首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Pasula S  Jouandot D  Kim JH 《FEBS letters》2007,581(17):3230-3234
The yeast glucose sensors Rgt2 and Snf3 generate a signal in response to glucose that leads to degradation of Mth1 and Std1, thereby relieving repression of Rgt1-repressed genes such as the glucose transporter genes (HXT). Mth1 and Std1 are degraded via the Yck1/2 kinase-SCF(Grr1)-26S proteasome pathway triggered by the glucose sensors. Here, we show that RGT2-1 promotes ubiquitination and subsequent degradation of Mth1 and Std1 regardless of the presence of glucose. Site-specific mutagenesis reveals that the conserved lysine residues of Mth1 and Std1 might serve as attachment sites for ubiquitin, and that the potential casein kinase (Yck1/2) sites of serine phosphorylation might control their ubiquitination. Finally, we show that active Snf1 protein kinase in high glucose prevents degradation of Mth1 and Std1.  相似文献   

8.
9.
The Snf1 protein kinase of Saccharomyces cerevisiae has been shown to have a role in regulating haploid invasive growth in response to glucose depletion. Cells contain three forms of the Snf1 kinase, each with a different beta-subunit isoform, either Gal83, Sip1, or Sip2. We present evidence that different Snf1 kinases play distinct roles in two aspects of invasive growth, namely, adherence to the agar substrate and filamentation. The Snf1-Gal83 form of the kinase is required for adherence, whereas either Snf1-Gal83 or Snf1-Sip2 is sufficient for filamentation. Genetic evidence indicates that Snf1-Gal83 affects adherence by antagonizing Nrg1- and Nrg2-mediated repression of the FLO11 flocculin and adhesin gene. In contrast, the mechanism(s) by which Snf1-Gal83 and Snf1-Sip2 affect filamentation is independent of FLO11. Thus, the Snf1 kinase regulates invasive growth by at least two distinct mechanisms.  相似文献   

10.
11.
Haploid Saccharomyces cerevisiae cells growing on media lacking glucose but containing high concentrations of carbon sources such as fructose, galactose, raffinose, and ethanol exhibit enhanced agar invasion. These carbon sources also promote diploid filamentous growth in response to nitrogen starvation. The enhanced invasive and filamentous growth phenotypes are suppressed by the addition of glucose to the media and require the Snf1 kinase. Mutations in the PGI1 and GND1 genes encoding carbon source utilization enzymes confer enhanced invasive growth that is unaffected by glucose but requires active Snf1. Carbon source does not modulate FLO11 flocculin expression, but enhanced polarized bud site selection is necessary for invasion on certain carbon sources. Interestingly, deletion of SNF1 blocks invasion without affecting bud site selection. Snf1 is also required for formation of spokes and hubs in multicellular mats. To examine glucose repression of invasive growth more broadly, we performed genome-wide microarray expression analysis in wild-type cells growing on glucose and galactose, and snf1 Delta cells on galactose. SNF1 probably mediates glucose repression of multiple genes potentially involved in invasive and filamentous growth. FLO11-independent cell-cell attachment, cell wall integrity, and/or polarized growth are affected by carbon source metabolism. In addition, derepression of cell cycle genes and signalling via the cAMP-PKA pathway appears to depend upon SNF1 activity during growth on galactose.  相似文献   

12.
13.
14.
Protein phosphatase 1, comprising the regulatory subunit Reg1 and the catalytic subunit Glc7, has a role in glucose repression in Saccharomyces cerevisiae. Previous studies showed that Reg1 regulates the Snf1 protein kinase in response to glucose. Here, we explore the functional relationships between Reg1, Glc7, and Snf1. We show that different sequences of Reg1 interact with Glc7 and Snf1. We use a mutant Reg1 altered in the Glc7-binding motif to demonstrate that Reg1 facilitates the return of the activated Snf1 kinase complex to the autoinhibited state by targeting Glc7 to the complex. Genetic evidence indicated that the catalytic activity of Snf1 negatively regulates its interaction with Reg1. We show that Reg1 is phosphorylated in response to glucose limitation and that this phosphorylation requires Snf1; moreover, Reg1 is dephosphorylated by Glc7 when glucose is added. Finally, we show that hexokinase PII (Hxk2) has a role in regulating the phosphorylation state of Reg1, which may account for the effect of Hxk2 on Snf1 function. These findings suggest that the phosphorylation of Reg1 by Snf1 is required for the release of Reg1-Glc7 from the kinase complex and also stimulates the activity of Glc7 in promoting closure of the complex.  相似文献   

