首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《BBA》2020,1861(2):148133
The respiratory complexes are organized in supramolecular assemblies called supercomplexes thought to optimize cellular metabolism under physiological and pathological conditions. In this study, we used genetically and biochemically well characterized cells bearing the pathogenic microdeletion m.15,649–15,666 (ΔI300-P305) in MT-CYB gene, to investigate the effects of an assembly-hampered CIII on the re-organization of supercomplexes. First, we found that this mutation also affects the stability of both CI and CIV, and evidences the occurrence of a preferential structural interaction between CI and CIII2, yielding a small amount of active CI+CIII2 supercomplex. Indeed, a residual CI+CIII combined redox activity, and a low but detectable ATP synthesis driven by CI substrates are detectable, suggesting that the assembly of CIII into the CI+CIII2 supercomplex mitigates the detrimental effects of MT-CYB deletion. Second, measurements of oxygen consumption and ATP synthesis driven by NADH-linked and FADH2-linked substrates alone, or in combination, indicate a common ubiquinone pool for the two respiratory pathways. Finally, we report that prolonged incubation with rotenone enhances the amount of CI and CIII2, but reduces CIV assembly. Conversely, the antioxidant N-acetylcysteine increases CIII2 and CIV2 and partially restores respirasome formation. Accordingly, after NAC treatment, the rate of ATP synthesis increases by two-fold compared with untreated cell, while the succinate level, which is enhanced by the homoplasmic mutation, markedly decreases. Overall, our findings show that fine-tuning the supercomplexes stability improves the energetic efficiency of cells with the MT-CYB microdeletion.  相似文献   

2.
The protein complexes of the mitochondrial oxidative phosphorylation system were recently reported to form supramolecular assemblies termed respiratory supercomplexes or respirasomes. These supercomplexes are considered to be of great functional importance. Here we review new insights into supercomplex structure and physiology.  相似文献   

3.
The complexes of the mitochondrial respiratory chain assemble into higher-order structures called supercomplexes or respirasomes that are thought to be important in channeling electron flow and controlling ROS production. A number of recent papers identify the first protein factors necessary for supercomplex assembly and stability.  相似文献   

4.
The complexes of the electron transport chain associate into large macromolecular assemblies, which are believed to facilitate efficient electron flow. We have identified a conserved mitochondrial protein, named respiratory supercomplex factor 1 (Rcf1-Yml030w), that is required for the normal assembly of respiratory supercomplexes. We demonstrate that Rcf1 stably and independently associates with both Complex III and Complex IV of the electron transport chain. Deletion of the RCF1 gene caused impaired respiration, probably as a result of destabilization of respiratory supercomplexes. Consistent with the hypothetical function of these respiratory assemblies, loss of RCF1 caused elevated mitochondrial oxidative stress and damage. Finally, we show that knockdown of HIG2A, a mammalian homolog of RCF1, causes impaired supercomplex formation. We suggest that Rcf1 is a member of an evolutionarily conserved protein family that acts to promote respiratory supercomplex assembly and activity.  相似文献   

5.
Supercomplexes are defined associations of protein complexes, which are important for several cellular functions. This "quintenary" organization level of protein structure recently was also described for the respiratory chain of plant mitochondria. Except succinate dehydrogenase (complex II), all complexes of the oxidative phosphorylation (OXPOS) system (complexes I, III, IV and V) were found to form part of supercomplexes. Compositions of these supramolecular structures were systematically investigated using digitonin solubilizations of mitochondrial fractions and two-dimensional Blue-native (BN) polyacrylamide gel electrophoresis. The most abundant supercomplex of plant mitochondria includes complexes I and III at a 1:2 ratio (I1 + III2 supercomplex). Furthermore, some supercomplexes of lower abundance could be described, which have I2 + III4, V2, III2 + IV(1-2), and I1 + III2 + IV(1-4) compositions. Supercomplexes consisting of complexes I plus III plus IV were proposed to be called "respirasome", because they autonomously can carry out respiration in the presence of ubiquinone and cytochrome c. Plant specific alternative oxidoreductases of the respiratory chain were not associated with supercomplexes under all experimental conditions tested. However, formation of supercomplexes possibly indirectly regulates alternative respiratory pathways in plant mitochondria on the basis of electron channeling. In this review, procedures to characterize the supermolecular organization of the plant respiratory chain and results concerning supercomplex structure and function are summarized and discussed.  相似文献   

