首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Alternative conformations of a nucleic acid four-way junction   总被引:12,自引:0,他引:12  
Sleeping Beauty (SB), a member of the Tc1/mariner superfamily of transposable elements, is the only active DNA-based transposon system of vertebrate origin that is available for experimental manipulation. We have been using the SB element as a research tool to investigate some of the cis and trans-requirements of element mobilization, and mechanisms that regulate transposition in vertebrate species. In contrast to mariner transposons, which are regulated by overexpression inhibition, the frequency of SB transposition was found to be roughly proportional to the amount of transposase present in cells. Unlike Tc1 and mariner elements, SB contains two binding sites within each of its terminal inverted repeats, and we found that the presence of both of these sites is a strict requirement for mobilization. In addition to the size of the transposon itself, the length as well as sequence of the DNA outside the transposon have significant effects on transposition. As a general rule, the closer the transposon ends are, the more efficient transposition is from a donor molecule. We have found that SB can transform a wide range of vertebrate cells from fish to human. However, the efficiency and precision of transposition varied significantly among cell lines, suggesting potential involvement of host factors in SB transposition. A positive-negative selection assay was devised to enrich populations of cells harboring inserted transposons in their chromosomes. Using this assay, of the order of 10,000 independent transposon insertions can be generated in human cells in a single transfection experiment. Sleeping Beauty can be a powerful alternative to other vectors that are currently used for the production of transgenic animals and for human gene therapy.  相似文献   

2.
The Sleeping Beauty (SB) transposon is a Tc1/mariner family transposon that has applications in vertebrate animals for gene transfer, gene-tagging, and human gene therapy. In this study, we analyzed the target-site preferences of the SB transposon. At the genomic level, integration of SB transposons with respect to genes (exons and introns) and intergenic regions appears fairly random but not on a micro-scale. Although there appears to be a consensus sequence around the vicinity of the target sites, the primary sequence is not the determining factor for target selection. When integrations were examined over a limited topography, the sites used most often for integration did not match the consensus sequence. Rather, a unique deformation inherent in the sequence may be a recognition signal for target selection. The deformation is characterized by an angling of the target site such that the axis around the insertion site is off-center, the rotation of the helix (twisting) is non-uniform and there is an increase in the distance between the central base-pairs. Our observations offer several hypothetical insights into the transposition process. Our observations suggest that particular deformations of the double helix predicted by the V(step) algorithm can distinguish TA sites that vary by about 16-fold in their preferences for accommodating insertions of SB transposons.  相似文献   

3.
Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes.  相似文献   

4.
Members of the Tc1/mariner superfamily of transposable elements isolated from vertebrate species are inactive due to the accumulation of mutations. A representative of a subfamily of fish elements estimated to be last active > 10 million years ago has been reconstructed, and named Sleeping Beauty(SB). This element opened up new avenues for studies on DNA transposition in vertebrates, and for the development of transposon tools for genetic manipulation in important model species and in humans. Multiple transposase binding sites within the terminal inverted repeats, a transpositional enhancer sequence, unequal affinity of the transposase to the binding sites and the activity of the cellular HMGB1 protein all contribute to a highly regulated assembly of SB synaptic complexes, which is likely a requirement for the subsequent catalytic steps. Host proteins involved in double-strand DNA break repair are limiting factors of SB transposition in mammalian cells, underscoring evolutionary, structural and functional links between DNA transposition, retroviral integration and V(D)J recombination. SB catalyzes efficient cut-and-paste transposition in a wide range of vertebrate cells in tissue culture, and in somatic tissues as well as the germline of the mouse and zebrafish in vivo, indicating its usefulness as a vector for transgenesis and insertional mutagenesis.  相似文献   

5.
6.
We have investigated the target choice of the related transposable elements Tc1 and Tc3 of the nematode C. elegans. The exact locations of 204 independent Tc1 insertions and 166 Tc3 insertions in an 1 kbp region of the genome were determined. There was no phenotypic selection for the insertions. All insertions were into the sequence TA. Both elements have a strong preference for certain positions in the 1 kbp region. Hot sites for integration are not clustered or regularly spaced. The orientation of the integrated transposon has no effect on the distribution pattern. We tested several explanations for the target site preference. If simple structural features of the DNA (e.g. bends) would mark hot sites, we would expect the patterns of the two related transposons Tc1 and Tc3 to be similar; however we found them to be completely different. Furthermore we found that the sequence at the donor site has no effect on the choice of the new insertion site, because the insertion pattern of a transposon that jumps from a transgenic donor site is identical to the insertion pattern of transposons jumping from endogenous genomic donor sites. The most likely explanation for the target choice is therefore that the primary sequence of the target site is recognized by the transposase. However, alignment of the Tc1 and Tc3 integration sites does not reveal a strong consensus sequence for either transposon.  相似文献   

7.
We report here the consensus target sequence of transposons Tc1, Tc3 and Tc5 of Caenorhabditis elegans. These sequences were obtained by molecular analysis of 1008 random new insertions which have not been exposed to natural selection. This analysis reveals consensus target sites slightly different from those previously reported, and confirms that the mariner elements Tc1 and Tc3 insert in sites which are not preferentially palindromic.  相似文献   

