首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 793 毫秒
1.
In this paper we investigate in vivo and in vitro effects of orally administered azadirachtin and ecdysone on the phagocytic responses of Rhodnius prolixus 5th-instar larval hemocytes to the yeast Saccharomyces cerevisiae. Groups of insects fed non-treated blood (control) and insects that received azadirachtin plus ecdysone in the blood meal were inoculated with yeast cells in the hemocele. The injected yeast cells disappeared rapidly from the hemolymph, being removed completely by 90min after inoculation. In the insects treated only with azadirachtin the clearance of free yeast circulating particles was significantly delayed compared to the two previously mentioned groups. It was demonstrated that the binding of yeast cells to hemocytes was reduced in the insects treated only with azadirachtin in comparison to both non-treated control and azadirachtin plus ecdysone-treated groups. Phagocytosis occurred when yeast cells were added to hemocyte monolayers prepared with hemolymph from blood fed insects, treated or not with azadirachtin plus ecdysone, so that yeast cells were rapidly bound to hemocytes and internalized in high numbers. By contrast, insects treated with azadirachtin exhibited a drastic reduction in the quantity of yeast cell-hemocyte binding and subsequent internalization. In all groups, the hemocytes attached to the glass slides were predominantly plasmatocytes. The magnitude and speed of the cellular response suggests that hemocyte phagocytosis is one of the main driving forces for the clearance of free circulating yeast cells from the hemolymph. We propose that ecdysone modulates phagocytosis in R. prolixus larvae, and that this effect is antagonized by azadirachtin.  相似文献   

2.
Schistosoma mansoni modulation of phagocytosis in Biomphalaria glabrata   总被引:1,自引:0,他引:1  
Both short-term (3 hr) exposure of Biomphalaria glabrata snails (M-line and 13-16-R1) to Schistosoma mansoni (PR1) miracidia and in vitro incubation of parasite sporocysts with host hemolymph components altered host phagocytic ability. Hemocytes obtained from susceptible (M-line) snails that had been exposed to parasite miracidia for 3 hr showed reduced levels of phagocytosis of yeast cells in vitro compared to hemocytes from unexposed individuals. Incubation of whole hemolymph with sporocysts in vitro also reduced yeast phagocytosis in this susceptible strain. In contrast, resistant (13-16-R1) hemocytes showed increased levels of yeast phagocytosis after in vitro incubation with the parasite, and the opsonic properties of 13-16-R1 plasma were greater after exposure of snails to miracidia. These strain-specific effects of S. mansoni on host hemocyte phagocytosis and plasma opsonization were seen only when both plasma and hemocytes were present at the time of exposure to the parasite.  相似文献   

3.
Macrophages from the gastrophod mollusk Otala lactea are capable of in vitro recognition and phagocytosis of foreign particles such as yeast, mammalian erythrocytes, and bacteria. The degree of intensity of the phagocytic response, in certain instances, is governed by the surface characteristics of the particle in question as well as by the presence of opsonic factors.Hemagglutinins have been implicated as opsonins in certain invertebrates, including mollusks. Otala lacks serum lectins; however, its hemolymph stimulates phagocytosis of formalized yeast but not erythrocytes and bacteria. Hemagglutinin-containing extracts of Otala albumin gland were shown to opsonize formalized red cells. The rate of ingestion of the bacteria used in this study by Otala hemocytes was variable and was not influenced by the presence of hemolymph in the medium.  相似文献   

