共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Christopher W Weldon 《Australian Journal of Entomology》2005,44(2):158-163
Abstract The effects of domestication and irradiation on the mating behaviour of males of Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) were investigated by caging wild, laboratory-domesticated and sterile (laboratory-domesticated, gamma-irradiated) males with wild females. Mating behaviour of mass-reared males was different from that of wild males, although behaviour of wild and sterile males was similar. Mass-reared males engaged in mounting of other males much more frequently than wild and sterile males, and began calling significantly earlier before darkness. Unnatural selection pressures imposed in mass-rearing conditions may explain these changes in mass-reared male behaviour. Male calling did not appear to be associated with female choice of mating partners, although this does not exclude the possibility that calling is a cue used by females to discriminate among mating partners. Despite differences in behaviour, frequency of successful copulations and mating success were similar among wild, mass-reared and sterile males. 相似文献
3.
S. R. Collins C. W. Weldon C. Banos & P. W. Taylor 《Journal of Applied Entomology》2008,132(5):398-405
Queensland fruit fly (Bactrocera tryoni; Q‐fly) pupae are routinely irradiated to induce reproductive sterility in adults released in a sterile insect technique programme. Although there have been some studies of how total dose influences fly quality, dose rate has not been considered. In the present study, pupae were irradiated at a target dose range of 70–75 Gy at dose rates of approximately 5, 7, 26, 57 and 80 Gy/min and were then subjected to routine IAEA/FAO/USDA quality control tests including emergence, flight ability, mortality under stress and sterility induction. No significant effects of dose rate were found on emergence or flight ability. Sterility induction was also found to be independent of dose rate, a result conforming to a ‘one‐hit’ ionizing event hypothesis. Flies irradiated at higher dose rates suffered increased mortality under stress. This appears to stem from an increased tendency to over‐shoot the target dose when irradiating at high dose rates. We recommend that, to reduce potential error in total target dose, the lowest practical dose rate be used when irradiating Q‐fly pupae for use in the sterile insect technique. 相似文献
4.
Queensland fruit fly, Bactrocera tryoni (Froggatt), is the economically most significant Australian tephritid pest species with a large invasion potential, yet relatively little work on its biological control has been undertaken. Entomopathogenic nematodes (EPNs) are of potential interest for control of this fruit fly species as it pupates in the soil. Specifically, the pre-pupal stage of B. tryoni may present a unique window for EPN application, as fully developed larvae drop from infested fruit to the soil for pupation. For the first time, we tested the capacity of three EPN species with different foraging strategies, Steinernema feltiae, Steinernema carpocapsae and Heterorhabditis bacteriophora, to cause larval and pupal mortality in B. tryoni across a range of EPN concentrations (50, 100, 200, 500 and 1000 infective juveniles IJs cm-2), substrate moisture (10, 15, 20 and 25% w/v) and temperatures (15, 20, 25 and 30 °C). We found that all EPN species tested caused environment and density dependent mortality in the third larval instar while pupae were not affected. Steinernema feltiae caused high mortality across different IJ concentrations and over a wider moisture and temperature range than the other two EPN species. High mortality caused by S. carpocapsae and H. bacteriophora was more limited to high IJ concentrations and a narrower moisture and temperature range. Our findings highlight the potential of EPNs for the control of B. tryoni and warrant further laboratory and field experiments to evaluate their efficacy under the wide environmental conditions that B. tryoni can occur in. 相似文献
5.
Effect of plant oils on quality parameters of Bactrocera tryoni (Froggatt) reared on liquid larval diet 下载免费PDF全文
M. Khan 《Journal of Applied Entomology》2015,139(4):280-288
Liquid larval diets have been developed for several tephritid fruit flies including Queensland fruit fly, Bactrocera tryoni (Frogatt) (Q‐fly). In liquid diets, wheat germ oil (WGO) is usually added to improve performance in some quality parameters of reared flies, especially flight ability. However, for some flies, other plant oils may be more readily available, cheaper or produce flies of superior performance. In the present study, four alternative types of plant oils – rice bran, canola, vegetable, and sesame – were incorporated into a fruit fly liquid larval diet to replace the currently used wheat germ oil and their efficacy on the quality parameters of reared Q‐fly was compared to diets containing wheat germ oil or no oil. The quality parameters included: total pupal yield (N), pupal recovery (%), larval duration (days), pupal weight (mg), adult emergence (%), adult fliers (%), rate of fliers (%), sex ratio (%), F1 egg/female/day and egg hatching (%). There were significant differences among treatments in performance of Q‐fly. Vegetable oil appeared better in terms of total pupal yield, percentage of pupal recovery, percentage of adult emergence, percentage of fliers, mean egg/female/day and % F1 egg hatch compared with other oil treatments, especially from that of WGO treated diet. The result suggests that WGO can be substituted with rice bran and vegetable oil to improve the liquid larval diet for rearing of B. tryoni, with vegetable oil being the best replacement. 相似文献
6.