15.
J. R. Erickson  M. Johnston 《Genetics》1994,136(4):1271-1278
We selected and analyzed extragenic suppressors of mutations in four genes-GRR1, REG1, GAL82 and GAL83-required for glucose repression of the GAL genes in the yeast Saccharomyces cerevisiae. The suppressors restore normal or nearly normal glucose repression of GAL1 expression in these glucose repression mutants. Tests of the ability of each suppressor to cross-suppress mutations in the other glucose repression genes revealed two groups of mutually cross-suppressed genes: (1) REG1, GAL82 and GAL83 and (2) GRR1. Mutations of a single gene, SRG1, were found as suppressors of reg1, GAL83-2000 and GAL82-1, suggesting that these three gene products act at a similar point in the glucose repression pathway. Mutations in SRG1 do not cross-suppress grr1 or hxk2 mutations. Conversely, suppressors of grr1 (rgt1) do not cross-suppress any other glucose repression mutation tested. These results, together with what was previously known about these genes, lead us to propose a model for glucose repression in which Grr1p acts early in the glucose repression pathway, perhaps affecting the generation of the signal for glucose repression. We suggest that Reg1p, Gal82p and Gal83p act after the step(s) executed by Grr1p, possibly transmitting the signal for repression to the Snf1p protein kinase.  相似文献   

16.
17.
18.
The Snf1 kinase and its mammalian homolog, the AMP-activated protein kinase, are heterotrimeric enzymes composed of a catalytic alpha-subunit, a regulatory gamma-subunit and a beta-subunit that mediates heterotrimer formation. Saccharomyces cerevisiae encodes three beta-subunit genes, SIP1, SIP2 and GAL83. Earlier studies suggested that these subunits may not be required for Snf1 kinase function. We show here that complete and precise deletion of all three beta-subunit genes inactivates the Snf1 kinase. The sip1Delta sip2Delta gal83Delta strain is unable to derepress invertase, grows poorly on alternative carbon sources and fails to direct the phosphorylation of the Mig1 and Sip4 proteins in vivo. The SIP1 sip2Delta gal83Delta strain manifests a subset of Snf phenotypes (Raf(+), Gly(-)) observed in the snf1Delta 10 strain (Raf(-), Gly(-)), suggesting that individual beta-subunits direct the Snf1 kinase to a subset of its targets in vivo. Indeed, deletion of individual beta-subunit genes causes distinct differences in the induction and phosphorylation of Sip4, strongly suggesting that the beta-subunits play an important role in substrate definition.  相似文献   

19.
In Saccharomyces cerevisiae, the protein phosphatase type 1 (PP1)-binding protein Reg1 is required to maintain complete repression of ADH2 expression during growth on glucose. Surprisingly, however, mutant forms of the yeast PP1 homologue Glc7, which are unable to repress expression of another glucose-regulated gene, SUC2, fully repressed ADH2. Constitutive ADH2 expression in reg1 mutant cells did require Snf1 protein kinase activity like constitutive SUC2 expression and was inhibited by unregulated cyclic AMP-dependent protein kinase activity like ADH2 expression in derepressed cells. To further elucidate the functional role of Reg1 in repressing ADH2 expression, deletions scanning the entire length of the protein were analyzed. Only the central region of the protein containing the putative PP1-binding sequence RHIHF was found to be indispensable for repression. Introduction of the I466M F468A substitutions into this sequence rendered Reg1 almost nonfunctional. Deletion of the central region or the double substitution prevented Reg1 from significantly interacting with Glc7 in two-hybrid analyses. Previous experimental evidence had indicated that Reg1 might target Glc7 to nuclear substrates such as the Snf1 kinase complex. Subcellular localization of a fully functional Reg1-green fluorescent protein fusion, however, indicated that Reg1 is cytoplasmic and excluded from the nucleus independently of the carbon source. When the level of Adr1 was modestly elevated, ADH2 expression was no longer fully repressed in glc7 mutant cells, providing the first direct evidence that Glc7 can repress ADH2 expression. These results suggest that the Reg1-Glc7 phosphatase is a cytoplasmic component of the machinery responsible for returning Snf1 kinase activity to its basal level and reestablishing glucose repression. This implies that the activated form of the Snf1 kinase complex must cycle between the nucleus and the cytoplasm.  相似文献   

20.
In glucose-grown cells, the Mig1 DNA-binding protein recruits the Ssn6-Tup1 corepressor to glucose-repressed promoters in the yeast Saccharomyces cerevisiae. Previous work showed that Mig1 is differentially phosphorylated in response to glucose. Here we examine the role of Mig1 in regulating repression and the role of the Snf1 protein kinase in regulating Mig1 function. Immunoblot analysis of Mig1 protein from a snf1 mutant showed that Snf1 is required for the phosphorylation of Mig1; moreover, hxk2 and reg1 mutations, which relieve glucose inhibition of Snf1, correspondingly affect phosphorylation of Mig1. We show that Snf1 and Mig1 interact in the two-hybrid system and also coimmunoprecipitate from cell extracts, indicating that the two proteins interact in vivo. In immune complex assays of Snf1, coprecipitating Mig1 is phosphorylated in a Snf1-dependent reaction. Mutation of four putative Snf1 recognition sites in Mig1 eliminated most of the differential phosphorylation of Mig1 in response to glucose in vivo and improved the two-hybrid interaction with Snf1. These studies, together with previous genetic findings, indicate that the Snf1 protein kinase regulates phosphorylation of Mig1 in response to glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号