首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This review will be limited to the expression and roles of the family of metalloenzymes superoxide dismutases in pathogenic bacteria. Only animal pathogens will be described, with particular emphasis on those causing disease in man.  相似文献   

2.
External surfaces of cells are normally protected by extracellular superoxide dismutase, SOD3, which binds to polyanions such as heparan sulfate. We constructed a fusion gene encoding a chimeric SOD consisting of the mature human mitochondrial SOD2 plus the COOH-terminal 26-amino acid heparin-binding "tail" from SOD3. This tail is responsible for the enzyme's affinity for endothelial surfaces. The fusion gene was expressed in Escherichia coli, and the fully active enzyme SOD2/3 was purified. Although native SOD2 has no affinity for heparin, SOD2/3 binds to a heparin-agarose column. In a rat model of acute lung injury induced by intratracheal instillation of IL-1, SOD2/3, SOD2, and denatured SOD2/3 showed 92%, 13.8%, and 0% reduction of lung leak, respectively. Only SOD2/3 prevented neutrophil accumulation. In the carrageenan-induced foot edema model in the rat, SOD2/3 reduced edema by 62% (P < 0.003) at a dose in which native SOD2 produced no significant effect. Thus SOD2/3 appears to have properties as a therapeutic anti-inflammatory agent that are greatly superior to other available forms of the enzyme.  相似文献   

3.
Biosynthesis and regulation of superoxide dismutases   总被引:16,自引:0,他引:16  
The past two decades have witnessed an explosion in our understanding of oxygen toxicity. The discovery of superoxide dismutases (SODs) (EC.1.15.1.1), which specifically catalyze the dismutation of superoxide radicals (O2) to hydrogen peroxide (H2O2) and oxygen, has indicated that O2 is a normal and common byproduct of oxygen metabolism. There is an increasing evidence to support the conclusion that superoxide radicals play a major role in cellular injury, mutagenesis, and many diseases. In all cases SODs have been shown to protect the cells against these deleterious effects. Recent advances in molecular biology and the isolation of different SOD genes and SOD c-DNAs have been useful in proving beyond doubt the physiological function of the enzyme. The biosynthesis of SODs, in most biological systems, is under rigorous controls. In general, exposure to increased pO2, increased intracellular fluxes of O2, metal ions perturbation, and exposures to several environmental oxidants have been shown to influence the rate of SOD synthesis in both prokaryotic and eukaryotic organisms. Recent developments in the mechanism of regulation of the manganese-containing superoxide dismutase of Escherichia coli will certainly open new research avenues to better understand the regulation of SODs in other organisms.  相似文献   

4.
Molecular genetics of superoxide dismutases   总被引:13,自引:0,他引:13  
Molecular genetics of SOD has been recently developed primarily due to the new biotechnologies. Different types of isozymes have now been cloned and sequenced from several species ranging from bacteria to human and plants. Knowledge of the nucleotide sequences permitted refinement of structural models and provided information on subcellular locations. Cloned genes allowed the production of large amounts of SOD. They have been used for physiological and regulation studies, structural and enzymatic analyses, and are vital tools for the isolation of mutants. Isolation of mutants is generally essential to the understanding of the biological function of the gene in question. Indeed, SOD deficient mutants have now been isolated in bacteria and yeast. Their properties support, at numerous levels, a major role of SPD in cellular defense against oxygen toxicity. Few data are presently available on the molecular basis of mechanisms that regulate the expression of SOD.  相似文献   

5.
Aquaspirillum magnetotacticum MS-1 cells cultured microaerobically (dissolved O2 tension 1% of saturation), expressed proteins with superoxide dismutase (SOD) activity. The majority (roughly 95%) of total cell superoxide dismutase activity was located in the cell periplasm with little or no activity in the cell cytoplasm. Irontype SOD (FeSOD) contributed 88% of the total activity activity detected, although a manganese-type SOD (MnSOD) was present in the periplasm as well. Cells cultured at a higher dissolved O2 tension (10% of saturation) expressed increased activity of the MnSOD relative to that of the FeSOD.  相似文献   

