首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several new postcranial elements of Sivapithecus from the Siwaliks of Pakistan are described. These include a distal femur from the U-level of the Dhok Pathan Formation, a navicular from the Chinji Formation, and seven manual and pedal phalanges from the Nagri Formation. The functional morphology of these elements adds new detail to the reconstruction of Sivapithecus positional behavior. Femoral cross-sectional geometry indicates that the shaft was adapted to support mediolaterally directed loading. Femoral condylar asymmetry and a broad but shallow trochlea are distinctly ape-like, revealing capabilities for both rotation and withstanding eccentric loading in the knee. The navicular is characterized by features relating to a broad mid-tarsus and broad distal articulations for the cuneiforms. It also lacks a navicular tubercle as in Pongo. These features suggest that the foot was capable of a powerful grip on large supports, with an inversion/supination capability that would permit foot placement in a variety of positions. The morphology of the new phalanges, including evidence for a relatively large pollex, similarly suggests powerful grasping, consistent with prior evidence from the hallux and tarsus. The functional features of the new specimens permit refinement of previous interpretations of Sivapithecus positional capabilities. They suggest a locomotor repertoire dominated by pronograde activities and also such antipronograde activities as vertical climbing and clambering, but not by antipronograde suspensory activities as practiced by extant apes.  相似文献   

2.
Recent expeditions to Madagascar have recovered abundant skeletal remains of Archaeolemur, one of the so-called "monkey lemurs" known from Holocene deposits scattered across the island. These new skeletons are sufficiently complete to permit reassembly of entire hands and feet--postcranial elements crucial to drawing inferences about substrate preferences and positional behavior. Univariate and multivariate analysis of intrinsic hand and foot proportions, phalangeal indices, relative pollex and hallux lengths, phalangeal curvature, and distal phalangeal shape reveal a highly derived and unique morphology for an extinct strepsirrhine that diverges dramatically from that of living lemurs and converges in some respects on that of Old World monkeys (e.g., mandrills, but not baboons or geladas). The hands and feet of Archaeolemur are relatively short (extremely so relative to body size); the carpus and tarsus are both "long" relative to total hand and foot lengths, respectively; phalangeal indices of both the hands and feet are low; both pollex and hallux are reduced; the apical tufts of the distal phalanges are very broad; and the proximal phalanges are slightly curved (but more so than in baboons). Overall grasping capabilities may have been compromised to some extent, and dexterous handling of small objects seems improbable. Deliberate and noncursorial quadrupedalism was most likely practiced on both the ground and in the trees. A flexible locomotor repertoire in conjunction with a eurytopic trophic adaptation allowed Archaeolemur to inhabit much of Madagascar and may explain why it was one of the latest surviving subfossil lemurs.  相似文献   

3.
A distal tibia, YGSP 1656, from the early Late Miocene portion of the Chinji Formation in Pakistan is described. The fossil is 11.4 million years old and is one of only six postcranial elements now assigned to Sivapithecus indicus. Aspects of the articular surface are cercopithecoid-like, suggesting some pronograde locomotor activities. However, YGSP 1656 possesses an anteroposteriorly compressed metaphysis and a mediolaterally thick medial malleolus, ape-like features functionally related to orthograde body postures and vertical climbing. YGSP 1656 lacks specializations found in the ankle of terrestrial cercopithecoids and thus Sivapithecus may have been primarily arboreal. Nevertheless, the morphology of this tibia is unique, consistent with other interpretations of Sivapithecus postcranial functional morphology that suggest the locomotion of this ape lacks a modern analog. Based on the limited postcranial remains from S. indicus, we hypothesize that this taxon exhibited substantial body size dimorphism.  相似文献   

4.
Sivapithecus is a Miocene great ape from South Asia that is orangutan-like cranially but is distinctive postcranially. Work by others shows that the humerus resembles large terrestrial cercopithecoids proximally and suspensory hominoids distally, but most functional interpretations nevertheless situate Sivapithecus in an arboreal setting. We present a new quantitative analysis of the Sivapithecus capitate and hamate. Though the functional morphology of both bones suggests some degree of arboreality, the overall morphology is most similar to knuckle-walking African apes. Other features of the Sivapithecus humerus and hind limb are also functionally consistent with knuckle-walking, and we suggest that this locomotor behavior is a valid alternative functional interpretation of the postcranial morphology. We speculate that knuckle-walking in Sivapithecus would have evolved independently from African apes, perhaps for similar ecological reasons. The discovery of a possible pongine knuckle-walker challenges the hypotheses that (1) knuckle-walking evolved only once in hominoids and (2) knuckle-walking is too highly specialized to be the positional behavior from which human bipedalism evolved. The possibility of knuckle-walking in Sivapithecus may help to explain not only the curious combination of characters that typify the postcranium but also the unique postcranial morphology of extant Pongo. Furthermore, it may clarify the distribution of fossil pongines across many ecological zones in Eurasia in the Miocene and Pleistocene, as well as, independently, the spread of African apes across a diversity of environments in equatorial Africa.  相似文献   

