首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
P L Moreau 《Biochimie》1985,67(3-4):353-356
The RecA protein of Escherichia coli plays a central role in DNA repair mechanisms. When it is incubated with single-stranded DNA and a nucleoside triphosphate, the purified RecA protein acts both by promoting cleavage of the LexA protein, the repressor of the SOS genes, and by catalyzing strand exchange between a variety of DNA molecules. A model for the regulation of the activity of the RecA protein in a cell exposed to a DNA damaging treatment is proposed.  相似文献   

2.
To verify the extent of contribution of spontaneous DNA lesions to spontaneous mutagenesis, we have developed a new genetic system to examine simultaneously both forward mutations and recombination events occurring within about 600 base pairs of a transgenic rpsL target sequence located on Escherichia coli chromosome. In a wild-type strain, the recombination events were occurring at a frequency comparable to that of point mutations within the rpsL sequence. When the cells were UV-irradiated, the recombination events were induced much more sharply than point mutations. In a recA null mutant, no recombination event was observed. These data suggest that the blockage of DNA replication, probably caused by spontaneous DNA lesions, occurs often in normally growing E. coli cells and is mainly processed by cellular functions requiring the RecA protein. However, the recA mutant strain showed elevated frequencies of single-base frameshifts and large deletions, implying a novel mutator action of this strain. A similar mutator action of the recA mutant was also observed with a plasmid-based rpsL mutation assay. Therefore, if the recombinogenic problems in DNA replication are not properly processed by the RecA function, these would be a potential source for mutagenesis leading to single-base frameshift and large deletion in E. coli. Furthermore, the single-base frameshifts induced in the recA-deficient cells appeared to be efficiently suppressed by the mutS-dependent mismatch repair system. Thus, it seems likely that the single-base frameshifts are derived from slippage errors that are not directly caused by DNA lesions but made indirectly during some kind of error-prone DNA synthesis in the recA mutant cells.  相似文献   

3.
RecA plays a key role in homologous recombination, the induction of the DNA damage response through LexA cleavage and the activity of error-prone polymerase in Escherichia coli. RecA interacts with multiple partners to achieve this pleiotropic role, but the structural location and sequence determinants involved in these multiple interactions remain mostly unknown. Here, in a first application to prokaryotes, Evolutionary Trace (ET) analysis identifies clusters of evolutionarily important surface amino acids involved in RecA functions. Some of these clusters match the known ATP binding, DNA binding, and RecA-RecA homo-dimerization sites, but others are novel. Mutation analysis at these sites disrupted either recombination or LexA cleavage. This highlights distinct functional sites specific for recombination and DNA damage response induction. Finally, our analysis reveals a composite site for LexA binding and cleavage, which is formed only on the active RecA filament. These new sites can provide new drug targets to modulate one or more RecA functions, with the potential to address the problem of evolution of antibiotic resistance at its root.  相似文献   

4.
Constitutive expression of the SOS regulon in Escherichia coli recA730 strains leads to a mutator phenotype (SOS mutator) that is dependent on DNA polymerase V (umuDC gene product). Here we show that a significant fraction of this effect also requires DNA polymerase IV (dinB gene product).  相似文献   

5.
Many of the proteins that operate at the replication fork in Escherichia coli have been defined genetically. These include some of the subunits of the DNA polymerase III holoenzyme, the DnaB replication fork helicase, and the DnaG primase. The multiprotein primosome (which includes the DnaB and DnaG proteins), defined biochemically on the basis of its requirement during bacteriophage phi X174 complementary-strand synthesis, could serve as the helicase-primase replication machine on the lagging-strand template. In order to determine if this is the case, we have begun an investigation of the phenotypes of mutants with mutations priA, priB, and priC, which encode the primosomal proteins factor Y (protein n'), n, and n", respectively. Inactivation of priA by insertional mutagenesis resulted in the induction of the SOS response, as evinced by induction of a resident lambda prophage, extreme filamentation, and derepression of an indicator operon in which beta-galactosidase production was controlled by the dinD1 promoter. In addition, the copy numbers of resident pBR322 plasmids were reduced four- to fivefold in these strains, and production of phi X174 phage was delayed considerably. These results are discussed in the context of existing models for SOS induction and possible roles for the PriA protein at the replication fork in vivo.  相似文献   