4.
The role of prophenoloxidase (proPO) system in recognition and phagocytosis of yeast cells by hemocytes was examined in vitro using whole plasma and proPO system isolated from the plasma of the marine mussel, Perna viridis. The proPO was isolated from the plasma by ammonium sulphate precipitation and gel filtration. The final proPO preparation was homogeneous in native PAGE, and could be activated by trypsin, α-chymotrypsin and pronase-E. Laminarin (a polymer of β-1, 3-glucan) and lipopolysaccharides (LPS) from diverse bacterial species effectively activated the isolated proPO, demonstrating the ability of this proenzyme to interact directly with microbial surface components. The susceptibility of proPO activation to inhibition by serine protease inhibitors such as soybean trypsin inhibitor (STI) or p-nitrophenyl-p′-guanidinobenzoate (p-NPGB), indicates that the isolated fraction may contain an integral serine protease domain in an inactive state. The presence of laminarin- or LPS-activated whole plasma of P. viridis facilitated adherence of yeast cells to hemocyte surface as well as eventually stimulated phagocytic uptake of the target cells by hemocytes, and no such hemocytic response was recorded with STI controls. This and other results strongly suggest that the intermediary factors generated during activation of plasma proPO system by non-self molecules play a key role in recognition and opsono-phagocytosis by hemocytes. However, the proPO system isolated from P. viridis plasma, after activation with microbial surface components, failed to show an opsonic effect.  相似文献   

5.
Activation of lobster hemocytes for phagocytosis   总被引:1,自引:0,他引:1  
Activation of lobster (Homarus americanus) hemocytes for phagocytosis of sheep erythrocytes (SRBC) was demonstrated in vitro by incubation with lipopolysaccharide and by prolonged adherence to glass coverslips. Morphological changes, which preceded phagocytic activation, were detected by phase microscopy and Nomarski interference microscopy. These included spreading, the formation of filopodia and pseudopodia, granular darkening and dispersion, and vacuolation. Hemolymph serum opsonin greatly enhanced the recognition and phagocytosis of SRBC by activated hemocytes. Increases of 15 to 20 times background levels were observed both in the proportion of hemocytes which were actively phagocytic, and the percent of rosette-forming hemocytes. This suggested that the enhanced phagocytosis was the result of both the recruitment of a quiescent precursor population during activation, and an increase in the availability of opsonin binding sites on hemocyte membranes.  相似文献   

6.
In vivo cells (hyphal bodies) of the hyphomycetous insect pathogen Beauveria bassiana collected from host Spodoptera exigua larval hemolymph were osmotically sensitive and lacked a well-defined cell wall. In light and electron microscope studies, a galactose-specific lectin purified from S. exigua hemolymph, concanavalin A (specific for alpha-mannose), and a polyclonal antibody to B. bassiana cell walls all bound to surfaces of in vitro-produced B. bassiana blastospores; however, none of these probes labelled the thin layer of extracellular material covering the plasma membranes of hyphal bodies. These cells were observed freely circulating in S. exigua hemolymph at 36 h postinfection, although immunocompetent hemocytes were known to be present. Additionally, association of hyphal bodies with hemocytes in monolayers was significantly less than for opsonized in vitro blastospores or submerged conidia. The absence of antigenically important galactomannan components on in vivo cells may therefore allow these cells to escape recognition and phagocytosis. Lack of structural components (e.g., chitin, as evidenced by the absence of binding of wheat germ agglutinin) may also be important with respect to evasion of host cellular defense mechanisms. Production of wall material resumed 48 to 60 h postinfection and therefore may coincide with loss of phagocytic capabilities of the hemocytes due to immunosuppressive effects of fungal metabolites. The protoplast-like cells may be formed by the action of hydrolytic enzymes in the hemocytes or by inhibition of fungal cell wall synthetases.  相似文献   