5.
Erratum     
Feet of two-toed sloths (Choloepus) are long, narrow, hook-like appendages with only three functional digits, numbers II, III, and IV; Rays I and V are represented by metatarsals. Proximal phalanges of complete digits are little more than proximal and distal articulating surfaces. All interphalangeal joints are restricted, by interlocking surfaces, to flexion and extension. Ankle and transverse tarsal joints, however, allow extreme flexion and inversion of foot. Powerful digital flexion is augmented by several muscles from extensor compartment of leg. Intrinsic foot musculature is reduced to flexors and extensors but these, with the exception of lumbricals, are large and well developed. Choloepus uses its feet much like hooks with distal phalanges and covering claws forming the “hook” element. These hook-like appendages are seemingly best suited for supports less than 50 mm in diameter suggesting that two-toed sloths may prefer supports of this size in their natural habitat.  相似文献   

6.
Although extensive research has been carried out in recent years on the origin and evolution of human bipedalism, a full understanding of this question is far from settled. Miocene hominoids are key to a better understanding of the locomotor types observed in living apes and humans. Pierolapithecus catalaunicus, an extinct stem great ape from the middle Miocene (c. 12.0 Ma) of the Vallès-Penedès Basin (north-eastern Iberian Peninsula), is the first undoubted hominoid with an orthograde (erect) body plan. Its locomotor repertoire included above-branch quadrupedalism and other antipronograde behaviours. Elucidating the adaptive features present in the Pierolapithecus skeleton and its associated biomechanics helps us to better understand the origin of hominoid orthogrady. This work represents a new biomechanical perspective on Pierolapithecus locomotion, by studying its patella and comparing it with those drawn from a large sample of extant anthropoids. This is the first time that the biomechanical patellar performance in living non-human anthropoids and a stem hominid has been studied using finite element analysis (FEA). Differences in stress distribution are found depending on body plan and the presence/absence of a distal apex, probably due to dissimilar biomechanical performances. Pierolapithecus’ biomechanical response mainly resembles that of great apes, suggesting a similar knee joint use in mechanical terms. These results underpin previous studies on Pierolapithecus, favouring the idea that a relevant degree of some antipronograde behaviour may have made up part of its locomotor repertoire. Moreover, our results corroborate the presence of modern great ape-like knee biomechanical performances back in the Miocene.  相似文献   

7.
小花老鼠簕(Acanthus ebracteatus)是一种生长在红树生态系统的珍稀真红树植物,具有较高的药用价值。为研究小花老鼠簕内生及根际可培养细菌多样性,挖掘其潜在新物种及具有特殊生物学活性的菌株,该文利用7种不同培养基,通过传统稀释涂布法对小花老鼠簕各植物组织及根际土壤可培养细菌进行分离,基于16S rRNA基因序列解析其内生及根际细菌群落结构和多样性特征,应用植物病原菌平板对峙实验和平铺捕食活性测试分析其可培养细菌的抗菌活性。结果表明:(1)基于16S rRNA基因序列分析,发现从小花老鼠簕的根、茎、叶、花及根际土壤中分离得到144株可培养细菌,这些细菌隶属于18目26科37属66种,芽孢杆菌属(Bacillus)和链霉菌属(Streptomyces)为优势菌属,分别占细菌种数的15.1%和13.6%;(2)拮抗多种植物病原菌试验结果显示,获得29株具有拮抗植物病原菌活性的细菌,10株具有广谱抑菌活性,其中链霉菌属菌株拮抗作用最强且菌株Y129为潜在新物种。(3)捕食活性测试结果显示,有5株细菌对金黄色葡萄球菌(Staphylococcus aureus)、耐甲氧西林金黄色葡...  相似文献   