6.
RecA protein in the SOS response: milestones and mysteries   总被引:8,自引:0,他引:8  
E M Witkin 《Biochimie》1991,73(2-3):133-141
The role of RecA protein in the SOS response of Escherichia coli is traced from the isolation of the first recA mutant to our current understanding of the scope and regulation of this DNA damage-inducible system. In addition, possible RecA protein activities that may be essential in the expression of several SOS phenotypes (stable DNA replication, DNA replication recovery, SOS mutagenesis and RecA association with the cell membrane) are discussed.  相似文献   

7.
In recA718 lexA+ strains of Escherichia coli, induction of the SOS response requires DNA damage. This implies that RecA718 protein, like RecA+ protein, must be converted, by a process initiated by the damage, to an activated form (RecA) to promote cleavage of LexA, the cellular repressor of SOS genes. However, when LexA repressor activity was abolished by a lexA-defective mutation [lexA(Def)], strains carrying the recA718 gene (but not recA+) showed strong SOS mutator activity and were able to undergo stable DNA replication in the absence of DNA damage (two SOS functions known to require RecA activity even when cleavage of LexA is not necessary). lambda lysogens of recA718 lexA(Def) strains exhibited mass induction of prophage, indicative of constitutive ability to cleave lambda repressor. When the cloned recA718 allele was present in a lexA+ strain on a plasmid, SOS mutator activity and beta-galactosidase synthesis under LexA control were expressed in proportion to the plasmid copy number. We conclude that RecA718 is capable of becoming activated without DNA damage for cleavage of LexA and lambda repressor, but only if it is amplified above its base-line level in lexA+ strains. At amplified levels, RecA718 was also constitutively activated for its roles in SOS mutagenesis and stable DNA replication. The nucleotide sequence of recA718 reveals two base substitutions relative to the recA+ sequence. We propose that the first allows the protein to become activated constitutively, whereas the second partially suppresses this capability.  相似文献   

8.
Quinolone antibacterial drugs such as nalidixic acid target DNA gyrase in Escherichia coli. These inhibitors bind to and stabilize a normally transient covalent protein-DNA intermediate in the gyrase reaction cycle, referred to as the cleavage complex. Stabilization of the cleavage complex is necessary but not sufficient for cell killing--cytotoxicity apparently results from the conversion of cleavage complexes into overt DNA breaks by an as-yet-unknown mechanism(s). Quinolone treatment induces the bacterial SOS response in a RecBC-dependent manner, arguing that cleavage complexes are somehow converted into double-stranded breaks. However, the only proteins known to be required for SOS induction by nalidixic acid are RecA and RecBC. In hopes of identifying additional proteins involved in the cytotoxic response to nalidixic acid, we screened for E. coli mutants specifically deficient in SOS induction upon nalidixic acid treatment by using a dinD::lacZ reporter construct. From a collection of SOS partially constitutive mutants with disruptions of 47 different genes, we found that dnaQ insertion mutants are specifically deficient in the SOS response to nalidixic acid. dnaQ encodes DNA polymerase III epsilon subunit, the proofreading subunit of the replicative polymerase. The deficient response to nalidixic acid was rescued by the presence of the wild-type dnaQ gene, confirming involvement of the epsilon subunit. To further characterize the SOS deficiency of dnaQ mutants, we analyzed the expression of several additional SOS genes in response to nalidixic acid using real-time PCR. A subset of SOS genes lost their response to nalidixic acid in the dnaQ mutant strain, while two tested SOS genes (recA and recN) continued to exhibit induction. These results argue that the replication complex plays a role in modulating the SOS response to nalidixic acid and that the response is more complex than a simple on/off switch.  相似文献   