8.
Target sequences for the C. elegans transposable element Tc1.   总被引:17,自引:3,他引:14       下载免费PDF全文
The target sequences for two independent insertions of the transposable element Tc1 from Caenorhabditis elegans show homology. Because both insertions are at palindromic TA/AT sequences, the exact boundaries of Tc1 cannot be distinguished; Tc1 could be 1610 bp and flanked by a 2-bp duplication of the target site or it could be 1612 bp and without target site duplication. The latter possibility implies a novel manner for insertion of a transposable element.  相似文献   

9.
Nonrandom insertion of Tn5 into cloned human adenovirus DNA   总被引:4,自引:0,他引:4  
  相似文献   

10.
Target specificity of insertion element IS30   总被引:2,自引:2,他引:0  
The Escherichia coli resident mobile element IS 30 has pronounced target specificity. Upon transposition, the element frequently inserts exactly into the same position of a preferred target sequence. Insertion sites in phages, plasmids and in the genome of E. coli are characterized by an exceptionally long palindromic consensus sequence that provides strong specificity for IS 30 insertions, despite a relatively high level of degeneracy. This 24-bp-long region alone determines the attractiveness of the target DNA and the exact position of IS 30 insertion. The divergence of a target site from the consensus and the occurrence of 'non-permitted' bases in certain positions influence the target activity. Differences in attractiveness are emphasized if two targets are present in the same replicon, as was demonstrated by quantitative analysis. In a system of competitive targets, the oligonucleotide sequence representing the consensus of genomic IS 30 insertion sites proved to be the most efficient target. Having compared the known insertion sites, we suppose that IS 30 -like target specificity, which may represent an alternative strategy in target selection among mobile elements, is characteristic of the insertion sequences IS 3 , IS 6 and IS 21 , too.  相似文献   

11.
Transposon mutagenesis of the mouse germline   总被引:11,自引:0,他引:11  
  相似文献   

12.
Transposition mutations are typically associated with the activities of transposable elements such as transposons and insertion sequences, whose mobility is dependent upon transposase enzymes that catalyze exchanges between element ends and target sites. We describe a single transposition event in which a block of donor sequence is inserted at a target site without the involvement of any known transposase or the ends of any known transposable element. We propose that this is a new type of spontaneous mutation which may be difficult to detect in standard mutant hunts but may be of evolutionary importance.  相似文献   

13.
14.
Michel K  O'Brochta DA  Atkinson PW 《Gene》2002,298(2):141-146
Donor cleavage and strand transfer are two functions performed by transposases during transposition of class II transposable elements. Within transposable elements, the only active center described, to date, facilitating both functions, is the so-called DDE motif. A second motif, R-K-H/K-R-H/W-Y, is found in the site-specific recombinases of the tyrosine recombinase family. While present in many bacterial insertion sequences as well as in the eukaryotic family of mariner/Tc1 elements, the DDE motif was considered absent in other classes of eukaryotic class II elements such as P, and hAT and piggyBac. Based on sequence alignments of a hobo-like element from the nematode Caenorhabditis elegans, to a variety of other hAT transposases and several members of the mariner/Tc1 group, Bigot et al. [Gene 174 (1996) 265] proposed the presence of a DSE motif in hAT transposases. In the present study we tested if each of these three residues is required for transposition of the Hermes element, a member of the hAT family commonly used for insect transformation. While D402N and E572Q mutations lead to knock-out of Hermes function, mutations S535A and S535D did not affect transposition frequency or the choice of integration sites. These data give the first experimental support that D402 and E572 are indeed required for transposition of Hermes. Furthermore, this study indicates that the active center of the Hermes transposase differs from the proposed DSE motif. It remains to be shown if other residues also form the active site of this transposase.  相似文献   

15.
In a genome-wide analysis of the active transposons in Caenorhabditis elegans we determined the localization and sequence of all copies of each of the six active transposon families. Most copies of the most active transposons, Tc1 and Tc3, are intact but individually have a unique sequence, because of unique patterns of single-nucleotide polymorphisms. The sequence of each of the 32 Tc1 elements is invariant in the C. elegans strain N2, which has no germline transposition. However, at the same 32 Tc1 loci in strains with germline transposition, Tc1 elements can acquire the sequence of Tc1 elements elsewhere in the N2 genome or a chimeric sequence derived from two dispersed Tc1 elements. We hypothesize that during double-strand-break repair after Tc1 excision, the template for repair can switch from the Tc1 element on the sister chromatid or homologous chromosome to a Tc1 copy elsewhere in the genome. Thus, the population of active transposable elements in C. elegans is highly dynamic because of a continuous exchange of sequence information between individual copies, potentially allowing a higher evolution rate than that found in endogenous genes.  相似文献   