8.
王文采 《广西植物》2016,36(Z1):95-96
该文描述了自广西发现的毛茛科铁线莲一新种,靖西铁线莲,此新种与宝岛铁线莲在亲缘关系上接近,与后者的区别在于本种的茎疏被短柔毛,小叶卵形或狭卵形,不分裂,聚伞花序有1~3花,萼片较大长1.7~2 cm,宽0.5~0.7 cm。  相似文献   

9.
New remains of Megaladapis from the caves within the Ankarana Range of northern Madagascar and the cave site of Ankilitelo near Toliara in southwestern Madagascar add considerably to the present sample of pedal remains for this genus. Here we describe and analyze the new pedal material and discuss the function of the Megaladapis foot in terms of positional behavior and substrate use. The northern specimens belong to the M. madagascariensis/M. grandidieri group in terms of size and morphology, whereas the new southwestern fossils are assigned to M. madagascariensis. The new specimens demonstrate that the small and intermediate sized M. madagascariensis and M. grandidieri were very similar in anatomy and inferred locomotor function, findings that also support the prior suggestion that they belong to a single widespread subgenus (Megaladapis). The new fossils provide the first examples of many pedal elements and present the first opportunity to analyze the whole pedal complex from associated remains. The foot of Megaladapis is distinctive among primates in numerous features. Intrinsic proportions of the hindlimb indicate that the foot is relatively longer than that of any other primate. The first complete calcanei reveal a large and highly modified hindfoot. The calcaneus is reduced distally, indicating an emphasis on climbing over leaping or quadrupedal walking and running. Proximally, a large, medially directed calcaneal tuberosity suggests both a strong inversion component to plantarflexion and a well-developed abductor mechanism and recalls the calcaneal morphology of the larger lorisines in some respects. Talar shape is consistent with considerable tibial rotation during plantarflexion and dorsiflexion. The subtalar joint is designed to emphasize supination/pronation and medial/lateral rotation over proximodistal translation. The distal tarsals are extremely reduced in length, and they form a high transverse arch and a serial tarsus; this configuration promotes inversion/eversion at the transverse tarsal joint. The phalanges are long and moderately curved, and the hallux is very long, robust, and abducted. Pedal morphology suggests that Megaladapis (subgenus Megaladapis) was well adapted to exploit an arboreal environment. The grasping mechanism of Megaladapis is an extreme modification of the prosimian condition, emphasizing a highly inverted set, mobility in rotation, and a powerful abduction/flexion type grasp using large hallux and the lateral abductor musculature. Such a mechanism insures a secure grasp regardless of the position of the hindlimb or the substrate. These pedal design features contrast with the grasping strategy seen in highly arboreal palaeopropithecids (or “sloth lemurs”), a group that reduces and modifies the hindfoot, culminating in Palaeopropithecus, and emphasizes extrinsic digital flexors in a more hook-like mechanism. Much less is known of M. (Peloriadapis) edwardsi. The larger body size, more gorilla-like talar articular morphology, and anatomy of the proximal fifth metatarsal suggest that this species may have been more terrestrial than the smaller forms, but other aspects of pedal morphology suggest it also exploited arboreal habitats.  相似文献   

10.
The morphology of the distal tibia and its joint surfaces is described in the late Eocene European Necrolemur,the middle Eocene North American Hemiacodon,and an omomyid species from the lower part of the Bridger Formation of North America. Necrolemur,like Tarsius,exhibits tibiofibular fusion, although to a less advanced degree. The Bridger omomyids, however, show no evidence of fusion but are similar to galagos in the conformation of this joint. The distal tibia of euprimates is distinguished by several derived features. These correlate with derived features of the astragalus and are functionally related to the abduction of the foot that accompanies dorsiflexion in primates. Tarsius,omomyids, and anthropoids share a suite of features which distinguish them from strepsirhines; these maybe haplorhine synapomorphies, but the polarity of these features is difficult to determine. If they are synapomorphies, abduction accompanying dorsiflexion and movement at the inferior tibiofibular joint were restricted in ancestral haplorhines. In living primates such restriction is associated with small body size and saltatorial locomotion.  相似文献   

