首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An imbalance of the normal microbial flora, breakage of epithelial barriers or dysfunction of the immune system favour the transition of the human pathogenic yeast Candida albicans from a commensal to a pathogen. C. albicans has evolved to be adapted as a commensal on mucosal surfaces. As a commensal it has also acquired attributes, which are necessary to avoid or overcome the host defence mechanisms. The human host has also co-evolved to recognize and eliminate potential fungal invaders. Many of the fungal genes that have been the focus of this co-evolutionary process encode cell wall components. In this review, we will discuss the transition from commensalism to pathogenesis, the key players of the fungal cell surface that are important for this transition, the role of the morphology and the mechanisms of host recognition and response.  相似文献   

2.
Histoplasmosis, due to the intracellular fungus Histoplasma capsulatum, can be diagnosed by demonstrating the presence of antibodies specific to the immunodominant M antigen. However, the role of this protein in the pathogenesis of histoplasmosis has not been elucidated. We sought to structurally and immunologically characterize the protein, determine yeast cell surface expression, and confirm catalase activity. A 3D-rendering of the M antigen by homology modeling revealed that the structures and domains closely resemble characterized fungal catalases. We generated monoclonal antibodies (mAbs) to the protein and determined that the M antigen is present on the yeast cell surface and in cell wall/cell membrane preparations. Similarly, we found that the majority of catalase activity was in extracts containing fungal surface antigens and that the M antigen is not significantly secreted by live yeast cells. The mAbs also identified unique epitopes on the M antigen. The localization of the M antigen to the cell surface of H. capsulatum yeast and the characterization of the protein's major epitopes have important implications since it demonstrates that although the protein may participate in protecting the fungus against oxidative stress it is also accessible to host immune cells and antibody.  相似文献   

3.
The fungal cell wall is a dynamic organelle required for cell shape, protection against the environment and, in pathogenic species, recognition by the innate immune system. The outer layer of the cell wall is comprised of glycosylated mannoproteins with the majority of these post‐translational modifications being the addition of O‐ and N‐linked mannosides. These polysaccharides are exposed on the outer surface of the fungal cell wall and are, therefore, the first point of contact between the fungus and the host immune system. This review focuses on O‐ and N‐linked mannan biosynthesis in the fungal pathogen Candida albicans and highlights new insights gained from the characterization of mannosylation mutants into the role of these cell wall components in host–fungus interactions. In addition, we discuss the use of fungal mannan as a diagnostic marker of fungal disease.  相似文献   

4.
《Fungal biology》2023,127(5):1043-1052
Macrophomina phaseolina (Tassi) Goid. is a fungal pathogen that causes root and stem rot in several economically important crops. However, most of disease control strategies have shown limited effectiveness. Despite its impact on agriculture, molecular mechanisms involved in the interaction with host plant remains poorly understood. Nevertheless, it has been proven that fungal pathogens secrete a variety of proteins and metabolites to successfully infect their host plants. In this study, a proteomic analysis of proteins secreted by M. phaseolina in culture media supplemented with soybean leaf infusion was performed. A total of 250 proteins were identified with a predominance of hydrolytic enzymes. Plant cell wall degrading enzymes together peptidases were found, probably involved in the infection process. Predicted effector proteins were also found that could induce plant cell death or suppress plant immune response. Some of the putative effectors presented similarities to known fungal virulence factors. Expression analysis of ten selected protein-coding genes showed that these genes are induced during host tissue infection and suggested their participation in the infection process. The identification of secreted proteins of M. phaseolina could be used to improve the understanding of the biology and pathogenesis of this fungus. Although leaf infusion was able to induce changes at the proteome level, it is necessary to study the changes induced under conditions that mimic the natural infection process of the soil-borne pathogen M. phaseolina to identify virulence factors.  相似文献   

5.
Antibody response to Candida albicans cell wall antigens   总被引:3,自引:0,他引:3  
The cell wall of Candida albicans is not only the structure where many essential biological functions reside but is also a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both carbohydrate and protein moieties are able to trigger immune responses. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to profoundly influence the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins to host ligands. In this review we examine various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo. Some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidiasis, particularly the disseminated form. In addition, recent studies have focused on the potential of antibodies against the cell wall protein determinants in protecting the host against infection. Hence, a better understanding of the humoral response triggered by the cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures for the serodiagnosis of disseminated candidiasis, and (ii) novel prophylactic (vaccination) and therapeutic strategies to control this type of infections.  相似文献   