7.
Phagocytosis is a hemocytic behavior against bacterial infection. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits immune responses of target insects and causes hemolymph septicemia. This study analyzed how X. nematophila could inhibit phagocytosis to increase its pathogenicity. Granular cells and plasmatocytes were the main phagocytic hemocytes of Spodoptera exigua determined by observing fluorescence-labeled bacteria in the cytosol. X. nematophila significantly inhibited phagocytosis of both hemocytes, while heat-killed X. nematophila lost its inhibitory potency. However, co-injection of X. nematophila with arachidonic acid did not show any significant inhibition of hemocyte phagocytosis. In fact, hemocytes of S. exigua infected with X. nematophila showed significant reduction in phospholipase A(2) (PLA(2)) activity. Dexamethasone, a specific PLA(2) inhibitor, significantly inhibited phagocytosis of both cell types. However, the inhibitory effect of dexamethasone was recovered by addition of arachidonic acid. Incubation of hemocytes with benzylideneacetone, a metabolite of X. nematophila, inhibited phagocytosis in a dose-dependent manner. These results suggest that X. nematophila produces and secretes PLA(2) inhibitor(s), which in turn inhibit the phagocytic response of hemocytes.  相似文献   

8.
The hemocytes phagocytosis in response to microorganisms may play an important role in the cellular immune responses of insects. Here, we have evaluated the effects of the platelet-activating factor (PAF) and eicosanoids in the phagocytosis of hemocyte monolayers of Rhodnius prolixus to the yeast Saccharomyces cerevisiae. Experiments showed that the phagocytosis of yeast cells by Rhodnius hemocytes is very efficient in both controls and cells treated with PAF and arachidonic acid. Phagocytosis of yeast particles is significantly blocked when the specific phopholipase A(2) inhibitor, dexamethasone, is applied on the hemocytes. By contrast, dexamethasone-pretreated hemocyte monolayers exhibit a drastic increase in the quantity of yeast cell-hemocyte internalization when the cells are treated by arachidonic acid. In addition, phagocytosis presents significant reduction in hemocyte monolayers treated with a specific PAF receptor antagonist, WEB 2086. Nevertheless, inhibition of phagocytosis with WEB 2086 is counteracted by the treatment of the hemocyte monolayers with PAF. In conclusion, phagocytosis of yeast cells by hemocytes is related to the activation of PAF receptors and eicosanoid pathways in the bloodsucking bug, R. prolixus.  相似文献   

9.
In this study, we investigated the effect of the entomopathogenic fungus Nomuraea rileyi on Helicoverpa armigera cellular immune responses. Nomuraea rileyi infection had no effect on total hemocyte count (THC), but impaired hemocyte‐mediated phagocytosis, nodulation, and encapsulation responses. Nomuraea rileyi infection led to a significant reduction in hemocyte spreading. An in vitro assay revealed that plasma from N. rileyi infected H. armigera larvae suppressed the spreading ability of hemocytes from naïve larvae. We infer that N. rileyi suppresses the cellular immune response of its host, possibly by secreting exogenous, cytotoxic compounds into the host's hemolymph.  相似文献   

10.
Humoral and cellular mechanisms of defense have been described for cephalopods, a relatively advanced group of mollusks. Typical of other mollusks, cephalopod agglutinins are the most documented component of humoral immunity. Lectins, which have agglutinating properties, have been described and characterized from octopuses. Agglutinins from cephalopod hemolymph have also been shown to agglutinate a variety of vertebrate red blood cells, as well as potential bacterial pathogens. Hemocytes are the primary component of cellular immunity. Although the hemocyte role in phagocytosis has been extensively studied in other mollusks, the mechanisms of phagocytosis have not been described extensively for cephalopods. Cephalopod hemocytes have phagocytic capabilities and may function in encapsulation and neutralization of foreign substances; however, the effects of environmental factors and the full extent of phagocytic capabilities of cephalopod hemocytes have not been reported. Hemocytes from cephalopods have a role in wound healing and inflammation which have been reported in detail by several investigators.  相似文献   

