首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Antimicrobial peptides are promising alternative to traditional antibiotics and antitumor drugs for the battle against new antibiotic resistant bacteria strains and cancer maladies. The study of their structural and dynamics properties at physiological conditions can help to understand their stability, delivery mechanisms, and activity in the human body. In this article, we have used molecular dynamics simulations to study the effects of solvent environment, temperature, ions concentration, and peptide concentration on the structural properties of the antimicrobial hybrid peptide Cecropin A–Magainin 2. In TFE/water mixtures, the structure of the peptide retained α‐helix contents and an average hinge angle in close agreement with the experimental NMR and CD measurements reported in literature. Compared to the TFE/water mixture, the peptide simulated at the same ionic concentration lost most of its α‐helix structure. The increase of peptide concentration at both 300 and 310 K resulted in the peptide aggregation. The peptides in the complex retained the initial N‐ter α‐helix segment during all the simulation. The α‐helix stabilization is further enhanced in the high salt concentration simulations. The peptide aggregation was not observed in TFE/water mixture simulations and, the peptide aggregate, obtained from the water simulation, simulated in the same conditions did dissolve within few tens of nanoseconds. The results of this study provide insights at molecular level on the structural and dynamics properties of the CA‐MA peptide at physiological and membrane mimic conditions that can help to better understand its delivery and interaction with biological interfaces. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 1–14, 2015.  相似文献   

2.
The structural stability and preference of a protein are highly sensitive to the environment accommodating it. In this work, the solvation effect on the structure and folding dynamics of a small peptide, NS4B H2, was studied by computer simulation. The native structure of NS4B H2 was solved previously in 50 % v/v water/2,2,2-trifluoroethanol (TFE) mixed solvent. In this work, both pure water and water/TFE cosolvent were utilized. The force field parameters for water were taken from the TIP3P water model, and those for TFE were generated following the routine of the general AMBER force field (GAFF). The simulated structure of NS4B H2 in the mixed solvent is quite in line with experimental data, while in pure water it undergoes a large structural deformation. The generalized Born (GB) model was also investigated by tuning the dielectric constant to match experimental measurements. However, the results show that its performance was less satisfactory. Two independent direct folding simulations of NS4B H2 in explicit water/TFE cosolvent were carried out, both of which resulted in successful folding. Investigation of the distribution of solvent molecules around the peptide indicates that folding is triggered by the aggregation of TFE on the peptide surface.  相似文献   

3.
4.
5.
Various experimental studies of hen egg white lysozyme (HEWL) in water and TFE/water clearly indicate structural differences between the native state and TFE state of HEWL, e.g. the helical content of the protein in the TFE state is much higher than in the native state. However, the available detailed NMR studies were not sufficient to determine fully a structure of HEWL in the TFE state. Different molecular dynamics (MD) simulations, i.e. at room temperature, at increased temperature and using proton–proton distance restraints derived from NMR NOE data, have been used to generate configurational ensembles corresponding to the TFE state of HEWL. The configurational ensemble obtained at room temperature using atom-atom distance restraints measured for HEWL in TFE/water solution satisfies the experimental data and has the lowest protein energy. In this ensemble residues 50–58, which are part of the β-sheet in native HEWL, adopt fluctuating α-helical secondary structure.  相似文献   

6.
Here, the MD simulations and comparative structural analysis of Magainin in water, TFE/water, and 2M, 4M, and BM urea solutions is reported. For MAG-TFE/water and MAG-2M urea the largely alpha helical conformation of the peptide is maintained throughout the 9-ns simulation. While in water, 4M urea, and 8M urea, the helix length decreases and at the same time helix radius increases. This suggests a more destabilized magainin secondary structure. Our simulation data reveals that the stabilizing effect of TFE is induced by preferential accumulation of TFE molecules around the alpha helical peptide. These results indicate that an aqueous urea solution solvates the surface of polypeptide chain more favorably than pure water. Urea molecules interact more favorably with nonpolar groups of the peptide in comparison with water, and the presence of urea improves the interactions of water molecules with the hydrophilic groups of the peptide. At 8M urea, there are more direct interactions between the urea and solute, and the helix is destabilized. At 2M urea, the interaction of urea molecules and nonpolar residues are weak, therefore, the presence of urea molecules decreases the interactions of water molecules with hydrophilic groups. Urea could not deteriorate the peptide secondary structure with time from an initial helix structure.  相似文献   