6.
The innate immune system constitutes the first line of defence against invading microbes. The basis of this defence resides in the recognition of defined structural motifs of the microbes called “Microbial associated molecular patterns” that are absent in the host. Cell wall, the outer layer of both bacterial and fungal cells, a unique structure that is absent in the host and is recognized by the germ line encoded host receptors. Nucleotide oligomerization domain proteins, peptidoglycan recognition proteins and C-type lectins are host receptors that are involved in the recognition of bacterial cell wall (usually called peptidoglycan), whereas fungal cell wall components (N- and O-linked mannans, β-glucans etc.) are recognized by host receptors like C-type lectins (Dectin-1, Dectin-2, mannose receptor, DC-SIGN), Toll like receptors-2 and -4 (TLR-2 and TLR-4). These recognitions lead to activation of a variety of host signaling cascades and ultimate production of anti-microbial compounds including phospholipase A2, antimicrobial peptides, lysozyme, reactive oxygen and nitrogen species. These molecules act in cohort against the invading microbes to eradicate infections. Additionally pathogen recognition leads to the production of cytokines, which further activate the adaptive immune system. Both pathogenic and commensal bacteria and fungus use numerous strategies to subvert the host defence. These strategies include bacterial peptidoglycan glycan backbone modifications by O-acetylation, N-deacetylation, N-glycolylation and stem peptide modifications by amidation of meso-Diaminopimelic acid; fungal cell wall modifications by shielding the β-glucan layer with mannoproteins and α-1,3 glucan. This review focuses on the recent advances in understanding the role of bacterial and fungal cell wall in their innate immune recognition and evasion strategies.  相似文献   

7.
Study of the fungal cell wall is currently an area of very active research. The relevance of the fungal cell wall for cell survival, and pathogenicity has been well established. The view of the cell wall as a tough and impenetrable structure has been left behind, and it is now conceived as a plastic shield that undergoes structural changes depending on the surrounding environmental conditions and morphological states. The fungal cell wall is also the source of most of the pathogen-associated molecular patterns that immune cells recognize, and thus facilitates establishment of a protective antifungal immunity. Paradoxically, fungi, through their cell wall, possess disguising mechanisms to avoid immune recognition. This review gathers the current knowledge about the cell wall of Candida albicans, Aspergillus fumigatus and Paracoccidioides brasiliensis, stressing the importance of the fungal cell wall for pathogenesis, immune recognition, and as a source of targets for antifungal drugs.  相似文献   

8.
王园园  陈昌斌 《菌物学报》2018,37(10):1364-1377
白念珠菌是人类最常见的条件性致病真菌之一,主要定植于人体粘膜表面。在白念珠菌与宿主相互作用过程中,分泌型蛋白起着非常重要的作用。针对分泌蛋白功能及其作用机理的研究有助于阐明白念珠菌致病分子机制,并为诊断、预防和治疗真菌感染提供新的理论策略。本文综述了白念珠菌分泌型蛋白在介导病原与宿主相互作用分子机制方面的最新研究进展,概括了分泌蛋白在组织侵入损伤、营养获取、细胞壁维持以及免疫逃避等方面的功能,同时对未来值得重点关注的研究方向进行了探讨。  相似文献   

9.
Many fungal parasites enter plant cells by penetrating the host cell wall and, thereafter, differentiate specialized intracellular feeding structures, called haustoria, by invagination of the plant's plasma membrane. Arabidopsis PEN gene products are known to act at the cell periphery and function in the execution of apoplastic immune responses to limit fungal entry. This response underneath fungal contact sites is tightly linked with the deposition of plant cell wall polymers, including PMR4/GSL5-dependent callose, in the paramural space, thereby producing localized wall thickenings called papillae. We show that powdery mildew fungi specifically induce the extracellular transport and entrapment of the fusion protein GFP–PEN1 syntaxin and its interacting partner monomeric yellow fluorescent protein (mYFP)–SNAP33 within the papillary matrix. Remarkably, PMR4/GSL5 callose, GFP–PEN1, mYFP–SNAP33, and the ABC transporter GFP–PEN3 are selectively incorporated into extracellular encasements surrounding haustoria of the powdery mildew Golovinomyces orontii , suggesting that the same secretory defense responses become activated during the formation of papillae and haustorial encasements. This is consistent with a time-course analysis of the encasement process, indicating that these extracellular structures are generated through the extension of papillae. We show that PMR4/GSL5 callose accumulation in papillae and haustorial encasements occurs independently of PEN1 syntaxin. We propose a model in which exosome biogenesis/release serves as a common transport mechanism by which the proteins PEN1 and PEN3, otherwise resident in the plasma membrane, together with membrane lipids, become stably incorporated into both pathogen-induced cell wall compartments.  相似文献   