9.
The DNA damage-inducible SOS response of Escherichia coli includes an error-prone translesion DNA replication activity responsible for SOS mutagenesis. In certain recA mutant strains, in which the SOS response is expressed constitutively, SOS mutagenesis is manifested as a mutator activity. Like UV mutagenesis, SOS mutator activity requires the products of the umuDC operon and depends on RecA protein for at least two essential activities: facilitating cleavage of LexA repressor to derepress SOS genes and processing UmuD protein to produce a fragment (UmuD') that is active in mutagenesis. To determine whether RecA has an additional role in SOS mutator activity, spontaneous mutability (tryptophan dependence to independence) was measured in a family of nine lexA-defective strains, each having a different recA allele, transformed or not with a plasmid that overproduces either UmuD' alone or both UmuD' and UmuC. The magnitude of SOS mutator activity in these strains, which require neither of the two known roles of RecA protein, was strongly dependent on the particular recA allele that was present. We conclude that UmuD'C does not determine the mutation rate independently of RecA and that RecA has a third essential role in SOS mutator activity.  相似文献   

10.
Chromosomal DNA is exposed to continuous damage and repair. Cells contain a number of proteins and specific DNA repair systems that help maintain its correct structure. The SOS response was the first DNA repair system described in Escherichia coli induced upon treatment of bacteria with DNA damaging agents arrest DNA replication and cell division. Induction of the SOS response involves more than forty independent SOS genes, most of which encode proteins engaged in protection, repair, replication, mutagenesis and metabolism of DNA. Under normal growth conditions the SOS genes are expressed at a basal level, which increases distinctly upon induction of the SOS response. The SOS-response has been found in many bacterial species (e.g., Salmonella typhimurium, Caulobacter crescentus, Mycobacterium tuberculosis), but not in eukaryotic cells. However, species from all kingdoms contain some SOS-like proteins taking part in DNA repair that exhibit amino acid homology and enzymatic activities related to those found in E. coli. but are not organized in an SOS system. This paper presents a brief up-to-date review describing the discovery of the SOS system, the physiology of SOS induction, methods for its determination, and the role of some SOS-induced genes.  相似文献   

11.
Expression of the site-specific adenine methylase HhaII (GmeANTC, where me is methyl) or PstI (CTGCmeAG) induced the SOS DNA repair response in Escherichia coli. In contrast, expression of methylases indigenous to E. coli either did not induce SOS (EcoRI [GAmeATTC] or induced SOS to a lesser extent (dam [GmeATC]). Recognition of adenine-methylated DNA required the product of a previously undescribed gene, which we named mrr (methylated adenine recognition and restriction). We suggest that mrr encodes an endonuclease that cleaves DNA containing N6-methyladenine and that DNA double-strand breaks induce the SOS response. Cytosine methylases foreign to E. coli (MspI [meCCGG], HaeIII [GGmeCC], BamHI [GGATmeCC], HhaI [GmeCGC], BsuRI [GGmeCC], and M.Spr) also induced SOS, whereas one indigenous to E. coli (EcoRII [CmeCA/TGG]) did not. SOS induction by cytosine methylation required the rglB locus, which encodes an endonuclease that cleaves DNA containing 5-hydroxymethyl- or 5-methylcytosine (E. A. Raleigh and G. Wilson, Proc. Natl. Acad. Sci. USA 83:9070-9074, 1986).  相似文献   

12.
K McEntee 《Biochemistry》1985,24(16):4345-4351
The recA enzyme of Escherichia coli catalyzes renaturation of DNA coupled to hydrolysis of ATP. The rate of enzymatic renaturation is linearly dependent on recA protein concentration and shows saturation kinetics with respect to DNA concentration. The kinetic analysis of the reaction indicates that the Km for DNA is 65 microM while the kcat is approximately 48 pmol of duplex formed (pmol of recA)-1 (20 min)-1. RecA protein catalyzed renaturation has been characterized with respect to salt sensitivity, Mg2+ ion and pH optima, requirements for nucleoside triphosphates, and inhibition by nonhydrolyzable nucleoside triphosphates and analogues. These results are consistent with a Michaelis-Menten mechanism for DNA renaturation catalyzed by recA protein. A model is described in which oligomers of recA protein bind rapidly to single-stranded DNA, and in the presence of ATP, these nucleoprotein intermediates aggregate to bring complementary sequences into close proximity for homologous pairing. As with other DNA pairing reactions catalyzed by recA protein, ongoing DNA hydrolysis is required for renaturation. However, unlike the strand assimilation or transfer reaction, renaturation is inhibited by E. coli helix-destabilizing protein.  相似文献   