6.
The enzyme complexes involved in mitochondrial oxidative phosphorylation are organized into higher ordered assemblies termed supercomplexes. Subunits e and g (Su e and Su g, respectively) are catalytically nonessential subunits of the F1F0-ATP synthase whose presence is required to directly support the stable dimerization of the ATP synthase complex. We report here that Su g and Su e are also important for securing the correct organizational state of the cytochrome bc1-cytochrome oxidase (COX) supercomplex. Mitochondria isolated from the Delta su e and Delta su g null mutant strains exhibit decreased levels of COX enzyme activity but appear to have normal COX subunit protein levels. An altered stoichiometry of the cytochrome bc1-COX supercomplex was observed in mitochondria deficient in Su e and/or Su g, and a perturbation in the association of Cox4, a catalytically important subunit of the COX complex, was also detected. In addition, an increase in the level of the TIM23 translocase associated with the cytochrome bc1-COX supercomplex is observed in the absence of Su e and Su g. Together, our data highlight that a further level of complexity exists between the oxidative phosphorylation supercomplexes, whereby the organizational state of one complex, i.e. the ATP synthase, may influence that of another supercomplex, namely the cytochrome bc1-COX complex.  相似文献   

7.
《BBA》2022,1863(7):148591
In mitochondria, complex IV (CIV) can be found as a monomer, a dimer or in association with other respiratory complexes. The atomic structure of the yeast S. cerevisiae CIV in a supercomplex (SC) with complex III (CIII) pointed to a region of significant conformational changes compared to the homologous mammalian CIV structures. These changes involved the matrix side domain of Cox5A at the CIII-CIV interface, and it was suggested that it could be required for SC formation. To investigate this, we solved the structure of the isolated monomeric CIV from S. cerevisiae stabilised in amphipol A8–35 at 3.9 Å using cryo-electron microscopy. Only a minor change in flexibility was seen in this Cox5A region, ruling out large CIV conformational shift for interaction with CIII and confirming the different fold of the yeast Cox5A subunit compared to mammalian homologues. Other differences in structure were the absence of two canonical subunits, Cox12 and Cox13, as well as Cox26, which is unique to the yeast CIV. Their absence is most likely due to the protein purification protocol used to isolate CIV from the III-IV SC.  相似文献   

8.
The mitochondrial oxidative phosphorylation (OXPHOS) system consists of four electron transport chain (ETC) complexes (CI–CIV) and the FoF1-ATP synthase (CV), which sustain ATP generation via chemiosmotic coupling. The latter requires an inward-directed proton-motive force (PMF) across the mitochondrial inner membrane (MIM) consisting of a proton (ΔpH) and electrical charge (Δψ) gradient. CI actively participates in sustaining these gradients via trans-MIM proton pumping. Enigmatically, at the cellular level genetic or inhibitor-induced CI dysfunction has been associated with Δψ depolarization or hyperpolarization. The cellular mechanism of the latter is still incompletely understood. Here we demonstrate that chronic (24 h) CI inhibition in HEK293 cells induces a proton-based Δψ hyperpolarization in HEK293 cells without triggering reverse-mode action of CV or the adenine nucleotide translocase (ANT). Hyperpolarization was associated with low levels of CII-driven O2 consumption and prevented by co-inhibition of CII, CIII or CIV activity. In contrast, chronic CIII inhibition triggered CV reverse-mode action and induced Δψ depolarization. CI- and CIII-inhibition similarly reduced free matrix ATP levels and increased the cell's dependence on extracellular glucose to maintain cytosolic free ATP. Our findings support a model in which Δψ hyperpolarization in CI-inhibited cells results from low activity of CII, CIII and CIV, combined with reduced forward action of CV and ANT.  相似文献   