6.
Bacteriocuprein superoxide dismutases in pseudomonads.   总被引:12,自引:11,他引:12       下载免费PDF全文
Two new instances of the rare bacteriocuprein form of superoxide dismutase have been discovered in Pseudomonas diminuta and P. maltophilia. Each species contains a manganese superoxide dismutase as well. Eight other strains of Pseudomonas and Xanthomonas spp. lacked bacteriocupreins and contained either a manganese or an iron superoxide dismutase. Native molecular weights and isoelectric points were determined for all these bacterial dismutases. A monospecific polyclonal antibody was prepared against the bacteriocuprein from Photobacterium leiognathi; it was not cross-reactive with the bacteriocuprein from either Pseudomonas strain. Bacteriocupreins have previously been identified in only two procaryotes, P. leiognathi and Caulobacter crescentus. The discovery of the Pseudomonas bacteriocupreins reveals a broader distribution, raising the possibility that bacteriocupreins are a continuous line of descent among procaryotes and not isolated evolutionary occurrences, as previous data suggested.  相似文献   

7.
Rat liver was homogenized in isotonic buffer, fractionated by differential centrifugation, and then subfractionated by equilibrium sedimentation in Nycodenz gradients. Fractions were assayed for both Cu,Zn-superoxide dismutase (SOD) and Mn-SOD by exploiting the cyanide sensitivity of the former activity and by the use of specific antibodies. As expected, the cytosol and lysosomal fractions contained Cu,Zn-SOD; while the mitochondrial matrix contained Mn-SOD. In mitochondria, Cu,Zn-SOD was found in the intermembrane space and Mn-SOD in the matrix and also on the inner membrane. The Mn-SOD associated with the inner membrane was solubilized by 0.5 m NaCl. Surprisingly the intracellular membrane fraction (microsomes) contained bound Cu,Zn-SOD that could be solubilized with a detergent, and to lesser degree with 0.5 m NaCl. Both the cytosolic and mitochondrial Cu,Zn-SODs were isolated and compared. They have identical molecular mass, cyanide sensitivity, SDS sensitivity, heat stability, and chloroform + ethanol stability. Tissue from Cu,Zn-SOD knockout mice was entirely devoid of Cu,Zn-SOD; indicating that the cytosolic and the intermembrane space Cu,Zn-SODs are coded for by the same gene. The significance of this distribution of the SODs is discussed.  相似文献   

8.
The role of superoxide radicals and of superoxide dismutases in inflammation is described. Encapsulation of the enzyme in liposomes leads to an increased organ specificity on injection into animals. Preliminary results of medical application are presented.  相似文献   

9.
Predicted secondary structures and optical properties of four manganese-containing superoxide dismutases isolated from Saccharomyces cerevisiae, Bacillus stearothermophilus, Escherichia coli and human liver are compared. The structural predictions are further compared with the known crystal structure of the manganese-containing superoxide dismutase from Thermus thermophilus HB8. The secondary structures of the four dismutases are predicted by the methods of Chou and Fasman (Adv. Enzymol. 47 (1978) 45-148), Garnier et al. (J. Mol. Biol. 120 (1978) 97-120) and Lim (J. Mol. Biol. 88 (1974) 873-894). The three models show satisfactory agreement and predict that the enzymes have a mixed alpha-helix and beta-sheet structure, and that they have homologous structures. The former conclusion is also reached from an analysis of the hydrophobic character of the amino-acid sequences of the four proteins according to Kyte and Doolittle (J. Mol. Biol. 157 (1982) 105-132). The calculation of the secondary structure based on the 185-260 nm circular dichroism spectrum of manganese-containing superoxide dismutase from S. cerevisiae reveals that the enzyme consists of 61% alpha-helix, 13% beta-sheet, 11% turn and 8% random coil conformations, which is in good accordance with the prediction based on the amino-acid sequences. Comparison of the 400-700 nm circular dichroism spectra of manganese-containing superoxide dismutase from S. cerevisiae, E. coli and T. thermophilus demonstrates that manganese atoms have homologous coordination in the three enzymes. This investigation based on primary structures and spectral properties indicates that the four dismutases have the same overall structure. Since the structural predictions are in good agreement with the structure found for the manganese-containing superoxide dismutase from T. thermophilus HB8, it can be concluded that this structure is representative for the four enzymes and probably for manganese-containing superoxide dismutases in general.  相似文献   

