首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endoplasmic reticulum (ER) aminopeptidases process antigenic peptide precursors to generate epitopes for presentation by MHC class I molecules and help shape the antigenic peptide repertoire and cytotoxic T-cell responses. To perform this function, ER aminopeptidases have to recognize and process a vast variety of peptide sequences. To understand how these enzymes recognize substrates, we determined crystal structures of ER aminopeptidase 2 (ERAP2) in complex with a substrate analogue and a peptidic product to 2.5 and 2.7 Å, respectively, and compared them to the apo-form structure determined to 3.0 Å. The peptides were found within the internal cavity of the enzyme with no direct access to the outside solvent. The substrate analogue extends away from the catalytic center toward the distal end of the internal cavity, making interactions with several shallow pockets along the path. A similar configuration was evident for the peptidic product, although decreasing electron density toward its C terminus indicated progressive disorder. Enzymatic analysis confirmed that visualized interactions can either positively or negatively impact in vitro trimming rates. Opportunistic side-chain interactions and lack of deep specificity pockets support a limited-selectivity model for antigenic peptide processing by ERAP2. In contrast to proposed models for the homologous ERAP1, no specific recognition of the peptide C terminus by ERAP2 was evident, consistent with functional differences in length selection and self-activation between these two enzymes. Our results suggest that ERAP2 selects substrates by sequestering them in its internal cavity and allowing opportunistic interactions to determine trimming rates, thus combining substrate permissiveness with sequence bias.  相似文献   

2.
3.
Endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2) cooperate to trim antigenic peptide precursors for loading onto MHC class I molecules and help regulate the adaptive immune response. Common coding single nucleotide polymorphisms in ERAP1 and ERAP2 have been linked with predisposition to human diseases ranging from viral and bacterial infections to autoimmunity and cancer. It has been hypothesized that altered Ag processing by these enzymes is a causal link to disease etiology, but the molecular mechanisms are obscure. We report in this article that the common ERAP2 single nucleotide polymorphism rs2549782 that codes for amino acid variation N392K leads to alterations in both the activity and the specificity of the enzyme. Specifically, the 392N allele excises hydrophobic N-terminal residues from epitope precursors up to 165-fold faster compared with the 392K allele, although both alleles are very similar in excising positively charged N-terminal amino acids. These effects are primarily due to changes in the catalytic turnover rate (k(cat)) and not in the affinity for the substrate. X-ray crystallographic analysis of the ERAP2 392K allele suggests that the polymorphism interferes with the stabilization of the N terminus of the peptide both directly and indirectly through interactions with key residues participating in catalysis. This specificity switch allows the 392N allele of ERAP2 to supplement ERAP1 activity for the removal of hydrophobic N-terminal residues. Our results provide mechanistic insight to the association of this ERAP2 polymorphism with disease and support the idea that polymorphic variation in Ag processing enzymes constitutes a component of immune response variability in humans.  相似文献   

4.
Peptide trimming in the endoplasmic reticulum (ER), the final step required for the generation of most HLA class I-binding peptides, implicates the concerted action of two aminopeptidases, ERAP1 and ERAP2. Because defects in the expression of these peptidases could lead to aberrant surface HLA class I expression in tumor cells, we quantitatively assayed 14 EBV-B cell lines and 35 human tumor cell lines of various lineages for: 1) expression and enzymatic activities of ERAP1 and ERAP2; 2) ER peptide-trimming activity in microsomes; 3) expression of HLA class I H chains and TAP1; and 4) surface HLA class I expression. ERAP1 and ERAP2 expression was detectable in all of the EBV-B and tumor cell lines, but in the latter it was extremely variable, sometimes barely detectable, and not coordinated. The expression of the two aminopeptidases corresponded well to the respective enzymatic activities in most cell lines. A peptide-trimming assay in microsomes revealed additional enzymatic activities, presumably contributed by other unidentified aminopeptidases sharing substrate specificity with ERAP2. Interestingly, surface HLA class I expression showed significant correlation with ERAP1 activity, but not with the activity of either ERAP2 or other unidentified aminopeptidases. Transfection with ERAP1 or ERAP2 of two tumor cell lines selected for simultaneous low expression of the two aminopeptidases resulted in the expected, moderate increases of class I surface expression. Thus, low and/or imbalanced expression of ERAP1 and probably ERAP2 may cause improper Ag processing and favor tumor escape from the immune surveillance.  相似文献   