10.
Aspergillus species are among the most important filamentous fungi from the viewpoints of industry, pathogenesis, and mycotoxin production. Fungal cells are exposed to a variety of environmental stimuli, including changes in osmolality, temperature, and pH, which create stresses that primarily act on fungal cell walls. In addition, fungal cell walls are the first interactions with host cells in either human or plants. Thus, understanding cell wall structure and the mechanism of their biogenesis is important for the industrial, medical, and agricultural fields. Here, we provide a systematic review of fungal cell wall structure and recent findings regarding the cell wall integrity signaling pathways in aspergilli. This accumulated knowledge will be useful for understanding and improving the use of industrial aspergilli fermentation processes as well as treatments for some fungal infections.  相似文献   

11.
Candida albicans is an opportunistic fungal pathogen of humans causing superficial mucosal infections and life‐threatening systemic disease. The fungal cell wall is the first point of contact between the invading pathogen and the host innate immune system. As a result, the polysaccharides that comprise the cell wall act as pathogen associated molecular patterns, which govern the host–pathogen interaction. The cell wall is dynamic and responsive to changes in the external environment. Therefore, the host environment plays a critical role in regulating the host–pathogen interaction through modulation of the fungal cell wall. This review focuses on how environmental adaptation modulates the cell wall structure and composition, and the subsequent impact this has on the innate immune recognition of C. albicans.  相似文献   

12.
C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo.  相似文献   

13.
Linking fungal morphogenesis with virulence   总被引:4,自引:0,他引:4  
Pathogenic fungi have become an increasingly common cause of systemic disease in healthy people and those with impaired immune systems. Although a vast number of fungal species inhabit our planet, just a small number are pathogens, and one feature that links many of them is the ability to differentiate morphologically from mould to yeast, or yeast to mould. Morphological differentiation between yeast and mould forms has commanded attention for its putative impact on the pathogenesis of invasive fungal infections. This review explores the current body of evidence linking fungal morphogenesis and virulence. The topics addressed cover work on phase-locked fungal cells, expression of phase-specific virulence traits and modulation of host responses by fungal morphotypes. The effect of morphological differentiation on fungal interaction with host cells, immune modulation and the net consequence on pathogenesis of disease in animal model systems are considered. The evidence argues strongly that morphological differentiation plays a vital role in the pathogenesis of fungal infection, suggesting that factors associated with this conversion process represent promising therapeutic targets.  相似文献   

14.
房文霞  金城 《菌物学报》2018,37(10):1307-1316
环境中普遍存在的腐生丝状真菌烟曲霉Aspergillus fumigatus在免疫功能低下或缺陷的人群中可引起多种急慢性疾病,包括致死率很高的侵袭性曲霉病。细胞壁作为真菌的细胞外骨架结构不仅起维持细胞形状、保护细胞抵抗外界压力等作用,在病原真菌极性生长、入侵新的生态域、启动宿主免疫反应中也起重要作用。细胞壁组分还是真菌感染的分子诊断基础和开发抗真菌药物的理想靶标。近几十年来烟曲霉细胞壁的遗传、生物化学及免疫学方向的研究使其成为研究真菌细胞壁的模式真菌。本文主要概述烟曲霉细胞壁的组分、分子组装机制及其在真菌生存和感染中的作用,并对未来研究方向提出了展望。  相似文献   

15.
Oligosaccharides derived from cell wall of fungal pathogens induce host primary immune responses. To understand fungal strategies circumventing the host plant immune responses, cell wall polysaccharide localization was investigated using fluorescent labels during infectious structure differentiation in the rice blast fungus Magnaporthe grisea . α-1,3-glucan was labelled only on appressoria developing on plastic surfaces, whereas it was detected on both germ tubes and appressoria on plant surfaces. Chitin, chitosan and β-1,3-glucan were detected on germ tubes and appressoria regardless of the substrate. Major polysaccharides labelled at accessible surface of infectious hyphae were α-1,3-glucan and chitosan, but after enzymatic digestion of α-1,3-glucan, β-1,3-glucan and chitin became detectable. Immunoelectron microscopic analysis showed α-1,3-glucan and β-1,3-glucan intermixed in the cell wall of infectious hyphae; however, α-1,3-glucan tended to be distributed farther from the fungal cell membrane. The fungal cell wall became more tolerant to chitinase digestion upon accumulation of α-1,3-glucan. Accumulation of α-1,3-glucan was dependent on the Mps1 MAP kinase pathway, which was activated by a plant wax derivative, 1,16-hexadecanediol. Taken together, α-1,3-glucan spatially and functionally masks β-1,3-glucan and chitin in the cell wall of infectious hyphae. Thus, a dynamic change of composition of cell wall polysaccharides occurs during plant infection in M. grisea .  相似文献   