10.
Superoxide dismutases (SODs) catalyze the dismutation of superoxide radicals in a broad range of organisms, including plants. Quantification of SOD activity in crude plant extracts has been problematic due to the presence of compounds that interfere with the dose-response of the assay. Although strategies exist to partially purify SODs from plant extracts, the requirement for purification limits the rapidity and practical number of assays that can be conducted. In this article, we describe modification of a procedure using o-dianisidine as substrate that permits relatively rapid quantification of SOD activity in crude leaf extracts in a microplate format. The method employs the use of a commercial apparatus that permits lysis of 12 tissue samples at once and the use of Pipes buffer to reduce interference from compounds present in crude leaf extracts. The assay provided a linear response from 1 to 50 units of SOD. The utility of the assay was demonstrated using tissue extracts prepared from a group of taxonomically diverse plants. Reaction rates with tissue extracts from two grasses were linear for at least 60 min. Tissues of certain species contained interfering compounds, most of which could be removed by ultrafiltration. The presence of plant catalases, peroxidases, and ascorbate in physiological quantities did not interfere with the assay. This approach provides a means to quantify SOD activity in relatively large numbers of plant samples provided that the possibility for the presence of interfering compounds is considered. The presence of interfering compounds in certain plant tissues necessitates caution in interpreting the effects of plant stresses on SOD.  相似文献   

11.
We have identified two distinct pools of superoxide dismutase in fractions of human peripheral neutrophils obtained by the isopycnic fractionation of homogenates of the latter with linear sucrose gradients. Superoxide dismutase activity, observed with polyacrylamide gels impregnated with Nitro Blue Tetrazolium, was present in: (1) the mitochondrial fraction [density (rho) 1.169g/ml], containing the high-molecular-weight KCN-resistant enzyme, and (2) the cytoplasm fraction, containing the low-molecular-weight KCN-sensitive enzyme. Superoxide dismutase activity, observed with a quantitative assay involving cytochrome c, was present in: (1) the mitochondria, (2) the cytoplasm, and (3) the azurophil-granule fractions (rho=1.206 and 1.222g/ml). No substantial enzyme activity was observed in specific-granule fractions (rho=1.187g/ml) or in the membranous fraction (rho=1.136g/ml) in either assay. The apparent superoxide dismutase activity observed in the azurophil granules with the cytochrome c assay was attributable not to true superoxide dismutase but to myeloperoxidase, an enzyme found solely in the azurophil granules. In the presence of H(2)O(2), human neutrophil myeloperoxidase oxidized ferrocytochrome c. Thus, in the cytochrome c assay for superoxide dismutase, the oxidation of ferrocytochrome c by myeloperoxidase mimicked the inhibition of reduction of ferricytochrome c by superoxide dismutase. When myeloperoxidase was removed from azurophilgranule fractions by specific immuno-affinity chromatography, both myeloperoxidase and apparent superoxide dismutase activities were removed. It is concluded that there is no detectable superoxide dismutase in either the azurophil or specific granules of human neutrophils. Mitochondrial superoxide dismutase, 15% of the total dismutase activity of the cells, occurred only in fractions of density 1.160g/ml, where isocitrate dehydrogenase and cytochrome oxidase were also observed.  相似文献   

12.
Iron-containing superoxide dismutase was found in the soluble fraction from Euglena gracilis and Mn-superoxide dismutase was found in the thylakoid-bound form. Two major Fe-superoxide dismutases were isolated from the soluble fraction in the homogeneous state. Their absorption spectra, molecular weights, subunit structures, and metal contents resemble those of the Fe-enzymes from procaryotes. However,the Euglena enzymes are more sensitive to heating, to denaturants, and to H2O2 and less sensitive to azide than are the procaryote enzymes. The amino acid composition of the Euglena enzyme differs substantially from the compositions of the enzymes from procaryotes.  相似文献   