5.
Endoplasmic reticulum aminopeptidase 1 (ERAP1) is a recently discovered enzyme that plays critical roles in antigen presentation and the immune response. Unlike other aminopeptidases, ERAP1 displays strong sequence preferences for residues distal to the peptide-substrate’s N terminus. This unusual substrate specificity necessitates the development of new assays that are appropriate for the study of such aminopeptidases. Here we describe a continuous fluorigenic assay suitable for the analysis of the enzymatic properties of ERAP1. In this assay, signal is generated by the excision of an internally quenched N-terminal tryptophan residue from a 10mer peptide by the aminopeptidase, resulting in the enhancement of tryptophan fluorescence in the solution. This method overcomes the limitations of previously used fluorigenic and high-performance liquid chromatography (HPLC)-based assays and is appropriate for small molecule inhibitor screening as well as for rapid substrate specificity analysis by kinetic competition experiments. Such efficient peptidic fluorigenic substrates like the ones described here should greatly simplify specificity analysis and inhibitor discovery for ERAP1 and similar aminopeptidases.  相似文献   

6.
ERAP1 (endoplasmic reticulum aminopeptidase 1), ERAP2 and IRAP (insulin-regulated aminopeptidase) are three homologous enzymes that play critical roles in the generation of antigenic peptides. These aminopeptidases excise amino acids from N-terminally extended precursors of antigenic peptides in order to generate the correct length epitopes for binding on to MHC class I molecules. The specificity of these peptidases can affect antigenic peptide selection, but has not yet been investigated in detail. In the present study we utilized a collection of 82 fluorigenic substrates to define a detailed selectivity profile for each of the three enzymes and to probe structural and functional features of the S1 (primary specificity) pocket. Molecular modelling of the three S1 pockets reveals substrate-enzyme interactions that are critical determinants for specificity. The substrate selectivity profiles suggest that IRAP largely combines the S1 specificity of ERAP1 and ERAP2, consistent with its proposed biological function. IRAP, however, does not achieve this dual specificity by simply combining structural features of ERAP1 and ERAP2, but rather by an unique amino acid change at position 541. The results of the present study provide insights on antigenic peptide selection and may prove valuable in designing selective inhibitors or activity markers for this class of enzymes.  相似文献   

7.
Endoplasmic reticulum aminopeptidases, ERAP1 and ERAP2, as well as Insulin regulated aminopeptidase (IRAP) play key roles in antigen processing, and have recently emerged as biologically important targets for manipulation of antigen presentation. Taking advantage of the available structural and substrate-selectivity data for these enzymes, we have rationally designed a new series of inhibitors that display low micromolar activity. The selectivity profile for these three highly homologous aminopeptidases provides a promising avenue for modulating intracellular antigen processing.  相似文献   

8.
The endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 contribute to generate HLA class I binding peptides. Recently, we have shown that the expression of these enzymes is high and coordinated (with each other and with HLA class I molecules) in immortalized B cells, but variable and imbalanced in human tumour cell lines of various non-lymphoid lineages. Herein, this issue was investigated in vivo by testing ERAP1 and ERAP2 expression in normal non-lymphoid tissues and their malignant counterparts. ERAP1 and ERAP2 were detected exclusively in the epithelial cells of over half of the tested normal tissues. Four ERAP1/ERAP2 phenotypes (+/+, -/-, +/- and -/+) were detected, and the presence of either or both enzymes was not necessarily associated with HLA class I expression. In more than 160 neoplastic lesions, the expression of either or both aminopeptidases was retained, lost (most frequently, particularly ERAP1) or acquired as compared to the normal counterparts, depending on the tumour histotype. The double-negative (-/-) phenotype was the most frequent, and significantly (P = 0.013) associated with a lack of detectable HLA class I antigens. In selected neoplastic lesions, ERAP1 and ERAP2 were also tested for their enzymatic (peptide-trimming) activities. Expression and function were found to correlate, indicating that immunohistochemistry detects active enzymes in vivo. Thus, dissociation in the expression of ERAP1, ERAP2 and HLA class I may already be present in some normal tissues, but malignant transformation causes additional losses, gains and imbalances in specific tumour histotypes, and these alter the peptide-trimming ability of tumour cells in vivo.  相似文献   

9.

Background

Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims N-terminally extended antigenic peptide precursors down to mature antigenic peptides for presentation by major histocompatibility complex (MHC) class I molecules. ERAP1 has unique properties for an aminopeptidase being able to trim peptides in vitro based on their length and the nature of their C-termini.

Methodology/Principal Findings

In an effort to better understand the molecular mechanism that ERAP1 uses to trim peptides, we systematically analyzed the enzyme''s substrate preferences using collections of peptide substrates. We discovered strong internal sequence preferences of peptide N-terminus trimming by ERAP1. Preferences were only found for positively charged or hydrophobic residues resulting to trimming rate changes by up to 100 fold for single residue substitutions and more than 40,000 fold for multiple residue substitutions for peptides with identical N-termini. Molecular modelling of ERAP1 revealed a large internal cavity that carries a strong negative electrostatic potential and is large enough to accommodate peptides adjacent to the enzyme''s active site. This model can readily account for the strong preference for positively charged side chains.