9.
Stable supercomplexes of bacterial respiratory chain complexes III (ubiquinol:cytochrome c oxidoreductase) and IV (cytochrome c oxidase) have been isolated as early as 1985 (Berry, E. A., and Trumpower, B. L. (1985) J. Biol. Chem. 260, 2458-2467). However, these assemblies did not comprise complex I (NADH:ubiquinone oxidoreductase). Using the mild detergent digitonin for solubilization of Paracoccus denitrificans membranes we could isolate NADH oxidase, assembled from complexes I, III, and IV in a 1:4:4 stoichiometry. This is the first chromatographic isolation of a complete "respirasome." Inactivation of the gene for tightly bound cytochrome c552 did not prevent formation of this supercomplex, indicating that this electron carrier protein is not essential for structurally linking complexes III and IV. Complex I activity was also found in the membranes of mutant strains lacking complexes III or IV. However, no assembled complex I but only dissociated subunits were observed following the same protocols used for electrophoretic separation or chromatographic isolation of the supercomplex from the wild-type strain. This indicates that the P. denitrificans complex I is stabilized by assembly into the NADH oxidase supercomplex. In addition to substrate channeling, structural stabilization of a membrane protein complex thus appears as one of the major functions of respiratory chain supercomplexes.  相似文献   

10.
Respiratory chains are crucial for cellular energy conversion and consist of multi‐subunit complexes that can assemble into supercomplexes. These structures have been intensively characterized in various organisms, but their physiological roles remain unclear. Here, we elucidate their function by leveraging a high‐resolution structural model of yeast respiratory supercomplexes that allowed us to inhibit supercomplex formation by mutation of key residues in the interaction interface. Analyses of a mutant defective in supercomplex formation, which still contains fully functional individual complexes, show that the lack of supercomplex assembly delays the diffusion of cytochrome c between the separated complexes, thus reducing electron transfer efficiency. Consequently, competitive cellular fitness is severely reduced in the absence of supercomplex formation and can be restored by overexpression of cytochrome c. In sum, our results establish how respiratory supercomplexes increase the efficiency of cellular energy conversion, thereby providing an evolutionary advantage for aerobic organisms.  相似文献   

11.
Human mitochondrial complex I (CI) deficiency is associated with progressive neurological disorders. To better understand the CI pathomechanism, we here studied how deletion of the CI gene NDUFS4 affects cell metabolism. To this end we compared immortalized mouse embryonic fibroblasts (MEFs) derived from wildtype (wt) and whole-body NDUFS4 knockout (KO) mice. Mitochondria from KO cells lacked the NDUFS4 protein and mitoplasts displayed virtually no CI activity, moderately reduced CII, CIII and CIV activities and normal citrate synthase and CV (F(o)F(1)-ATPase) activity. Native electrophoresis of KO cell mitochondrial fractions revealed two distinct CI subcomplexes of ~830kDa (enzymatically inactive) and ~200kDa (active). The level of fully-assembled CII-CV was not affected by NDUFS4 gene deletion. KO cells exhibited a moderately reduced maximal and routine O(2) consumption, which was fully inhibited by acute application of the CI inhibitor rotenone. The aberrant CI assembly and reduced O(2) consumption in KO cells were fully normalized by NDUFS4 gene complementation. Cellular [NAD(+)]/[NADH] ratio, lactate production and mitochondrial tetramethyl rhodamine methyl ester (TMRM) accumulation were slightly increased in KO cells. In contrast, NDUFS4 gene deletion did not detectably alter [NADP(+)]/[NADPH] ratio, cellular glucose consumption, the protein levels of hexokinases (I and II) and phosphorylated pyruvate dehydrogenase (P-PDH), total cellular adenosine triphosphate (ATP) level, free cytosolic [ATP], cell growth rate, and reactive oxygen species (ROS) levels. We conclude that the NDUFS4 subunit is of key importance in CI stabilization and that, due to the metabolic properties of the immortalized MEFs, NDUFS4 gene deletion has only modest effects at the live cell level. This article is part of a special issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