7.
Humanin is a newly identified 24-residue peptide that suppresses neuronal cell death caused by a wide spectrum of familial Alzheimer's disease genes and the beta-amyloid peptide. In this study, NMR and circular dichroism studies of synthetic humanin in aqueous and 30% 2,2,2-trifluoroethanol (TFE) solutions are reported. In aqueous solution, humanin exists predominantly in an unstructured conformation in equilibrium with turn-like structures involving residues Gly5 to Leu10 and Glu15 to Leu18, providing indication of nascent helix. In the less polar environment of 30% TFE, humanin readily adopts helical structure with long-range order spanning residues Gly5 to Leu18. Comparative 3D modeling studies and topology predictions are in qualitative agreement with the experimental findings in both environments. Our studies reveal a flexible peptide in aqueous environment, which is free to interact with possible receptors that mediate its action, but may also acquire a helical conformation necessary for specific interactions and/or passage through membranes.  相似文献   

8.
The structural properties of melittin, a small amphipathic peptide found in the bee venom, are investigated in three different environments by molecular dynamics simulation. Long simulations have been performed for monomeric melittin solvated in water, in methanol, and shorter ones for melittin inserted in a dimyristoylphosphatidylcholine bilayer. The resulting trajectories were analysed in terms of structural properties of the peptide and compared to the available NMR data. While in water and methanol solution melittin is observed to partly unfold, the peptide retains its structure when embedded in a lipid bilayer. The latter simulation shows good agreement with the experimentally derived 3J-coupling constants. Generally, it appears that higher the stability of the helical conformation of melittin, lower is the dielectric permittivity of the environment. In addition, peptide-lipid interactions were investigated showing that the C-terminus of the peptide provides an anchor to the lipid bilayer by forming hydrogen bonds with the lipid head groups.  相似文献   

9.
Solvent molecules play an important role for the structural and dynamical properties of proteins. A major focus of current protein engineering is the development of enzymes that are catalytically active in the presence of organic solvents. The monooxygenase P450 BM-3 is one of the best-studied enzymes and promising for industrial applications but with limited activity in the presence of organic solvents or cosolvents. To gain insights into the structural and dynamical properties of the heme domain of this enzyme in solution, molecular dynamics simulations in pure water and in a 14% DMSO/water mixture were performed. The results of the simulations show overall similar structural fluctuations in both solvent systems, with no indication of partial or global unfolding. In 14% DMSO, the regions comprising the helices E, F, and the EF loop (implicated in controlling the entry to the active site channel) undergo a large shift. Significant changes were also observed near the active site access channel at the residue R47. During the simulation, no DMSO molecule penetrated the active site. However, a significant accumulation of DMSO molecules close to the substrate-binding site and to the Flavin Mononucleotide (FMN) reductase domain interface was observed.  相似文献   

10.
A 24-amino acid long peptide, Humanin, protects neurons from Alzheimer's disease (AD)-related cell toxicities at sub-nM-uM concentrations. Activity-dependent neurotrophic factor (ADNF) is a glia-derived neurotrophic peptide, which protects neurons from tetrodoxin treatment and AD-related and amyotrophic lateral sclerosis-related insults at fM concentrations. An attempt was made to further improve the activity of Humanin by fusing this peptide to ADNF9, a 9-amino acid long core peptide of the ADNF. This fusion resulted in a novel molecule, termed Colivelin, with the neuroprotective activity at fM range, which is approximately 10(3)-10(7) fold higher than the activity of Humanin and Humanin analogs and follows the activity profile of fM-active ADNF9. We have characterized the structural properties of Colivelin and compared with those of ADNF9 and Humanin in water and phosphate-buffered saline (PBS). The secondary structure of Colivelin was similar to that of ADNF9, but not that of Humanin, and hence was not the average of the contributions of the two peptides fused. Colivelin was stable and monomeric in PBS, consistent with the monomeric property of ADNF9, while Humanin showed strong tendency to self-associate. Thus, it is evident that the structural properties of Colivelin resemble those of ADNF9, rather than those of Humanin.  相似文献   

11.
Calorimetric studies were performed on exon 6 in powdered form and in solution [water and 2,2,2‐trifluoroethanol (TFE), a structure‐inducing solvent or cosolvent]. Dynamic dielectric spectroscopy (DDS) analyses were realized in water and 20% TFE. The major role of solvent–peptide organization is evidenced with these techniques. Calorimetric measurements reveal the structural water organization around the polypeptide as well as the presence of hydrophobic interactions in TFE solution. Dielectric measurements showed for exon 6/water a decrease of relaxations times of bulk solvent implying a faster dynamics with a slight increase of the activation entropy, suggesting that exon 6 probably creates disorder within the solvent. For TFE/water mixtures, an influence of exon 6 on its environment was seen with a relaxation associated with the exon 6/solvent interactions reinforced by storage of 72 h. Finally, exon 6/solvent interactions were clearly observed with additionof TFE. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 943–952, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