13.
The discovery of superoxide dismutases (SODs), which convert superoxide radicals to molecular oxygen and hydrogen peroxide, has been termed the most important discovery of modern biology never to win a Nobel Prize. Here, we review the reasons this discovery has been underappreciated, as well as discuss the robust results supporting its premier biological importance and utility for current research. We highlight our understanding of SOD function gained through structural biology analyses, which reveal important hydrogen-bonding schemes and metal-binding motifs. These structural features create remarkable enzymes that promote catalysis at faster than diffusion-limited rates by using electrostatic guidance. These architectures additionally alter the redox potential of the active site metal center to a range suitable for the superoxide disproportionation reaction and protect against inhibition of catalysis by molecules such as phosphate. SOD structures may also control their enzymatic activity through product inhibition; manipulation of these product inhibition levels has the potential to generate therapeutic forms of SOD. Markedly, structural destabilization of the SOD architecture can lead to disease, as mutations in Cu,ZnSOD may result in familial amyotrophic lateral sclerosis, a relatively common, rapidly progressing and fatal neurodegenerative disorder. We describe our current understanding of how these Cu,ZnSOD mutations may lead to aggregation/fibril formation, as a detailed understanding of these mechanisms provides new avenues for the development of therapeutics against this so far untreatable neurodegenerative pathology.  相似文献   

14.
Differential temperature sensitivity of pea superoxide dismutases   总被引:2,自引:1,他引:2       下载免费PDF全文
Burke JJ  Oliver MJ 《Plant physiology》1992,100(3):1595-1598
The activity of pea (Pisum sativum L.) Cu/Zn and Mn superoxide dismutase isoforms was evaluated across a range of temperatures from 10 to 45°C. Maximal activity of the Cu/Zn and Mn superoxide dismutase isoforms was observed at 10°C. Both cytoplasmic and chloroplast Cu/Zn superoxide dismutases exhibit a reduction in staining intensity with increasing temperatures. Mn superoxide dismutase, however, maintained a relatively constant staining intensity across the range of temperatures evaluated. An unrelated enzyme used as a control, malate dehydrogenase, exhibited the expected increase in staining activity with increasing temperatures. These results describe a unique response of a protection enzyme to temperature.  相似文献   

15.
Iron-containing Superoxide dismutases are more sensitive to inhibition by azide than are the corresponding manganese containing enzymes, while the copper-zinc Superoxide dismutases are least sensitive. Thus, at pH 7.8, 10 mm azide inhibited Cu-Zn, Mn, and Fe enzymes by ~10%, ~30% and ~73%, respectively. Stated differently, the concentrations of N3? required to cause 50% inhibition of the Cu-Zn, Mn, and Fe enzymes was ~32 mm, ~20 mm and ~4 mm, respectively. These inhibitions by azide, which were imposed and reversed rapidly, appear to provide a useful criterion for distinguishing among the classes of these enzymes. Sensitivity towards inhibition by N3?can be applied to the Superoxide dismutases in crude extracts, for the purpose of deciding to which class they belong.  相似文献   

16.
A field study was carried out to investigate the effect of three Zn levels 0, 20 kg ZnSO4 ha−1 and 20 kg ZnSO4 ha−1+ foliar spray of 0.5 % ZnSO4 on superoxide dismutase activity, acid phosphatase activity and grain yield and a pot experiment to study the effect of zinc deficient and sufficient conditions on organic acid exudation. Increasing Zn levels was established as beneficial in improving the enzyme activities of genotypes. Combined foliar and soil application of Zn proved to be superior of all the treatments. Zinc application resulted in a maximum increment limit of 96.8 % in superoxide dismutase activity, 75.76 % in acid phosphatase activity, and a decrement limit of 88.57 % in oxalic acid exudation irrespective of stages and year of study. The increased enzyme activities had a positive impact on grain yield. As an average of all genotypes an improvement of 19.88 % in 2009 and 21.29 % in 2010 due to soil application while of 16.45 % in 2009 and 13.01 % in 2010 due to combined application was calculated for grain yield. There existed a variation among genotypes in showing responses towards zinc application and the genotypes UP 2584 and PBW 550 were found to be more responsive.  相似文献   

17.
Many cnidarians, such as sea anemones, contain photosynthetic symbiotic dinoflagellates called zooxanthellae. During a light/dark cycle, the intratentacular O(2) state changes in minutes from hypoxia to hyperoxia (3-fold normoxia). To understand the origin of the high tolerance to these unusual oxic conditions, we have characterized superoxide dismutases (SODs) from the three cellular compartments (ectoderm, endoderm and zooxanthellae) of the Mediterranean sea anemone Anemonia viridis. The lowest SOD activity was found in ectodermal cells while endodermal cells and zooxanthellae showed a higher SOD activity. Two, seven and six SOD activity bands were identified on native PAGE in ectoderm, endoderm and zooxanthellae, respectively. A CuZnSOD was identified in both ectodermal and endodermal tissues. MnSODs were detected in all compartments with two different subcellular localizations. One band displays a classical mitochondrial localization, the three others being extramitochondrial. FeSODs present in zooxanthellae also appeared in endodermal host tissue. The isoelectric points of all SODs were distributed between 4 and 5. For comparative study, a similar analysis was performed on the whole homogenate of a scleractinian coral Stylophora pistillata. These results are discussed in the context of tolerance to hyperoxia and to the transition from anoxia to hyperoxia.  相似文献   