7.
8.
Mating behaviour of Dacus ciliatus (Loew) [Diptera:Tephritidae]: comparisons between a laboratory and a wild population 下载免费PDF全文
As part of the development of a sterile insect technique (SIT) application for the Ethiopian fruit fly, Dacus ciliatus, we studied the mating behaviour of a laboratory‐adapted strain (a 4‐year‐old colony kept for more than 40 generations) and a wild population. Effects of laboratory rearing and irradiation were assessed by carrying out mating compatibility and male mating competitiveness tests using a 1:1 ratio between irradiated (120 Gy) laboratory males and non‐irradiated wild males. Mating behaviour was studied on host and non‐host plants under field cage conditions. To assess the effect of mass rearing upon male performance, we repeated the mating competitiveness test using non‐irradiated laboratory insects. The findings indicated a high degree of compatibility among the two populations and satisfactory competitiveness of the irradiated laboratory males (ca. 35%). The competitiveness of non‐irradiated laboratory males was also ca. 35%, suggesting that no adverse effects resulted from their irradiation. Mating occurred only at twilight and mainly on the underside of leaves of non‐host plants (lemon trees). Findings are discussed in view of their implications for a future application of SIT against this fruit fly pest. 相似文献
9.
10.
Abstract Dispersal of immature male and female Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), was assessed over a period of 1 week from a single release point on three separate occasions using an array of Lynfield traps baited with cue-lure and odouriferous yellow or black sticky spheres baited with food lure (protein autolysate). Lynfield traps recaptured males; yellow or black spheres recaptured both sexes in approximately equal proportions, although at a much lower rate. As a percentage of the recapture rate for males by Lynfield traps, the mean recapture rate for yellow spheres ranged from 1.0% to 7.5% for males and 0.7% to 4.0% for females, whereas the recapture rates for black spheres ranged from 0.4% to 3.6% and 0.6% to 1.8%, respectively. The rate of recapture of sterile male flies was greater than that of unsterilised flies; this may have been due to a faster maturation rate in sterile males or because a greater proportion of them remained within the trap array rather than dispersing. There was no significant trend in recapture rate with distance from the release point to the edge of the array (88 m), except in the case of females on sticky traps where no trend was detected between 19 and 88 m. These results lend support to assumptions made about the distribution of males and females with respect to the minimum breeding density of fruit fly propagules invading a fly-free zone, and the method chosen to distribute sterile B. tryoni for the sterile insect technique. 相似文献
11.
Christopher W Weldon 《Australian Journal of Entomology》2007,46(1):29-34
Abstract The importance of male aggregation size for female visitation and initiation of male pheromone-calling was investigated in Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) using artificial male aggregations in large laboratory cages. Female B. tryoni visited the largest aggregation more frequently than single males in association with a higher proportion of calling males, but there was no correlation between aggregation size and female visitation. Female B. tryoni had a limited capacity to perceive a difference between the number of calling males. Calling propensity of male B. tryoni was increased by the presence of conspecific males. Increased calling propensity in larger groups of male B. tryoni may be due to social facilitation of male calling behaviour. Female visitation at aggregations was only weakly associated with male calling, suggesting that aggregation size and the number of pheromone-calling males are not the only factors important in locating mates in B. tryoni , and it is possible that low-density populations could persist so long as females can encounter single males. 相似文献
12.