12.
T-cell adhesion is mediated by an ICAM-1/LFA-1 interaction; this interaction plays a crucial role in T-cell activation during immune response. LBE peptide, which is derived from the beta-subunit of LFA-1, has been shown to inhibit ICAM-1/LFA-1-mediated T-cell adhesion. In this work, we studied the solution conformations of LBE peptide and its reverse sequence (EBL) by NMR, CD and molecular dynamics simulations. Reverse peptides have been used as controls in biological studies. The effect of reversing the sequence of LBE to EBL peptides on their respective conformations is important in understanding their biological properties in vitro or in vivo. The NMR studies for these peptides were carried out in water and in TFE/water solvent systems. In 40% TFE/water, both peptides exhibited helical conformation. CD studies suggested that the LBE exhibits 30% helical conformation, while the EBL exhibits 20% helical conformation. From the NMR and MD simulation studies, it was evident that the peptides exhibited a stable helical conformation; a stable helical structure was found at Leu6 to Leu15 for LBE and at Gly9 to Leu17 for EBL. The helical conformations of LBE and EBL may be in equilibrium with other possible conformers; the other conformers contain loop and turn structures. Both peptides bind to divalent cations because the LBE is derived from the cation-binding region of the LFA-1. This study shows that reversing the peptide sequence did not alter the secondary structure of the corresponding sequence. Hence, caution must be exercised when using reverse peptides as controls in biological studies. This report will improve our ability to design a better inhibitor of ICAM-1/LFA-1 interaction.  相似文献   

13.
800 MHz NMR structure of the 28-residue peptide thymosin alpha-1 in 40% TFE/60% water (v/v) has been determined. Restrained molecular dynamic simulations with an explicit solvent box containing 40% TFE/60% TIP3P water (v/v) were used, in order to get the 3D model of the NMR structure. We found that the peptide adopts a structured conformation having two stable regions: an alpha-helix region from residues 14 to 26 and two double β-turns in the N-terminal twelve residues which form a distorted helical structure.  相似文献   

14.
Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carboxylated forms of the peptide. The deamidation of the C-terminus introduced a negative charge at an all-positive charged peptide, causing a loss of amphipathicity, as indicated by molecular dynamics simulations in TFE/water mixtures and this subtle modification in a peptide's primary structure disturbed the interaction with bilayers and biological membranes. Although being poorly lytic, the amidated form, but not the carboxylated, presented ion channel-like activity on anionic bilayers with a well-defined conductance step; at approximately the same concentration it showed antimicrobial activity. The pores remain open at trans-negative potentials, preferentially conducting cations, and this situation is equivalent to the interaction of the peptide with bacterial membranes that also maintain a high negative potential inside.  相似文献   

15.
Goetz M  Carlotti C  Bontems F  Dufourc EJ 《Biochemistry》2001,40(21):6534-6540
The 35-residue peptide corresponding to the very hydrophobic transmembrane region of the tyrosine kinase receptor neu, Neu(TM35), has been synthesized. The peptide can be solubilized in millimolar concentrations in TFE or incorporated into an SDS-water micellar solution or into well-hydrated DMPC/DCPC bicelles. In all these media, circular dichroism demonstrated that the peptide adopts a helical structure for about 80% of its amino acids. The peptide is monomeric below 2 mM in TFE, as also determined by variable concentration experiments. The three-dimensional solution structure in TFE has been obtained by homonuclear proton NMR and shows a well-defined alpha-helix from residues 4 to 21, then a pi-bulge from Ile(22) to Gly(28), and a final short alpha-helix from positions 29 to 32. This experimental finding is in agreement with structures predicted recently by molecular dynamics calculations in a vacuum [Sajot, N., and Genest, M. (2000) Eur. Biophys. J. 28, 648-662]. The biological implications of a possible retention of this structure in a membrane environment are finally discussed.  相似文献   

16.
A three-dimensional structure of a model decapeptide is obtained by performing molecular dynamics simulations of the peptide in explicit water. Interactions between an N-myristoylated form of the folded peptide anchored to dipalmitoylphosphatidylcholine fluid phase lipid membranes are studied at different applied surface tensions by molecular dynamics simulations. The lipid membrane environment influences the conformational space explored by the peptide. The overall secondary structure of the anchored peptide is found to deviate at times from its structure in aqueous solution through reversible conformational transitions. The peptide is, despite the anchor, highly mobile at the membrane surface with the peptide motion along the bilayer normal being integrated into the collective modes of the membrane. Peptide anchoring moderately alters the lateral compressibility of the bilayer by changing the equilibrium area of the membrane. Although membrane anchoring moderately affects the elastic properties of the bilayer, the model peptide studied here exhibits conformational flexibility and our results therefore suggest that peptide acylation is a feasible way to reinforce peptide-membrane interactions whereby, e.g., the lifetime of receptor-ligand interactions can be prolonged.  相似文献   