18.
Superoxide dismutase activity in crude or partially purified cell extracts from several species and strains of obligate anaerobe Bacteroides was inhibited instantaneously by NaN3 and was inactivated rapidly upon incubation with H2O2. The extent of NaN3 inhibition varied from 41 to 93%, and the half-life of the enzymatic activity in 5 mM H2O2 ranged from 1.2 to 6.1 min, depending upon the organism tests. When grown in a defined medium containing 59Fe, Bacteroides fragilis (VPI 2393) incorporated radiolabel into a 40,000-molecular-weight NaN3- and H2O2-sensitive superoxide dismutase but did not incorporate 54Mn into that protein under similar growth conditions. The anaerobe Actinomyces naeslundii (VPI 9985) incorporated 54Mn but not 59Fe into a NaN3-insensitive and H2O2-resistant superoxide dismutase. The apparent molecular weight of the superoxide dismutase from this and several other Actinomyces spp. was estimated to be 110,000 to 140,000. Comparison of these data with studies of homogeneous metallosuperoxide dismutases suggests that the Bacteroides spp. studied contain a ferrisuperoxide dismutase, whereas Actinomyces spp. contain a managanisuperoxide dismutase.  相似文献   

19.
Over 90 different mutations in the gene encoding copper/zinc superoxide dismutase (SOD1) cause approximately 2% of amyotrophic lateral sclerosis (ALS) cases by an unknown mechanism. We engineered 14 different human ALS-related SOD1 mutants and obtained high yields of biologically metallated proteins from an Sf21 insect cell expression system. Both the wild type and mutant "as isolated" SOD1 variants were deficient in copper and were heterogeneous by native gel electrophoresis. By contrast, although three mutant SOD1s with substitutions near the metal binding sites (H46R, G85R, and D124V) were severely deficient in both copper and zinc ions, zinc deficiency was not a consistent feature shared by the as isolated mutants. Eight mutants (A4V, L38V, G41S, G72S, D76Y, D90A, G93A, and E133 Delta) exhibited normal SOD activity over pH 5.5-10.5, per equivalent of copper, consistent with the presumption that bound copper was in the proper metal-binding site and was fully active. The H48Q variant contained a high copper content yet was 100-fold less active than the wild type enzyme and exhibited a blue shift in the visible absorbance peak of bound Cu(II), indicating rearrangement of the Cu(II) coordination geometry. Further characterization of these as-isolated SOD1 proteins may provide new insights regarding mutant SOD1 enzyme toxicity in ALS.  相似文献   

20.
Iron-superoxide dismutase (FeSOD) and copper/zinc-superoxide dismutase (Cu/ZnSOD) are evolutionarily conserved proteins in higher plant chloroplasts. These enzymes are responsible for the efficient removal of the superoxide formed during photosynthetic electron transport and function in reactive oxygen species metabolism. The availability of copper is a major determinant of Cu/ZnSOD and FeSOD expression. Analysis of the phenotypes of plants that over-express superoxide dismutases in chloroplasts has given support for the proposed roles of these enzymes in reactive oxygen species scavenging. However, over-production of chloroplast superoxide dismutase gives only limited protection to environmental stress and does not result in greatly improved whole plant performance. Surprisingly, plant lines that lack the most abundant Cu/ZnSOD or FeSOD activities perform as well as the wild-type under most conditions tested, indicating that these superoxide dismutases are not limiting to photoprotection or the prevention of oxidative damage. In contrast, a strong defect in chloroplast gene expression and development was seen in plants that lack the two minor FeSOD isoforms, which are expressed predominantly in seedlings and that associate closely with the chloroplast genome. These findings implicate reactive oxygen species metabolism in signaling and emphasize the critical role of sub-cellular superoxide dismutase location. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号