12.
We measured the mitochondrial oxidative phosphorylation (mtOXPHOS) activities of all five complexes and determined the activity and gene expression in detail of the Complex III subunits in human breast cancer cell lines and primary tumors. Our analysis revealed dramatic differences in activity of complex III between normal and aggressive metastatic breast cancer cell lines. Determination of Complex III subunit gene expression identified over expression and co-regulation of UQCRFS1 (encoding RISP protein) and UQCRH (encoding Hinge protein) in 6 out of 9 human breast tumors. Analyses of UQCRFS1/RISP expression in additional matched normal and breast tumors demonstrated an over expression in 14 out of 40 (35%) breast tumors. UQCRFS1/RISP knockdown in breast tumor cell line led to decreased mitochondrial membrane potential as well as a decrease in matrigel invasion. Furthermore, reduced matrigel invasion was mediated by reduced ROS levels coinciding with decreased expression of NADPH oxidase 2, 3, 4 and 5 involved in ROS production. These studies provide direct evidence for contribution of impaired mtOXPHOS Complex III to breast tumorigenesis.  相似文献   

13.
The mitochondrial respiratory chain consists of 5 enzyme complexes that are responsible for ATP generation. The paradigm of the electron transport chain as discrete enzymes diffused in the inner mitochondrial membrane has been replaced by the solid state supercomplex model wherein the respiratory complexes associate with each other to form supramolecular complexes. Defects in these supercomplexes, which have been shown to be functionally active and required for forming stable respiratory complexes, have been associated with many genetic and neurodegenerative disorders demonstrating their biomedical significance. In this review, we will summarize the functional and structural significance of supercomplexes and provide a comprehensive review of their assembly and the assembly factors currently known to play a role in this process.  相似文献   

14.
15.
Mitochondria of the strictly aerobic yeast Yarrowia lipolytica contain respiratory complex I with close functional and structural similarity to the mammalian enzyme. Unlike mammalian mitochondria, however, Yarrowia mitochondria have been thought not to contain supercomplexes. Here, we identify respiratory supercomplexes composed of complexes I, III and IV also in Y. lipolytica. Evidence for dimeric complex I suggests further association of respiratory supercomplexes into respiratory strings or patches. Similar supercomplex organization in Yarrowia and mammalian mitochondria further makes this aerobic yeast a useful model for the human oxidative phosphorylation system. The analysis of supercomplexes and their constituent complexes was made possible by 2‐D native electrophoresis, i.e. by using native electrophoresis for both dimensions. Digitonin and blue‐native electrophoresis were generally applied for the initial separation of supercomplexes followed by less mild native electrophoresis variants in the second dimension to release the individual complexes from the supercomplexes. Such 2‐D native systems are useful means to identify the constituent proteins and their copy numbers in detergent‐labile physiological assemblies, since they can reduce the complexity of supramolecular systems to the level of individual complexes.  相似文献   

16.
Cardiolipin (CL) is a mitochondrial phospholipid essential for electron transport chain (ETC) integrity. CL-deficiency in humans is caused by mutations in the tafazzin (Taz) gene and results in a multisystem pediatric disorder, Barth syndrome (BTHS). It has been reported that tafazzin deficiency destabilizes mitochondrial respiratory chain complexes and affects supercomplex assembly. The aim of this study was to investigate the impact of Taz-knockdown on the mitochondrial proteomic landscape and metabolic processes, such as stability of respiratory chain supercomplexes and their interactions with fatty acid oxidation enzymes in cardiac muscle. Proteomic analysis demonstrated reduction of several polypeptides of the mitochondrial respiratory chain, including Rieske and cytochrome c1 subunits of complex III, NADH dehydrogenase alpha subunit 5 of complex I and the catalytic core-forming subunit of F0F1-ATP synthase. Taz gene knockdown resulted in upregulation of enzymes of folate and amino acid metabolic pathways in heart mitochondria, demonstrating that Taz-deficiency causes substantive metabolic remodeling in cardiac muscle. Mitochondrial respiratory chain supercomplexes are destabilized in CL-depleted mitochondria from Taz knockdown hearts resulting in disruption of the interactions between ETC and the fatty acid oxidation enzymes, very long-chain acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, potentially affecting the metabolic channeling of reducing equivalents between these two metabolic pathways. Mitochondria-bound myoglobin was significantly reduced in Taz-knockdown hearts, potentially disrupting intracellular oxygen delivery to the oxidative phosphorylation system. Our results identify the critical pathways affected by the Taz-deficiency in mitochondria and establish a future framework for development of therapeutic options for BTHS.  相似文献   

