 4 (TLR4) in lipopolysaccharide (LPS)-induced HBD2 expression by human A549 epithelial cells.

Methods

Using RTPCR, fluorescence microscopy, ELISA and luciferase reporter gene assays we quantified interleukin-8, TLR4 and HBD2 expression in unstimulated or agonist-treated A549 and/or HEK293 cells. We also assessed the effect of over expressing wild type and/or mutant TLR4, MyD88 and/or Mal transgenes on LPS-induced HBD2 expression in these cells.

Results

We demonstrate that A549 cells express TLR4 on their surface and respond directly to Pseudomonas LPS with increased HBD2 gene and protein expression. These effects are blocked by a TLR4 neutralizing antibody or functionally inactive TLR4, MyD88 and/or Mal transgenes. We further implicate TLR4 in LPS-induced HBD2 production by demonstrating HBD2 expression in LPS non-responsive HEK293 cells transfected with a TLR4 expression plasmid.

Conclusion

This data defines an additional role for TLR4 in the host defense in the lung.  相似文献   

12.

Background  

It is well known that interferon (IFN)-α is important to the pathogenesis of systemic lupus erythematosus (SLE). However, several reports have indicated that the number of IFN-α producing cells are decreased or that their function is defective in patients with SLE. We studied the function of plasmacytoid dendritic cells (pDCs) under persistent stimulation of Toll-like receptor (TLR)9 via a TLR9 ligand (CpG ODN2216) or SLE serum.  相似文献   

13.

Background

Staphylococcus epidermidis (SE) is a nosocomial pathogen that causes catheter-associated bacteremia in the immunocompromised, including those at the extremes of age, motivating study of host clearance mechanisms. SE-derived soluble components engage TLR2; but additional signaling pathways have also been implicated, and TLR2 can play complex, at times detrimental, roles in host defense against other Staphylococcal spp. The role of TLR2 in responses of primary blood leukocytes to live SE and in clearance of SE bacteremia, the most common clinical manifestation of SE infection, is unknown.

Methodology/Principal Findings

We studied TLR2-mediated recognition of live clinical SE strain 1457 employing TLR2-transfected cells, neutralizing anti-TLR antibodies and TLR2-deficient mice. TLR2 mediated SE-induced cytokine production in human embryonic kidney cells, human whole blood and murine primary macrophages, in part via recognition of a soluble TLR2 agonist. After i.v. challenge with SE, early (1 h) cytokine/chemokine production and subsequent clearance of bacteremia (24–48 h) were markedly impaired in TLR2-deficient mice.

Conclusions/Significance

TLR2 mediates recognition of live SE and clearance of SE bacteremia in vivo.  相似文献   

14.
15.
16.
Y Huang  B Cai  M Xu  Z Qiu  Y Tao  Y Zhang  J Wang  Y Xu  Y Zhou  J Yang  X Han  Q Gao 《PloS one》2012,7(7):e38890

Background

Toll-like receptors (TLRs) are key factors in the innate immune system and initiate the inflammatory response to foreign pathogens such as bacteria, fungi and viruses. In the microenvironment of tumorigenesis, TLRs can promote inflammation and cell survival. Toll-like receptor 2/6 (TLR2/6) signaling in tumor cells is regarded as one of the mechanisms of chronic inflammation but it can also mediate tumor cell immune escape and tumor progression. However, the expression of TLR2 and its biological function in the development and progression of hepatocarcinoma have not been investigated. This study aimed to determine the expression of TLRs 1–10 in the established human hepatocellular carcinoma cell line BLE-7402, to investigate the biological effect of TLR2 on cell growth and survival.

Methods

TLR expression in BLE-7402 cells was assayed by RT-PCR, real-time PCR and flow cytometry (FCM). To further investigate the function of TLR2 in hepatocarcinoma growth, BLE-7402 cells were transfected with recombinant plasmids expressing one of three forms of TLR2 siRNA (sh-TLR2 RNAi(A, B and C)). TLR2 knockdown was confirmed using RT-PCR, real-time PCR and fluorescence microscopy. Tumor cell proliferation was monitored by MTT assay and secreted cytokines in the supernatant of transfected cells were measured by bead-based FCM, the function of TLR2 siRNA was also investigated in vivo.

Results

The BLE-7402 cell line expressed TLRs 2 to 10 at both mRNA and protein levels. TLR2 was the most highly expressed TLR. While all the three siRNAs inhibited TLR2 mRNA and protein expression, sh-TLR2 RNAi(B) had the strongest knockdown effect. TLR2 knockdown with sh-TLR2 RNAi(B) reduced cell proliferation. Furthermore, secretion of IL-6 and IL-8 was also reduced. The result showed a drastic reduction in tumor volume in mice treated with sh-TLR2 RNAi(B).