13.
DNA polymerase I* is a form of the DNA polymerase I isolated from Escherichia coli which are expressing recA/lexA (SOS) functions. Induction of recA or polA1 cells by nalidixic acid does not result in the appearance of pol I*, but lexA or recA mutants that are constitutive for SOS functions constitutively express pol I* and mutants which lack functional recA protein produce pol I* when they carry a lexA mutation which renders the lexA repressor inoperative. Pol I* has been induced by nalidixic acid in dinA, dinD, dinF, and umuC mutants. Polymerase I* has a lower affinity for single-stranded DNA-agarose than polymerase I and it sediments through sucrose gradients in a dispersed manner between 6.6-10.5 S, whereas polymerase I sediments at 5 S. Whereas pol I* migrates significantly faster than pol I in nondenaturing polyacrylamide gels, the active polypeptide of both forms migrates at the same rate in denaturing polyacrylamide gels. Compared with polymerase I, polymerase I* has an enhanced capacity to incorporate the adenine analog, 2-amino-purine, into activated salmon sperm DNA and a relatively low fidelity in replicating synthetic polydeoxyribonucleotides. Both the 3'----5' (proofreading) and 5'----3' (nick-translational) exonuclease activities of pol I* and pol I are indistinguishable. Estimates of processivity give a value of approximately 6 for both forms of the enzyme.  相似文献   

14.
A split UV light dose procedure was used in Escherichia coli to induce an SOS function, RecA protein amplification, which was measured by an immunoradiometric assay. The SOS system was partially induced after the first UV irradiation, and the inducing effects of subsequent identical UV doses were quantified. Variations in the inducing effects of successive UV doses were related to modulations of the SOS signal level during SOS induction. A reduction in the level of SOS signal was found after 20 min in the wild-type strain, hypothesized to result from negative control of repair functions. A few DNA repair mutants were tested by the same procedure; the uvrA, recF, and umuC genes were involved in SOS induction control, but we found differences in their respective kinetics of expression. On the contrary, in a recB mutant, only a slight effect was obtained on this control.  相似文献   

15.
RecA protein of Escherichia coli and chromosome partitioning   总被引:5,自引:0,他引:5  
Escherichia coli cells deficient in RecA protein frequently contain an abnormal number of chromosomes after completion of ongoing rounds of DNA replication. This suggests that RecA protein may be required for correct timing of initiation of DNA replication; however, we show here that initiation of DNA replication is properly timed in recA mutants. We also find that more than 10% of recA mutant cells contain no DNA. These anucleate cells appear to arise from partitioning of all the DNA into one daughter cell and no DNA into the other daughter cell. Based on these and previously published results, we propose that RecA protein is required for equal partitioning of chromosomes into the two daughter cells.  相似文献   

16.
17.
Induction of the adaptive response by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) caused a decrease in the UV-mediated expression of both recA and sfiA genes but not of the umuDC gene. On the other hand, the adaptive response did not affect the temperature-promoted induction of SOS response in a RecA441 mutant. The inhibitory effect on the UV-triggered expression of the recA and sfiA genes was not dependent on either the alkA gene or the basal level of RecA protein, but rather required the ada gene. Furthermore, an increase in the level of the Ada protein, caused by the runaway plasmid pYN3059 in which the ada gene is regulated by the lac promoter, inhibited UV-mediated recA gene expression even in cells to which the MNNG-adaptive treatment had not been applied. This inhibitory effect of the adaptive pretreatment was not observed either in RecBC- strains or in RecBC mutants lacking exonuclease V-related nuclease activity. However, RecF- mutants showed an adaptive response-mediated decrease in UV-promoted induction of the recA gene.  相似文献   