11.
A comparative morphometric analysis of isolated proximal and intermediate phalanges attributed to the paromomyids Ignacius graybullianus and Phenacolemur simonsi was undertaken to test the hypothesis that these fossil phalanges exhibit evidence of a dermopteran-like interdigital patagium. Linear dimensions were collected for the fossil phalanges and a comparative sample of associated proximal and intermediate phalanges representing extant tree squirrels, tree shrews, dermopterans (colugos), gliding rodents and marsupials, and prosimian primates. Quantitative data indicate that the proximal and intermediate phalanges of paromomyids are most similar in their overall shape to those of the dermopteran Cynocephalus. The proximal phalanges of paromomyids and colugos possess well-developed flexor sheath ridges and broad, high shafts, whereas the intermediate phalanges of these taxa are most similar to one another in their trochlear morphology. Discriminant analysis indicates that all of the paromomyid intermediate phalanges resemble those from colugo toes more so than those from colugo fingers. Moreover, the relative length and midshaft proportions of both the proximal and intermediate phalanges of paromomyids closely resemble those of several squirrels that lack an interdigital patagium. The following conclusions are drawn from this study: 1) paromomyids share a number of derived phalangeal features with modern dermopterans that may be indicative of a phylogenetic relationship between them, 2) existing intermediate phalanges of paromomyids are inconsistent with the “mitten gliding” hypothesis because they do not possess the distinctive length and midshaft proportions characteristic of colugo manual intermediate phalanges, and 3) paromomyids share with colugos and the scaly-tailed squirrel Anomalurus several aspects of phalangeal morphology functionally related to frequent vertical clinging and climbing on large-diameter arboreal supports. Am J Phys Anthropol 109:397–413, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

12.
The Sterkfontein hand bones, attributed to Australopithecus africanus, were analysed to determine potential hand function of the power grip type of this species. The metacarpus is as stable as that of modern humans, as indicated by the depth of the groove on the base of metacarpal 2, the styloid process of metacarpal 3, the base articular surface areas, and the ligament markings on the bases of the metacarpals. The flexion and rotation of metacarpal 5 might have been less than that of modern humans, due to a more marked ventral articular lip on the base. The metacarpus acts as a lever, acting in various planes. The extensor carpi ulnaris and extensor carpi radialis longus muscles were probably better developed than in modern humans. The extensor carpi radialis brevis and flexor carpi radialis muscles would probably have been as well developed as in modern humans. None of the long tendons have a mechanical disadvantage as compared to modern humans. The metacarpals have a high robusticity index. The proximal phalanges show some midshaft swelling, slightly greater curvature than in modern humans, and some side to side bowing: pongid features. The fibrous flexor sheath markings are well developed, but resemble those of modern humans rather than those of the pongids. A single middle phalanx resembles that of modern humans, and has well developed ridges for insertion of the flexor digitorum superficialis muscle. The distal phalanx of the thumb has a well developed region for insertion of the flexor pollicis longus muscle, and has a mechanical advantage over modern humans for action of this muscle at the interphalangeal joint. The features indicate that the hand of A. africanus was well adapted to powerful hand use, as in hammering, striking, chopping, scraping, and gouging actions, as well as for throwing and climbing activities.  相似文献   

13.
The musculature of Testudinella patina was visualized using phalloidin-linked fluorescent dye by confocal laser scanning microscopy. The conspicuous broad retractors appear to be made up of five separate fibers, of which three anchor in the neck region whereas two extend into the corona. Besides the broad retractors, a total of five paired longitudinal retractors are present and all of them extend into the corona. Incomplete circular muscles are found in groups in the neck region and in the medial and posterior parts of the trunk. The foot musculature comprises eight thin ventral foot muscles and six thicker dorsal foot muscles that all extend from the foot basis to the distal part of the foot. At the basis of the foot, each of the dorsal foot muscles anchors on a smaller, S-shaped subterminal foot muscle. The foot musculature furthermore comprises one pair of paraterminal foot muscles that each anchors basally on a subterminal foot muscle, extends into the most proximal part of the foot and attaches on one of the dorsal foot muscles. The visceral musculature is composed of extremely delicate fibers and is restricted to an area around and posterior to the foot opening. The presence of incomplete circular muscles supports that these muscles are a basal trait for Rotifera, whereas the morphology of the broad retractors and foot muscles is much more specialized and may be autapomorphic for Testudinella or alternatively for this genus and its closest relatives. The present results stress that revealing muscles by staining may produce new information from even well-investigated species, and that this information may contribute to a better understanding of functional as well as phylogenetic aspects of rotifer biology.  相似文献   