Queensland fruit fly, Bactrocera tryoni (“Q‐fly”), is Australia’s most economically important insect pest of horticultural and commercial crops especially in the eastern regions. The sterile insect technique (SIT) has been adopted as an environmentally benign and sustainable approach for management of Q‐fly outbreaks. High‐performance larval diets are required to produce the millions of flies needed each week for SIT. Yeast products contribute amino acids (protein) to fruit fly larval diets, as well as carbohydrate, fat and micronutrients, but there can be substantial variation in the nutritional composition and suitability of yeast products for use in larval diets. Gel larval diets have recently been developed for large‐scale rearing of Q‐fly for SIT, and composition of these diets requires optimization for both performance and cost, including choice of yeast products. We assessed performance of Q‐flies reared on gel larval diets that contained debittered brewer’s yeast (Lallemand LBI2240), hydrolysed yeast (Lallemand FNILS65), inactivated brewer’s yeast (Lallemand LBI2250) and inactivated torula yeast (Lallemand 2160‐50), including blends. Q‐flies performed poorly when reared on diets containing only or mostly hydrolysed yeast in terms of pupal number, pupal weight and percentage of fliers. Performance was also poor on diets containing high proportions of torula yeast. Overall, debittered brewer’s yeast is recommended as the best option for Q‐fly gel larval diet, as it is cheap, readily available, and produces flies with good performance in quality control assays. Inactivated brewer’s yeast produced flies of comparable quality with only a modest increase in cost and would also serve as an effective alternative. 相似文献
13.
Mass‐reared sterile tephritid flies released in sterile insect technique (SIT) programmes exhibit behaviour, physiology and longevity that often differ from their wild counterparts. In the present study, video recordings of flies in laboratory cages are used to determine whether the sequential processes of mass‐rearing and sterilization (using gamma radiation) that are integral to SIT affect general activity patterns of male and female Queensland fruit flies Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) (‘Q‐flies'). Compared with wild flies, mass‐reared flies exhibit a marked reduction in overall activity, and further reduction is found after sterilization. In terms of the frequency of activities, both fertile and sterile mass‐reared Q‐flies fly less often and exhibit more bouts of inactivity and grooming than wild Q‐flies. In addition, in terms of the duration of activities, fertile and sterile mass‐reared Q‐flies spend less time flying and more time walking, grooming and being inactive than wild Q‐flies. Although fertile and sterile mass‐reared flies are similar in other regards, sterile mass‐reared flies spend more time being inactive than fertile mass‐reared flies. These findings raise new questions about how changes in behaviour and activity levels may influence the performance of mass‐reared sterile Q‐flies in the field, as well as the physiological and metabolic processes that are involved. The frequency and duration of inactivity could provide a simple but powerful and biologically relevant test for quality in mass‐rearing and SIT programs. 相似文献
14.
S. R. Collins C. W. Weldon P. W. Taylor 《Entomologia Experimentalis et Applicata》2008,129(2):142-147
The mating performance field cage test is a required periodic quality‐control assessment for factory‐reared fruit flies used for the sterile insect technique. The FAO/IAEA/USDA guidelines for assessing fly quality state that if during tests a large proportion of flies call and mate on cage walls, away from host trees, then environmental conditions within the cage need to be adjusted and tests repeated. Here we test effects of cage design, specifically mesh colour (green, white) and addition of supplementary shade, on the mating behaviour of Queensland fruit fly (Q‐fly), Bactrocera tryoni Froggatt (Diptera: Tephritidae). Observations were made over a 4‐h period at dusk when these flies mate. Changes in environmental conditions in each cage over the dusk period varied with cage design. We recorded the highest proportion of matings taking place on trees as opposed to cage walls (>90%) in the unshaded white cage, the shaded white and un‐shaded green cages being intermediate (ca. 70%), and the shaded green cage had the least (ca. 40%). The effects of field cage colour and supplementary shade on mating behaviour are discussed. We recommend that Q‐fly field cage tests should be conducted in cages with a light coloured mesh, and that supplementary shading should only be applied if there is a need to adjust temperature and light within the cage. 相似文献
15.
16.
This study investigated two factors potentially affecting the spatial distribution of Queensland fruit fly Bactrocera tryoni (Froggatt) after release from a single point. First, the effect of age at release was investigated using a single cohort of 205 000 males from a mass‐rearing strain used for sterile insect releases. Approximately half were released as immature males and the remainder as sexually mature males (1 week later). Males were collected over 3 weeks from a grid of 135 traps, each containing a pheromone/insecticide bait, positioned between 4 and 500 m from the release point. Variation in the distribution of fly density around the release point was assessed by regressing trapped fly counts against distance. Unexpectedly, no significant differences were found in the spatial distribution of the flies. Second, the effect of inbreeding on spatial distribution was investigated using replicated simultaneous releases of two strains of B. tryoni. One strain was the existing (inbred) mass‐rearing strain that has been selected for high productivity in a mass‐rearing facility. The second strain was deliberately outbred but also selected for high productivity. Almost 100 000 males of each strain were released over the two experiments. Regression of trappings against distance differed significantly between strains in only one of five releases, but in all cases the outbred strain had a greater dispersal distance. As our trapping grid was not regular but contained gaps of up to 100 m, a small preliminary experiment investigated whether flies move faster along tree rows or across open fields. At distances up to 100 m, we found no detectable difference in fly distributions. These results are primarily relevant to the large‐scale point releases carried out as part of an existing B. tryoni sterile insect programme and are discussed in that context. 相似文献
17.