11.
Summary An ultrastructual study of hemocytes from 9 different insect orders has led to the identification of 8 cell types: (1) Plasmatocytes, whose cytoplasm is filled with small dense lysosomes and large heterogeneous structures, are phagocytic cells. (2) Granulocytes, filled with uniformly electron dense granules, are involved in capsule formation. (3) Coagulocytes, which contain granules and structured globules and which possess a well developed RER, are involved in phagocytosis. (4) Spherule cells are filled with large spherical inclusions. (5) Oenocytoids are large cells with few cytoplasmic organelles. These 5 hemocyte types represent the majority of insect blood cells. (6) Prohemocytes, blastic cells which are one of the stem cells of hemocytes, are very few in number in each species investigated. (7) Thrombocytoids and (8) Prodocytes are restricted to a small number of insect species.The ultrastructural characteristics of these hemocyte types are discussed.  相似文献   

12.
We have investigated the phagocytic activity and the production of reactive oxygen species (ROS) by hemocytes from the cattle tick Boophilus microplus. Two main types of hemocytes were detected in tick hemolymph: plasmatocytes and granulocytes. The plasmocytes were the most abundant cells, being responsible for the in vivo phagocytosis of yeast. ROS production was evaluated by luminol-amplified luminescence and phenol red oxidation. The luminescence increased when hemocytes were incubated with bacteria, zymosan, or phorbol 12-miristate 13-acetate (PMA). The luminescence was inhibited by superoxide dismutase and catalase, which are antioxidant enzymes that remove superoxide and hydrogen peroxide, respectively. The phenol red oxidation assay also showed an increase in the level of hydrogen peroxide produced by hemocytes stimulated with bacteria and PMA. Taken all together, our data indicate that tick hemocytes are able to produce ROS during the phagocytic process similarly to vertebrate phagocytes.  相似文献   

13.
It has been proposed that protein tyrosine phosphorylation plays important roles in signal transduction in mammalian T- and B-cells and monocytes. During our investigations on the ascidian host defense system, we have shown that the monoclonal antibody A74 strongly inhibits both phagocytosis of sheep red blood cells (SRBCs) by hemocytes and hemocyte aggregation, and that the A74 antigen protein has two immunoreceptor tyrosine-based activation motifs and several other motifs that are thought to function in signal transduction in mammals. In this study, we found that the A74 antibody strongly inhibited phagocytosis by ascidian hemocytes of yeast cells, as strongly as that of SRBCs, but not that of latex beads. We also found that herbimycin A and an erbstatin analog, tyrosine kinase inhibitors, and wortmannin, a specific inhibitor for phosphatidylinositol 3-kinase (PI3-kinase), inhibited the phagocytosis of yeast cells. We investigated which hemocyte proteins were specifically tyrosine-phosphorylated during phagocytosis by ascidian hemocytes and found that a protein with a molecular mass of 100 kDa was specifically tyrosine-phosphorylated upon phagocytosis; its tyrosine phosphorylation was inhibited by the A74 antibody. These results strongly suggest that both tyrosine kinase and PI3-kinase play important roles in phagocytosis by ascidian hemocytes.  相似文献   

14.
Hemocytes are circulating blood cells that play a crucial function in amphipods and other crustacean immune systems. The hemocytes of the marine tropical amphipod Parhyale hawaiensis have been used for the evaluation of DNA damage and micronuclei, but they have not been characterized in the scientific literature. The aim of this study was to describe the hemolymph cells of P. hawaiensis and study their phagocytotic activity. Basic dyes were used to differentiate the cell types and the presence of lipids. The total hemocyte counts (THCs) and the proportion and sizes of the hemocyte types were determined. Hemolymph was exposed to Escherichia coli for verification of the presence of phagocytosis. Three cell types, all containing lipids, were identified in P. hawaiensis: granulocytes (oval shape, 13.4 × 7.6 μm), semi-granulocytes (oval shape, 14.1 × 7.2 μm), and hyalinocytes (round shape, 9.6 × 7.2 μm). Those three cell types were found in different percentages in males (64.8%, 31.1%, and 4.2%) and females (70.1%, 28.2%, and 1.7%). THCs for males were 9007 ± 3800 cells per individual and 4695 ± 1892 cells per individual for females. The cells of E. coli were phagocytized by the hemocytes. Our findings increased the knowledge of hemocytes in P. hawaiensis and is a step forward in using hemocyte-based immune responses as an endpoint in ecotoxicology.  相似文献   