Conclusions/Significance

To our knowledge no other aminopeptidase has been described to have such strong preferences for internal residues so distal to the N-terminus. Overall, our findings indicate that the internal sequence of the peptide can affect its trimming by ERAP1 as much as the peptide''s length and C-terminus. We therefore propose that ERAP1 recognizes the full length of its peptide-substrate and not just the N- and C- termini. It is possible that ERAP1 trimming preferences influence the rate of generation and the composition of antigenic peptides in vivo.  相似文献   

10.
The oxytocinase subfamily of M1 aminopeptidases consists of three members, ERAP1, ERAP2 and IRAP that play several important biological roles, including key functions in the generation of antigenic peptides that drive human immune responses. They represent emerging targets for pharmacological manipulation of the immune system, albeit lack of selective inhibitors is hampering these efforts. Most of the previously explored small-molecule binders target the active site of the enzymes via strong interactions with the catalytic zinc(II) atom and, while achieving increased potency, they suffer in selectivity. Continuing our earlier efforts on weaker zinc(II) binding groups (ZBG), like the 3,4-diaminobenzoic acid derivatives (DABA), we herein synthesized and biochemically evaluated analogues of nine potentially weak ZBGs, based on differential substitutions of functionalized pyridinone- and pyridinethione-scaffolds, nicotinic-, isonicotinic-, aminobenzoic- and hydrazinobenzoic-acids. Crystallographic analysis of two analogues in complex with a metalloprotease (MMP-12) revealed unexpected binding topologies, consistent with the observed affinities. Our results suggest that the potency of the compounds as inhibitors of ERAP1, ERAP2 and IRAP is primarily driven by the occupation of active-site specificity pockets and their proper orientation within the enzymes.  相似文献   

11.
Birdshot chorioretinopathy is a rare ocular inflammation whose genetic association with HLA-A*29:02 is the highest between a disease and a major histocompatibility complex (MHC) molecule. It belongs to a group of MHC-I-associated inflammatory disorders, also including ankylosing spondylitis, psoriasis, and Behçet''s disease, for which endoplasmic reticulum aminopeptidases (ERAP) 1 and/or 2 have been identified as genetic risk factors. Since both enzymes are involved in the processing of MHC-I ligands, it seems reasonable that common peptide-mediated mechanisms may underlie the pathogenesis of these diseases. In this study, comparative immunopeptidomics was used to characterize >5000 A*29:02 ligands and quantify the effects of ERAP1 polymorphism and expression on the A*29:02 peptidome in human cells. The peptides predominant in an active ERAP1 context showed a higher frequency of nonamers and bulkier amino acid side chains at multiple positions, compared with the peptides predominant in a less active ERAP1 background. Thus, ERAP1 polymorphism has a large influence, shaping the A*29:02 peptidome through length-dependent and length-independent effects. These changes resulted in increased affinity and hydrophobicity of A*29:02 ligands in an active ERAP1 context. The results reveal the nature of the functional interaction between A*29:02 and ERAP1 and suggest that this enzyme may affect the susceptibility to birdshot chorioretinopathy by altering the A*29:02 peptidome. The complexity of these alterations is such that not only peptide presentation but also other potentially pathogenic features could be affected.Several major histocompatibility complex class I (MHC-I)1 alleles are strongly associated with polygenic inflammatory diseases, including birdshot chorioretinopathy (BSCR: A*29:02), ankylosing spondylitis (AS: HLA-B*27), psoriasis (C*06:02), and Behçet''s disease (HLA-B*51). In the three latter disorders, ERAP1, an aminopeptidase of the endoplasmic reticulum performing the final trimming of MHC-I ligands (1, 2), is also a risk factor and is in epistasis with the predisposing MHC-I allele (35). These studies suggest common pathogenetic mechanisms involving the MHC-I bound peptidome. ERAP2, a related enzyme that acts in concert with ERAP1 (6, 7), influences the susceptibility to BSCR (8), AS (although not necessarily in epistasis with HLA-B*27) (9), Crohn′s disease (10), and preeclampsia (1113).BSCR is a rare and severe form of bilateral posterior uveitis, showing a progressive inflammation of the choroid and retina, whose association with HLA-A*29 is the strongest for any disease and MHC. The frequency of this allele is about 7% in healthy individuals but >95% in BSCR patients (14, 15). This association specifically concerns A*29:02 and not the closely related allotype A*29:01 (8).Genetic studies on BSCR also showed a highly significant association within the LNPEP gene (rs7705093) in the 5q15 region, which includes the ERAP1 and ERAP2 genes. One single nucleotide polymorphism (SNP) in this region (rs10044354) correlated with ERAP2 expression. This was confirmed at the protein level, leading to the conclusion that ERAP2 expression predisposes to BSCR. Yet, an involvement of functional ERAP1 polymorphisms, not determining protein expression, was not excluded. These polymorphisms have a large influence on the HLA-B*27 peptidome (16, 17). In contrast, the effects of ERAP2 on MHC-I peptidomes are poorly understood and are probably dependent on the particular ERAP1 context since ERAP2 cooperates with ERAP1 in peptide processing. Thus, the present study was conducted to characterize A*29:02-bound peptidomes in various ERAP1 backgrounds and to determine the influence of ERAP1 polymorphism on the amounts and features of A*29:02 ligands in human cells.  相似文献   