14.
This study tests predicted morphoclines in fingertip morphology among four small-bodied (<1 kg) New World monkeys (Saimiri sciureus, Leontopithecus rosalia, Callithrix jacchus, and Saguinus oedipus) in order to test previous functional and adaptive explanations for the evolution of flattened nails, expanded apical pads, and grasping extremities within the Order Primates. Small-bodied platyrrhines which frequently forage among small-diameter substrates are expected to possess 1) relatively expanded apical pads, 2) well-developed epidermal ridges, 3) distally broad terminal phalanges, and 4) reduced flexor and extensor tubercles compared to those species which use large-diameter arboreal supports more frequently for their locomotor and postural behaviors. Results show that as the frequency of small-branch foraging increases among taxa within this sample, relative distal phalanx breadth also increases but distal phalanx length, height, and flexor tubercle size decrease. Moreover, epidermal ridge development becomes more pronounced as the frequency of small-branch foraging increases. Terminal phalanx breadth and epidermal ridge complexity are both positively correlated with apical pad size. The large, flexible apical pad increases stability of the hand and foot on small-diameter arboreal supports because the pad can contact the substrate in several planes which, in turn, enables the pad to resist disruptive forces from different directions by friction and interlocking (Hildebrand, 1995). The observed morphoclines demonstrate that a gradient in form from claw- to nail-like tegulae exists among these taxa. Thus, the distinction between claw- and nail-bearing platyrrhines is essentially arbitrary. These observations corroborate Cartmill's (1972) functional and adaptive model for the loss of claws in primates: namely, expanded apical pads are required for habitual locomotor and postural behaviors on small-diameter supports whereas claws are more useful for positional behaviors on large-diameter substrates. Finally, results from this study support previous suggestions that the keeled tegulae of callitrichines represent a derived postural adaptation rather than a primitive retention from an ancestral eutherian condition. Am J Phys Anthropol 106:113–127, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
The partial skeleton of Pierolapithecus, which provides the oldest unequivocal evidence of orthogrady, together with the recently described phalanges from Pa?alar most likely attributable to Griphopithecus, provide a unique opportunity for understanding the changes in hand anatomy during the pronogrady/orthogrady transition in hominoid evolution. In this paper, we describe the Pierolapithecus hand phalanges and compare their morphology and proportions with those of other Miocene apes in order to make paleobiological inferences about locomotor evolution. In particular, we investigate the orthograde/pronograde evolutionary transition in order to test whether the acquisition of vertical climbing and suspension were decoupled during evolution. Our results indicate that the manual phalanges of Miocene apes are much more similar to one another than to living apes. In particular, Miocene apes retain primitive features related to powerful-grasping palmigrady on the basal portion, the shaft, and the trochlea of the proximal phalanges. These features suggest that above-branch quadrupedalism, inherited from stem hominoids, constituted a significant component of the locomotor repertories of different hominoid lineages at least until the late Miocene. Nonetheless, despite their striking morphological similarities, several Miocene apes do significantly differ in phalangeal curvature and/or elongation. Hispanopithecus most clearly departs by displaying markedly-curved and elongated phalanges, similar to those in the most suspensory of the extant apes (hylobatids and orangutans). This feature agrees with several others that indicate orang-like suspensory capabilities. The remaining Miocene apes, on the contrary, display low to moderate phalangeal curvature, and short to moderately-elongated phalanges, which are indicative of the lack of suspensory adaptations. As such, the transition from a pronograde towards an orthograde body plan, as far as this particular anatomical region is concerned, is reflected only in somewhat more elongated phalanges, which may be functionally related to enhanced vertical-climbing capabilities. Our results therefore agree with the view that hominoid locomotor evolution largely took place in a mosaic fashion: just as taillessness antedated the acquisition of an orthograde body plan, the emergence of the latter—being apparently related only to vertical climbing—also preceded the acquisition of suspensory adaptations, as well as the loss of primitively-retained, palmigrady-related features.  相似文献   

16.
In this paper, we describe a new species of Hemiacodon known only from University of Colorado Museum Loc. 92189 (Donna's Locality) in the Turtle Bluff Member of the Bridger Formation, Green River Basin, southwestern Wyoming. Donna's locality has yielded a diverse mostly small-bodied mammalian assemblage of Bridgerian and first appearance Uintan mammalian taxa, as well as range-through taxa. Together with H. engardae sp. nov., the faunal assemblage from Donna's Locality and more recently discovered localities in the same stratigraphic interval provides the first conclusive paleontological evidence of an earliest Uintan age (Ui1A biochron) for the Turtle Bluff Member of the Bridger Formation.The new species is represented by a sample of 11 specimens consisting of well-preserved upper and lower premolars and lower molars. H. engardae is distinct from H. gracilis on the basis of overall larger size as well as a combination of features of the premolars and molars related to a greater development of shearing crests. This suggests that H. engardae may have incorporated more foliage into its diet than the Bridgerian species, H. gracilis.  相似文献   