15.
Phagocytosis of pathogens by hemocytes is a rapid-acting immune response and represents a primary means of limiting microbial infection in some species of arthropods. To survey the relative capacity of hemocyte phagocytosis as a function of the arthropod immune response, we examined the extent of phagocytosis among a wide taxonomic range of arthropod species including a decapod crustacean (Litopenaeus vannamei), three ixodid tick species (Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis), a mosquito species (Aedes aegypti), and a larval moth (Manduca sexta). Injected fluorescent beads were used as a model to elicit phagocytosis and were measured by flow cytometry, a technique provided in detail that may be adapted for use with any species of arthropod. The data indicated that smaller arthropods generally had a higher proportion of phagocytic cells than larger arthropods.  相似文献   

16.
Mosquitoes have an efficient defense system against infection. The cellular immune defense mechanism initiated by the mosquito Culex quinquefasciatus infected with the fungus Candida albicans was investigated in this study. Differences in the hemocyte counts in hemolymph perfused from uninoculated, saline-inoculated, and C. albicans-infected mosquitoes were compared using a light microscope. Phagocytosis was also investigated using electron microscopy. Four types of hemocytes were identified in control mosquitoes: prohemocytes (9.8%), plasmatocytes (38.8%), granular cells (44.2%), and oenocytoids (7.3%). Between 3 and 18 h postinoculation the total hemocyte count was significantly higher in infected, compared to uninfected, mosquitoes. Differential hemocyte counts from infected mosquitoes at 3, 6, and 18 h after inoculation showed that the relative proportion of plasmatocytes (48.6, 50.7, 45%) was higher and, concomitantly, the proportion of granular cells was lower (38, 36.8, 35%, respectively). Yeast cells were phagocytosed and limited growth was observed within the plasmatocytes. Melanized nodules were found attached to different insect tissues at 24 to 72 h following infection. These results suggest that phagocytosis, followed by nodule formation, was capable of clearing the hemolymph of yeast cells.  相似文献   

17.
The in vitro phagocytosis-promoting properties of hemolymph from the freshwater clam, Corbicula fluminea, are described. Hemocytes were capable of phagocytosing aldehyde-fixed erythrocytes (RBCs) of seven vertebrate species with equal facility, but only in the presence of homologous clam plasma. The plasma factors mediating erythrophagocytosis were heat sensitive. Pretreatment (opsonizing) of target RBCs with plasma also resulted in enhancement of hemocyte particle uptake in the absence of plasma. Opsonin-dependent phagocytosis required the presence of divalent cations, especially calcium, although not in free ionic form. Evidence suggests that the plasma opsonin may normally exist as a divalent cation-macromolecular complex since opsonizing activity was retained after dialysis against Tris-buffered saline (TBS), but was lost following TBS/EDTA or TBS/EGTA dialysis. We also have identified an opsonin-independent phagocytosis mechanism in which Corbicula hemocytes are able to ingest nonopsonized RBCs in the absence of homologous plasma. Extracellular calcium or magnesium in the incubation medium is needed for particle uptake, although the direct binding of free ions to the target RBC surface does not appear to be mediating enhanced phagocytosis. From the present data, it is concluded that hemocyte recognition of aldehyde-fixed RBCs can be accomplished by either of two mechanisms: (1) by the coating of cells with plasma factors capable of triggering the phagocytic process (opsonization) or (2) by a plasma opsonin-independent mechanism in which extracellular divalent cations (e.g., Ca2+ or Mg2+) in the incubation buffer stimulate uptake of nonopsonized RBCs. The factors regulating in vitro erythrophagocytosis by clam hemocytes are considered to be analogous to those involved in nonimmune opsonin-dependent and -independent phagocytosis in mammalian macrophages.  相似文献   