17.
Misfolding and aggregation of Cu, Zn Superoxide Dismutase (SOD1) is often found in amyotrophic lateral sclerosis (ALS) patients. The central apo SOD1 barrel was involved in protein maturation and pathological aggregation in ALS. In this work, we employed atomistic molecular dynamics (MD) simulations to study the conformational dynamics of SOD1barrel monomer in different concentrations of trifluoroethanol (TFE). We find concentration dependence unusual structural and dynamical features, characterized by the local unfolding of SOD1barrel. This partially unfolded structure is characterized by the exposure of hydrophobic core, is highly dynamic in nature, and is the precursor of aggregation seen in SOD1barrel. Our computational studies supports the hypothesis of the formation of aggregation ‘building blocks’ by means of local unfolding of apo monomer as the mechanism of SOD1 fibrillar aggregation. The non-monotonic TFE concentration dependence of protein conformational changes was explored through simulation studies. Our results suggest that altered protein conformation and dynamics within its structure may underlie the aggregation of SOD1 in ALS.  相似文献   

18.
Apolipophorin-III (apoLp-III) from the insect, Manduca sexta, is a 166-residue exchangeable apolipoprotein that plays a critical role in the dynamics of plasma lipoprotein interconversions. Our previous work indicated that a 36-residue C-terminal peptide fragment, generated by cyanogen bromide digestion of apoLp-III, was unable to bind to lipid surfaces (Narayanaswami V, Kay CM, Oikawa K, Ryan RO, 1994, Biochemistry 33:13312-13320), and showed no secondary structure in aqueous solution. In this paper, we have performed structural studies of this peptide (E131-Q166) complexed with SDS detergent micelles, or in the presence of the helix-inducing solvent trifluoroethanol (TFE), by two-dimensional 1H NMR spectroscopy. The peptide adopts an alpha-helical structure in the presence of both SDS and 50% TFE. The lipid-bound structure of the peptide, generated from the NMR NOE data, showed an elongated, slightly curved alpha-helix. Despite its high alpha-helix forming propensity, the peptide requires alpha helix-promoting environment to adopt an alpha-helical structure. This indicates the importance of the surrounding chemical environment and implies that, in the absence of lipid, tertiary contacts in the folded protein play a role in maintaining its structural integrity. Furthermore, the data suggest that the amphipathic helix bundle organization serves as a prerequisite structural motif for the reversible lipoprotein-binding activity of M. sexta apoLp-III.  相似文献   

19.
In this work, we present a structural characterization of the putative fusion peptide E2(279-298) corresponding to the E2 envelope protein of the HGV/GBV-C virus by (1)H NMR, CD and MD studies performed in H(2)O/TFE and in lipid model membranes. The peptide is largely unstructured in water, whereas in H(2)O/TFE and in model membranes it adopts an helical structure (approximately 65-70%). The partitioning free energy DeltaG ranges from -6 to -7.5 kcal mol(-1). OCD measurements on peptide-containing hydrated and oriented lipid multilayers showed that the peptide adopts a predominantly surface orientation. The (1)H NMR data (observed NOEs, deuterium exchange rates, Halpha chemical shift index and vicinal coupling constants) and the molecular dynamics calculations support the conclusions that the peptide adopts a stable helix in the C-terminal 9-18 residues slightly inserted into the lipid bilayer and a major mobility in the amino terminus of the sequence (1-8 residues).  相似文献   

20.
Understanding the binding and insertion of peptides in lipid bilayers is a prerequisite for understanding phenomena such as antimicrobial activity and membrane-protein folding. We describe molecular dynamics simulations of the antimicrobial peptide alamethicin in lipid/water and octane/water environments, taking into account an external electric field to mimic the membrane potential. At cis-positive potentials, alamethicin does not insert into a phospholipid bilayer in 10 ns of simulation, due to the slow dynamics of the peptide and lipids. However, in octane N-terminal insertion occurs at field strengths from 0.33 V/nm and higher, in simulations of up to 100 ns duration. Insertion of alamethicin occurs in two steps, corresponding to desolvation of the Gln7 side chain, and the backbone of Aib10 and Gly11. The proline induced helix kink angle does not change significantly during insertion. Polyalanine and alamethicin form stable helices both when inserted in octane and at the water/octane interface, where they partition in the same location. In water, both polyalanine and alamethicin partially unfold in multiple simulations. We present a detailed analysis of the insertion of alamethicin into the octane slab and the influence of the external field on the peptide structure. Our findings give new insight into the mechanism of channel formation by alamethicin and the structure and dynamics of membrane-associated helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号