16.
Eosinophils produce and release various proinflammatory mediators and also show immunomodulatory and tissue remodeling functions; thus, eosinophils may be involved in the pathophysiology of asthma and other eosinophilic disorders as well as host defense. Several major questions still remain. For example, how do human eosinophils become activated in diseased tissues or at the site of an immune response? What types of host immunity might potentially involve eosinophils? Herein, we found that human eosinophils react vigorously to a common environmental fungus, Alternaria alternata, which is implicated in the development and/or exacerbation of human asthma. Eosinophils release their cytotoxic granule proteins, such as eosinophil-derived neurotoxin and major basic protein, into the extracellular milieu and onto the surface of fungal organisms and kill the fungus in a contact-dependent manner. Eosinophils use their versatile beta(2) integrin molecule, CD11b, to adhere to a major cell wall component, beta-glucan, but eosinophils do not express other common fungal receptors, such as dectin-1 and lactosylceramide. The I-domain of CD11b is distinctively involved in the eosinophils' interaction with beta-glucan. Eosinophils do not react with another fungal cell wall component, chitin. Because human eosinophils respond to and kill certain fungal organisms, our findings identify a previously unrecognized innate immune function for eosinophils. This immune response by eosinophils may benefit the host, but, in turn, it may also play a role in the development and/or exacerbation of eosinophil-related allergic human diseases, such as asthma.  相似文献   

17.
Infection by the human fungal pathogen Aspergillus fumigatus induces hypoxic microenvironments within the lung that can alter the course of fungal pathogenesis. How hypoxic microenvironments shape the composition and immune activating potential of the fungal cell wall remains undefined. Herein we demonstrate that hypoxic conditions increase the hyphal cell wall thickness and alter its composition particularly by augmenting total and surface-exposed β-glucan content. In addition, hypoxia-induced cell wall alterations increase macrophage and neutrophil responsiveness and antifungal activity as judged by inflammatory cytokine production and ability to induce hyphal damage. We observe that these effects are largely dependent on the mammalian β-glucan receptor dectin-1. In a corticosteroid model of invasive pulmonary aspergillosis, A. fumigatus β-glucan exposure correlates with the presence of hypoxia in situ. Our data suggest that hypoxia-induced fungal cell wall changes influence the activation of innate effector cells at sites of hyphal tissue invasion, which has potential implications for therapeutic outcomes of invasive pulmonary aspergillosis.  相似文献   

18.
Aspergillus fumigatus conidia attenuates host proinflammatory responses through modulation of Toll-like receptor (TLR)2 and TLR4 signaling, but the precise mechanisms that mediate this effect are not known. In the present study, the role of the Aspergillus cell wall polysaccharide constituents responsible for the modulation of host capability to mount a proinflammatory response was studied. Aspergillus cell wall fractions and its major components showed differential capabilities in modulating host TLR-mediated interleukin (IL)-6 production. Beta-glucan specifically suppressed TLR4-induced response, while alpha-glucan inhibited IL-6 induced through TLR2- and TLR4-stimulation. Galactomannan diminished TLR4-mediated response, while its inhibitory effects on TLR2-signaling were limited. Chitin, on the other hand, did not have significant immunomodulatory capability. The ability of the fungal cell wall to alter the immune signature of the pathogen may contribute to its virulence and the pathogenesis of co-infection.  相似文献   

19.
Fungal infections are a serious health problem. In recent years, basic research is focusing on the identification of fungal virulence factors as promising targets for the development of novel antifungals. The wall, as the most external cellular component, plays a crucial role in the interaction with host cells mediating processes such as adhesion or phagocytosis that are essential during infection. Specific components of the cell wall (called PAMPs) interact with specific receptors in the immune cell (called PRRs), triggering responses whose molecular mechanisms are being elucidated. We review here the main structural carbohydrate components of the fungal wall (glucan, mannan and chitin), how their biogenesis takes place in fungi and the specific receptors that they interact with. Different model fungal pathogens are chosen to illustrate the functional consequences of this interaction. Finally, the identification of the key components will have important consequences in the future and will allow better approaches to treat fungal infections.  相似文献   

20.
Summary A cytological study was carried out to describe the initial steps of infection of maize roots by the soil fungusSporisorium reilianum f. sp.zeae. Morphogenetic changes of the fungal cells were induced in the presence of maize roots. Extensive hyphal growth led to the formation of a thick fungal layer colonising the maize root surface. This structure is original in interactions of members of the family Ustilaginaceae with plants. In the thick fungal layer, we observed fimbriae inserted into the host cell wall, suggesting a direct role of these fibrillar structures in cell adhesion and infection processes. During infection, no reaction of host cells was observed. In this way, the fungus acts as a biotrophic endophyte during the initial steps of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号