18.
A study was made of the SOS induction of the gene sulA of Escherichia coli K12 in relation to the gene dosage of the gene recA. In experiments the sulA::lacZ fusion strain PQ37 and derivatives of PQ37 with the multi-copy plasmids pDR1453 or pBR322 were used. The SOS response was induced with nitrofurantoin, SOS induction of the gene sulA was determined on the basis of the amount of beta-galactosidase synthesized, i.e. by the SOS chromotest (Quillardet et al., 1982a). It was found in this work that cells with the plasmid pDR1453, which contain the gene recA of E. coli K12 (Sancar and Rupp, 1979), have a decreased SOS induction of the gene sulA. Cells with the plasmid pBR322 do not exhibit this decrease. Inactivation of the gene recA in the plasmid pDR1453 with preservation of the functional gene recA in the chromosome leads to a restoration of 'standard' SOS induction of the gene sulA. The results show that the amount of the gene product of the gene recA affects the SOS induction of the gene sulA.  相似文献   

19.
The survival of Escherichia coli following treatment with a low dose (1-3 mM) of hydrogen peroxide (H(2)O(2)) that causes extensive mode-one killing of DNA repair mutants is stimulated by the induction of the SOS regulon. Results for various mutants indicate that induction of recA and RecA protein-mediated recombination are critical factors contributing to the repair of H(2)O(2)-induced oxidative DNA damage. However, because DNA damage activates RecA protein's coprotease activity essential to cleavage of LexA repressor protein and derepression of all SOS genes, it is unclear to what extent induction of RecA protein stimulates this repair. To make this determination, we examined mode-one killing of DeltarecA cells carrying plasmid-borne recA (P(tac)-recA(+)) and constitutively expressing a fully induced level of wild-type RecA protein when SOS genes other than recA are non-inducible in a lexA3 (Ind(-)) genetic background or inducible in a lexA(+) background. At a H(2)O(2) dose resulting in maximal killing, DeltarecA lexA3 (Ind(-)) cells with P(tac)-recA(+) show 40-fold greater survival than lexA3 (Ind(-)) cells with chromosomal recA having a low, non-induced level of RecA protein. However, they still show 10- to 15-fold lower survival than wild-type cells and DeltarecA lexA(+) cells with P(tac)-recA(+). To determine if the inducible RuvA protein stimulates survival, we examined a ruvA60 mutant that is defective for the repair of UV-induced DNA damage. This mutant also shows 10- to 15-fold lower survival than wild-type cells. We conclude that while induction of RecA protein has a pronounced stimulatory effect on the recombinational repair of H(2)O(2)-induced oxidative DNA damage, the induction of other SOS proteins such as RuvA is essential for wild-type repair.  相似文献   

20.
Summary We have studied the role of DNA replication in turnon and turn-off of the SOS response in Escherichia coli using a recA::lac fusion to measure levels of recA expression.An active replication fork does not seem to be necessary for mitomycin C induced recA expression: a dnaA43 initiation defective mutant, which does not induce the SOS response at non-permissive temperature, remains mitomycin C inducible after the period of residual DNA synthesis. This induction seems to be dnaC dependent since in a dnaC325 mutant recA expression not only is not induced at 42° C but becomes mitomycin C non-inducible after the period of residual synthesis.Unscheduled halts in DNA replication, generally considered the primary inducing event, are not sufficient to induce the SOS response: no increase in recA expression was observed in dnaG(Ts) mutants cultivated at non-permissive temperature. The replication fork is nonetheless involved in induction, as seen by the increased spontaneous level of recA expression in these strains at permissive temperature.Turn-off of SOS functions can be extremely rapid: induction of recA expression by thymine starvation is reversed within 10 min after restoration of normal DNA replication. We conclude that the factors involved in induction-activated RecA (protease) and the activating molecule (effector)-do not persist in the presence of normal DNA replication.Abbreviations Ts thermosensitive - SDS sodium dodecyl sulfate - Ap ampicillin - UV ultraviolet - X-Gal 5-bromo-4-chloro-3-indolyl--D-galactoside  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号