16.
There has been debate over the mechanisms that control the copy number of transposable elements in the genome of Drosophila melanogaster. Target sites in D. melanogaster populations are occupied at low frequencies, suggesting that there is some form of selection acting against transposable elements. Three main theories have been proposed to explain how selection acts against transposable elements: insertions of a copy of a transposable element are selected against; chromosomal rearrangements caused by ectopic exchange between element copies are selected against; or the process of transposition itself is selected against. The three theories give different predictions for the pattern of transposable element insertions in the chromosomes of D. melanogaster. We analysed the abundance of six LTR (long terminal repeat) retrotransposons on the X and fourth chromosomes of multiple strains of D. melanogaster, which we compare with the predictions of each theory. The data suggest that no one theory can account for the insertion patterns of all six retrotransposons. Comparing our results with earlier work using these transposable element families, we find a significant correlation between studies in the particular model of copy number regulation supported by the proportion of elements on the X for the different transposable element families. This suggests that different retrotransposon families are regulated by different mechanisms.  相似文献   

17.
Tn7: a target site-specific transposon   总被引:6,自引:0,他引:6  
The bacterial transposon Tn7 is an unusual mobile DNA segment. Most transposable elements move at low-frequency and display little target site-selectivity. By contrast, Tn7 inserts at high-frequency into a single specific site in the chromosomes of many bacteria. In the absence of this specific site, called attTn7 in Escherichia coli where Tn7 has been most extensively studied, Tn7 transposes at low-frequency and inserts into many different sites. Much has recently been learned about Tn7 transposition from both genetic and biochemical studies. The Tn7 recombination machinery is elaborate and includes a large number of Tn7-encoded proteins, probably host-encoded proteins and also rather large cis-acting transposition sequences at the transposon termini and at the target site. Dissection of the Tn7 transposition mechanism has revealed that the DNA strand breakage and joining reactions that underlie the translocation of Tn7 have several unusual features.  相似文献   

18.
The transposable element Tc1 is responsible for most spontaneous mutations that occur in Caenorhabditis elegans variety Bergerac. We investigated the genetic and molecular properties of Tc1 transposition and excision. We show that Tc1 insertion into the unc-54 myosin heavy-chain gene was strongly site specific. The DNA sequences of independent Tc1 insertion sites were similar to each other, and we present a consensus sequence for Tc1 insertion that describes these similarities. We show that Tc1 excision was usually imprecise. Tc1 excision was imprecise in both germ line and somatic cells. Imprecise excision generated novel unc-54 alleles that had amino acid substitutions, amino acid insertions, and, in certain cases, probably altered mRNA splicing. The DNA sequences remaining after Tc1 somatic excision were the same as those remaining after germ line excision, but the frequency of somatic excision was at least 1,000-fold higher than that of germ line excision. The genetic properties of Tc1 excision, combined with the DNA sequences of the resulting unc-54 alleles, demonstrated that excision was dependent on Tc1 transposition functions in both germ line and somatic cells. Somatic excision was not regulated in the same strain-specific manner as germ-line excision was. In a genetic background where Tc1 transposition and excision in the germ line was not detectable, Tc1 excision in the soma still occurred at high frequency.  相似文献   

19.
Understanding the molecular mechanisms that influence transposable element target site preferences is a fundamental challenge in functional and evolutionary genomics. Large-scale transposon insertion projects provide excellent material to study target site preferences in the absence of confounding effects of post-insertion evolutionary change. Growing evidence from a wide variety of prokaryotes and eukaryotes indicates that DNA transposons recognize staggered-cut palindromic target site motifs (TSMs). Here, we use over 10 000 accurately mapped P-element insertions in the Drosophila melanogaster genome to test predictions of the staggered-cut palindromic target site model for DNA transposon insertion. We provide evidence that the P-element targets a 14-bp palindromic motif that can be identified at the primary sequence level, which predicts the local spacing, hotspots and strand orientation of P-element insertions. Intriguingly, we find that the although P-element destroys the complete 14-bp target site upon insertion, the terminal three nucleotides of the P-element inverted repeats complement and restore the original TSM, suggesting a mechanistic link between transposon target sites and their terminal inverted repeats. Finally, we discuss how the staggered-cut palindromic target site model can be used to assess the accuracy of genome mappings for annotated P-element insertions.  相似文献   

20.
Eleven chromosomal products of somatic excision of Tc1 transposable elements have been cloned and sequenced. The cloning method did not involve genetic reversion; therefore the products analyzed should be representative. Six empty religated target sites were from excision of one Tc1 element inserted near actin genes on linkage group V; five were from a second Tc1 element inserted elsewhere on the same linkage group. All six products from the first element were identical in sequence to an empty target site from a second strain, indicating excision had been precise. Two of the products from the second element were also precise, whereas the other three contained four extra nucleotides at the point of excision, indicating an imprecise excision. The four nucleotides are the same in all cases and could represent two terminal nucleotides of the transposon plus a two-nucleotide target site duplication. The difference in the ratio of precise to imprecise excision at the two insertion sites suggests a possible chromosomal position effect on the pathway of Tc1 somatic excision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号