18.
Phytochemical lures such as methyl eugenol (ME) and cue‐lure are used in the management of Bactrocera fruit flies for monitoring and control. These lures are not just attractants, but also trigger physiological changes in males that lead to enhanced mating success. Additionally, in the cue‐lure‐responsive Bactrocera tryoni, females mated with lure‐fed males exhibit changes in fecundity, remating receptivity and longevity. While the lures show current generation effects, no research has been carried out on possible multigenerational effects, although such effects have been hypothesized within a ‘sexy‐son’ sexual selection model. In this study, we test for indirect, cross‐generational effects of lure exposure in F1offspring of B. tryoni females mated with cue‐lure‐fed, zingerone‐fed and lure‐unfed (=control) males. The F1 attributes we recorded were immature development time, immature survival, adult survival and adult male lure foraging. No significant differences were found between treatments for any of the three life‐history measurements, except that the offspring sired by zingerone‐fed males had a longer egg development time than cue‐lure and control offspring. However, indirect exposure to lures significantly enhanced the lure‐foraging ability of F1 adult males. More offspring of cue‐lure‐fed males arrived at a lure source in both large flight cages and small laboratory cages over a 2‐h period than did control males. The offspring of zingerone‐fed males were generally intermediate between cue‐lure and control offspring. This study provides the first evidence of a next generation effect of fruit fly male lures. While the results of this study support a ‘sexy‐son’ sexual selection mechanism for the evolution of lure response in Bactrocera fruit flies, our discussion urges caution in interpreting our results in this way. 相似文献
19.
Solomon Balagawi S Vijaysegaran Richard A I Drew S Raghu 《Australian Journal of Entomology》2005,44(2):97-103
Abstract In Queensland, three tomato ( Lycopersicon lycopersicum ) cultivars, Grosse Lisse, Roma and Cherry, are infested by Queensland fruit fly, Bactrocera tryoni (Froggatt). In this study, we examined if there was a correlation between oviposition preference and offspring performance of B. tryoni among the three tomato cultivars. We also investigated host plant traits that may explain any variation in preference and performance. Choice and no-choice experiments were carried out under laboratory conditions. A positive correlation between oviposition preference and offspring performance of B. tryoni was observed in the three tomato cultivars. Grosse Lisse and Roma cultivars were highly preferred by B. tryoni over Cherry cultivar. Performance (measured as proportion of eggs developing to the pupal stage) was significantly higher in Grosse Lisse and Roma cultivars than in Cherry cultivar. The pericarp toughness of Cherry cultivar appears responsible for its low rate of infestation, while the presence of 2-butanol and 1,4-butanediamine in Roma and Grosse Lisse, respectively, may partly be responsible for the high oviposition preference shown by B. tryoni towards these cultivars. 相似文献
20.
Pupae of the Queensland fruit fly or Q‐fly Bactrocera tryoni (Froggatt) are irradiated routinely to induce reproductive sterility in adults for use in sterile insect technique programmes. Previous studies suggest that adult sexual performance and survival under nutritional and crowding stress are compromised by the current target dose of radiation for sterilization (70–75 Gy), and that improved mating propensity and survival under stress by irradiated males may be achieved by reducing the target sterilization dose without reducing the level of induced sterility. This raises the question of the amount by which the irradiation dose can be reduced before residual fertility becomes unacceptable. The present study measures the levels of residual fertility in male and female irradiated Q‐flies at different irradiation doses (20, 30, 40, 50, 60 and 70 Gy), and investigates the possibility that fecundity and fertility increase between 10–15 and 30–35 days post emergence. Male flies require a higher dose than females to induce sterility, with no residual fertility found in females irradiated at doses of 50 Gy or above, and no residual fertility found in males irradiated at doses of 60 Gy or above. Irradiated females are more fecund at 30–35 days post emergence than at 10–15 days. However, fertility does not increase between 10 and 15 days post emergence and 30–35 days, even at doses below 50 Gy. The present study shows that there is scope to reduce the target sterilization dose for Q‐flies below that of the current dose range (70–75 Gy) at the same time as retaining an adequate safety margin above radiation doses at which residual fertility can be expected. 相似文献