17.
In order to dissect the genetic regulation of leafblade morphogenesis, 16 genotypes of pea, constructed by combining the wild-type and mutant alleles of MFP, AF, TL and UNI genes, were quantitatively phenotyped. The morphological features of the three domains of leafblades of four genotypes, unknown earlier, were described. All the genotypes were found to differ in leafblade morphology. It was evident that MFP and TL functions acted as repressor of pinna ramification, in the distal domain. These functions, with and without interaction with UNI, also repressed the ramification of proximal pinnae in the absence of AF function. The expression of MFP and TL required UNI function. AF function was found to control leafblade architecture multifariously. The earlier identified role of AF as a repressor of UNI in the proximal domain was confirmed. Negative control of AF on the UNI-dependent pinna ramification in the distal domain was revealed. It was found that AF establishes a boundary between proximal and distal domains and activates formation of leaflet pinnae in the proximal domain.  相似文献   

18.
Teilhardina belgica is one of the earliest fossil primates ever recovered and the oldest fossil primate from Europe. As such, this taxon has often been hypothesized as a basal tarsiiform on the basis of its primitive dental formula with four premolars and a simplified molar cusp pattern. Until recently [see Rose et al.: Am J Phys Anthropol 146 (2011) 281–305; Gebo et al.: J Hum Evol 63 (2012) 205–218], little was known concerning its postcranial anatomy with the exception of its well‐known tarsals. In this article, we describe additional postcranial elements for T. belgica and compare these with other tarsiiforms and with primitive adapiforms. The forelimb of T. belgica indicates an arboreal primate with prominent forearm musculature, good elbow rotational mobility, and a horizontal, rather than a vertical body posture. The lateral hand positions imply grasps adaptive for relatively large diameter supports given its small body size. The hand is long with very long fingers, especially the middle phalanges. The hindlimb indicates foot inversion capabilities, frequent leaping, arboreal quadrupedalism, climbing, and grasping. The long and well‐muscled hallux can be coupled with long lateral phalanges to reconstruct a foot with long grasping digits. Our phyletic analysis indicates that we can identify several postcranial characteristics shared in common for stem primates as well as note several derived postcranial characters for Tarsiiformes. Am J Phys Anthropol 156:388–406, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
The hand and foot remains from Moula‐Guercy cave (Ardèche, France) comprise 24 specimens of Eemian age (ca. 120 ka). The specimens include primarily complete elements, which are rare among the Moula‐Guercy postcrania. The hand remains have several characteristic Neanderthal traits including a laterally facing (parasagittally oriented) second metacarpal‐capitate articulation, a short styloid process, a wide proximal articular surface on the third metacarpal, and absolutely expanded apical tuberosities on the distal hand phalanges relative to modern humans. The foot remains include several incomplete elements along with an antimeric pair of naviculars, a medial cuneiform and cuboid, and a single complete element from each of the distal segments (one each: metatarsal, proximal foot phalanx, intermediate foot phalanx, distal foot phalanx). Consistent among the specimens are relatively wide diaphyses for length in the metatarsals and phalanges and large and prominent muscle attachments, both consistent with previously published Neanderthal morphology. The hand and foot collection from Moula‐Guercy is an important dataset for future studies of Neanderthal functional morphology, dexterity, and behavior as it represents a previously undersampled time period for European Neanderthals. Am J Phys Anthropol 152:516–529, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
A new species of rotifer, Rhinoglena kutikovae n.sp. (Monogononta: Epiphanidae), is described from a freshwater lake in the Bunger Hills, East Antarctica. The new taxon is characterized by the following combination of characters: body conical to vase-shaped; a single toe; distal foot pseudosegment bulged; tail prominent, semi-circular; two small spherical pedal glands with common duct, forming a complex with caudal ganglion; trophi with seven major teeth with offset head and two smaller teeth without offset head. The new species is compared with R. fertoeensis, R. frontalis and R. tokioensis, of which scanning electron microscopic information is presented of the trophi. R. kutikovae n.sp. is probably a relict species that survived Quaternary glaciations in glacial lacustrine refugia on the Antarctic continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号