18.
The in vivo development of the entomogenous hyphomycetePaecilomyces farinosus inSpodoptera exigua (beet armyworm) larvae was examined using light and electron microscopic techniques. Blastospores injected into larval hemocoels (500 blastospores/larva) were immediately ingested by phagocytic hemocytes, and no fungal cells were detected in the hemolymph until 36 h post-injection. As indicated by immunocytochemical methods, the in vivo-produced blastosopres, in contrast to in vitro blastospores, lacked a galacto-mannan surface layer required for opsonization by aS. exigua humoral lectin. Therefore, these in vivo cells were not recognized by phagocytic granulocytes and were freely-circulating in the hemolymph. Hyphae differentiating from the blastospores were recognized by the hemocytes and induced formation of multicellular hemocytic nodules. By 72 h post-injection, mycelia were observed emerging from the nodules and by 96 h, larvae had become mummified due to extensive proliferation of the fungus throughout host tissues. Neither phagocytosis of the initially injected in vitro-produced blastospores nor nodule formation around hyphal cells later in the infection process was effective in stopping fungal growth. The in vivo development ofP. farinosus was similar to that of another hyphomycete,Beauveria bassiana except that in the latter case, extensive nodule formation was inhibited by the production of fungal metabolites.  相似文献   

19.
Hemocytes represent one of the most important defense mechanisms against foreign material in Mollusca. The morphology, hematological parameters and behaviour of hemolymph cells were studied in the southern quahogMercenaria campechiensis, the eastern oysterCrassostrea virginica, and the blood arkAnadara ovalis challenged with the bacteriaVibrio vulnificus andV. anguillarum. Two general classes of hemocytes (granular and agranular) exist inC. virginica andM. campechiensis. In contrast,A. ovalis possesses 3 general classes (granular, agranular and erythrocytes). Three types of granules were identified by light microscopy. When hemolymph cells were studied by transmission electron microscopy, the cytoplasm of hemolymph cells was noted to contain many organelles, including electron dense granules. Both agranular and granular hemolymph cells were capable of colchicine-sensitive pseudopodial movement and spreading. The results indicate that marine bivalves possess hemolymph blood cells which may play a role in the internal defense paralleling mammalian phagocytes. The morphology of these cells, as determined by light, scanning and transmission electron microscopy, showed some similarity to mammalian-mononuclear phagocytes. The sub-cellular events of molluscan hemocyte phagocytosis ofV. vulnificus andV. anguillarum were studied by both scanning and transmission electron microscopy. The role of these cells and the factors which govern their behavior are of economic and public health importance.  相似文献   

20.
The present study focuses on the ability of Pterostichus melas italicus Dejean to mount cellular and humoral immune responses against invading pathogens. Ultrastructural analyses revealed the presence of five morphologically distinct types of hemocytes: prohemocytes, plasmatocytes, granulocytes, oenocytoids and macrophage-like cells. Differential hemocyte counts showed that plasmatocytes and granulocytes were the most abundant circulating cell types and plasmatocytes exhibited phagocytic activity following the latex bead immune challenge. Macrophage-like cells were recruited after the immune challenge to remove exhausted phagocytizing cells, apoptotic cells and melanotic capsules formed to immobilize the latex beads. Total hemocyte counts showed a significant reduction of hemocytes after latex bead treatment. Phenoloxidase (PO) assays revealed an increase of total PO in hemolymph after immune system activation with lipopolysaccharide (LPS). Moreover, the LPS-stimulated hemocytes showed increased protein expression of inducible nitric oxide synthase, indicating that the cytotoxic action of nitric oxide was engaged in this antimicrobial collaborative response. These results provide a knowledge base for further studies on the sensitivity of the P. melas italicus immune system to the environmental perturbation in order to evaluate the effect of chemicals on non-target species in agroecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号