Discussion

These results suggest that TLR2 knockdown inhibit proliferation of cultured hepatocarcinoma cells and decrease the secretion of cytokines. It is suggested that TLR2 silencing may worth further investigations for siRNA based gene therapy in treatment of hepatocarcinoma.  相似文献   

17.
18.

Background

Pneumolysin (PLN) is an intracellular toxin of Streptococcus pneumoniae that has been implicated as a major virulence factor in infections caused by this pathogen. Conserved bacterial motifs are recognized by the immune system by pattern recognition receptors among which the family of Toll-like receptors (TLRs) prominently features. The primary objective of the present study was to determine the role of TLR2 and TLR4 in lung inflammation induced by intrapulmonary delivery of PLN.

Methodology/Results

First, we confirmed that purified PLN activates cells via TLR4 (not via TLR2) in vitro, using human embryonic kidney cells transfected with either TLR2 or TLR4. Intranasal administration of PLN induced an inflammatory response in the pulmonary compartment of mice in vivo, as reflected by influx of neutrophils, release of proinflammatory cytokines and chemokines, and a rise in total protein concentrations in bronchoalveolar lavage fluid. These PLN-induced responses were dependent in part, not only on TLR4, but also on TLR2, as indicated by studies using TLR deficient mice.

Conclusion

These data suggest that although purified PLN is recognized by TLR4 in vitro, PLN elicits lung inflammation in vivo by mechanisms that may involve multiple TLRs.  相似文献   

19.

Backgroud  

Recently, mast cells have been recognized to express several Toll-like receptors (TLRs) on their membrane surfaces, and granulocyte-macrophage colony-stimulating factor (GM-CSF) was reported to be able to alter expression of TLRs and cytokine production in neutrophils. However, whether GM-CSF modulates the expression of TLR and cytokine production in mast cells is not clear.  相似文献   

20.

Background

The role of alveolar type II cells in the regulation of innate and adaptive immunity is unclear. Toll-like receptors (TLRs) have been implicated in host defense. The purpose of the present study was to investigate whether Chlamydophila pneumoniae (I) alters the expression of TLR2 and/orTLR4 in type II cells in a (II) Rho-GTPase- and (III) NF-κB-dependent pathway, subsequently (IV) leading to the production of (IV) pro-inflammatory TNF-α and MIP-2.

Methods

Isolated rat type II pneumocytes were incubated with C. pneumoniae after pre-treatment with calcium chelator BAPTA-AM, inhibitors of NF-κB (parthenolide, SN50) or with a specific inhibitor of the Rho-GTPase (mevastatin). TLR2 and TLR4 mRNA expressions were analyzed by PCR. Activation of TLR4, Rac1, RhoA protein and NF-κB was determined by Western blotting and confocal laser scan microscopy (CLSM) and TNF-α and MIP-2 release by ELISA.

Results

Type II cells constitutively expressed TLR4 and TLR2 mRNA. A prominent induction of TLR4 but not TLR2 mRNA was detected after 2 hours of incubation with C. pneumoniae. The TLR4 protein expression reached a peak at 30 min, began to decrease within 1–2 hours and peaked again at 3 hours. Incubation of cells with heat-inactivated bacteria (56°C for 30 min) significantly reduced the TLR4 expression. Treated bacteria with polymyxin B (2 μg/ml) did not alter TLR4 expression. C. pneumoniae-induced NF-κB activity was blocked by TLR4 blocking antibodies. TLR4 mRNA and protein expression were inhibited in the presence of BAPTA-AM, SN50 or parthenolide. TNF-α and MIP-2 release was increased in type II cells in response to C. pneumoniae, whereas BAPTA-AM, SN50 or parthenolide decreased the C. pneumoniae-induced TNF-α and MIP-2 release. Mevastatin inhibited C. pneumoniae-mediated Rac1, RhoA and TLR4 expression.

Conclusion

The TLR4 protein expression in rat type II cells is likely to be mediated by a heat-sensitive C. pneumoniae protein that induces a fast Ca2+-mediated NF-κB activity, necessary for maintenance of TLR4 expression and TNF-α and MIP-2 release through possibly Rac and Rho protein-dependent mechanism. These results indicate that type II pneumocytes play an important role in the innate pulmonary immune system and in inflammatory response mechanism of the alveolus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号