17.
The Saccharomyces cerevisiae Taz1 protein is the orthologue of human Tafazzin, a protein that when inactive causes Barth Syndrome (BTHS), a severe inherited X-linked disease. Taz1 is a mitochondrial acyltransferase involved in the remodeling of cardiolipin. We show that Taz1 is an outer mitochondrial membrane protein exposed to the intermembrane space (IMS). Transport of Taz1 into mitochondria depends on the receptor Tom5 of the translocase of the outer membrane (TOM complex) and the small Tim proteins of the IMS, but is independent of the sorting and assembly complex (SAM). TAZ1 deletion in yeast leads to growth defects on nonfermentable carbon sources, indicative of a defect in respiration. Because cardiolipin has been proposed to stabilize supercomplexes of the respiratory chain complexes III and IV, we assess supercomplexes in taz1delta mitochondria and show that these are destabilized in taz1Delta mitochondria. This leads to a selective release of a complex IV monomer from the III2IV2 supercomplex. In addition, assembly analyses of newly imported subunits into complex IV show that incorporation of the complex IV monomer into supercomplexes is affected in taz1Delta mitochondria. We conclude that inactivation of Taz1 affects both assembly and stability of respiratory chain complexes in the inner membrane of mitochondria.  相似文献   

18.
Schäfer E  Dencher NA  Vonck J  Parcej DN 《Biochemistry》2007,46(44):12579-12585
The respiratory chain complexes can arrange into multienzyme assemblies, so-called supercomplexes. We present the first 3D map of a respiratory chain supercomplex. It was determined by random conical tilt electron microscopy analysis of a bovine supercomplex consisting of complex I, dimeric complex III, and complex IV (I1III2IV1). Within this 3D map the positions and orientations of all the individual complexes in the supercomplex were determined unambiguously. Furthermore, the ubiquinone and cytochrome c binding sites of each complex in the supercomplex could be located. The mobile electron carrier binding site of each complex was found to be in proximity to the binding site of the succeeding complex in the respiratory chain. This provides structural evidence for direct substrate channeling in the supercomplex assembly with short diffusion distances for the mobile electron carriers.  相似文献   

19.
Assembly of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, requires a concerted activity of a number of chaperones and factors for the insertion of subunits, accessory proteins, cofactors and prosthetic groups. It is now well accepted that the multienzyme complexes of the respiratory chain are organized in vivo as supramolecular functional structures, so-called supercomplexes. Here, we investigate the role of COX17 in the biogenesis of the respiratory chain in HeLa cells. In accordance with its predicted function as a copper chaperone and its role in formation of the binuclear copper centre of cytochrome c oxidase, COX17 siRNA knockdown affects activity and assembly of cytochrome c oxidase. While the abundance of cytochrome c oxidase dimers seems to be unaffected, blue native gel electrophoresis reveals the disappearance of COX-containing supercomplexes as an early response. We observe the accumulation of a novel ∼ 150 kDa complex that contains Cox1, but not Cox2. This observation may indicate that the absence of Cox17 interferes with copper delivery to Cox2, but not to Cox1. We suggest that supercomplex formation is not simply due to assembly of completely assembled complexes. An interdependent assembly scenario for the formation of supercomplexes that rather requires the coordinated synthesis and association of individual complexes, is proposed.  相似文献   

20.
Respiratory chain (RC) complexes are organized into supercomplexes forming 'respirasomes'. The mechanism underlying the interdependence of individual complexes is still unclear. Here, we show in human patient cells that the presence of a truncated COX1 subunit leads to destabilization of complex IV (CIV) and other RC complexes. Surprisingly, the truncated COX1 protein is integrated into subcomplexes, the holocomplex and even into supercomplexes, which however are all unstable. Depletion of the m-AAA protease AFG3L2 increases stability of the truncated COX1 and other mitochondrially encoded proteins, whereas overexpression of wild-type AFG3L2 decreases their stability. Both full-length and truncated COX1 proteins physically interact with AFG3L2. Expression of a dominant negative AFG3L2 variant also promotes stabilization of CIV proteins as well as the assembled complex and rescues the severe phenotype in heteroplasmic cells. Our data indicate that the mechanism underlying pathogenesis in these patients is the rapid clearance of unstable respiratory complexes by quality control pathways, rather than their impaired assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号