12.
The M42 aminopeptidases are a family of dinuclear aminopeptidases widely distributed in Prokaryotes. They are potentially associated to the proteasome, achieving complete peptide destruction. Their most peculiar characteristic is their quaternary structure, a tetrahedron-shaped particle made of twelve subunits. The catalytic site of M42 aminopeptidases is defined by seven conserved residues. Five of them are involved in metal ion binding which is important to maintain both the activity and the oligomeric state. The sixth conserved residue, a glutamate, is the catalytic base deprotonating the water molecule during peptide bond hydrolysis. The seventh residue is an aspartate whose function remains poorly understood. This aspartate residue, however, must have a critical role as it is strictly conserved in all MH clan enzymes. It forms some kind of catalytic triad with the histidine residue and the metal ion of the M2 binding site. We assess its role in TmPep1050, an M42 aminopeptidase of Thermotoga maritima, through a mutational approach. Asp-62 was substituted with alanine, asparagine, or glutamate residue. The Asp-62 substitutions completely abolished TmPep1050 activity and impeded dodecamer formation. They also interfered with metal ion binding as only one cobalt ion is bound per subunit instead of two. The structure of Asp62Ala variant was solved at 1.5 Å showing how the substitution has an impact on the active site fold. We propose a structural role for Asp-62, helping to stabilize a crucial loop in the active site and to position correctly the catalytic base and a metal ion ligand of the M1 site.  相似文献   

13.
Actinonin is a pseudotripeptide that displays a high affinity towards metalloproteases including peptide deformylases (PDFs) and M1 family aminopeptidases. PDF and M1 family aminopeptidases belong to thermolysin-metzincin superfamily. One of the major differences in terms of substrate binding pockets between these families is presence (in M1 aminopeptidases) or absence (in PDFs) of an S1 substrate pocket. The binding mode of actinonin to PDFs has been established previously; however, it is not clear how the actinonin, without a P1 residue, would bind to the M1 aminopeptidases. Here we describe the crystal structure of Escherichia coli aminopeptidase N (ePepN), a model protein of the M1 family aminopeptidases in complex with actinonin. For comparison we have also determined the structure of ePepN in complex with a well-known tetrapeptide inhibitor, amastatin. From the comparison of the actinonin and amastatin ePepN complexes, it is clear that the P1 residue is not critical as long as strong metal chelating head groups, like hydroxamic acid or α-hydroxy ketone, are present. Results from this study will be useful for the design of selective and efficient hydroxamate inhibitors against M1 family aminopeptidases.  相似文献   

14.
Insulin‐regulated aminopeptidase (IRAP or oxytocinase) is a membrane‐bound zinc‐metallopeptidase that cleaves neuroactive peptides in the brain and produces memory enhancing effects when inhibited. We have determined the crystal structure of human IRAP revealing a closed, four domain arrangement with a large, mostly buried cavity abutting the active site. The structure reveals that the GAMEN exopeptidase loop adopts a very different conformation from other aminopeptidases, thus explaining IRAP's unique specificity for cyclic peptides such as oxytocin and vasopressin. Computational docking of a series of IRAP‐specific cognitive enhancers into the crystal structure provides a molecular basis for their structure–activity relationships and demonstrates that the structure will be a powerful tool in the development of new classes of cognitive enhancers for treating a variety of memory disorders such as Alzheimer's disease.  相似文献   

15.
ER aminopeptidase 1 (ERAP1) customizes antigenic peptide precursors for MHC class I presentation and edits the antigenic peptide repertoire. Coding single nucleotide polymorphisms (SNPs) in ERAP1 were recently linked with predisposition to autoimmune disease, suggesting a link between pathogenesis of autoimmunity and ERAP1-mediated Ag processing. To investigate this possibility, we analyzed the effect that disease-linked SNPs have on Ag processing by ERAP1 in vitro. Michaelis-Menten analysis revealed that the presence of SNPs affects the Michaelis constant and turnover number of the enzyme. Strikingly, specific ERAP1 allele-substrate combinations deviate from standard Michaelis-Menten behavior, demonstrating substrate-inhibition kinetics; to our knowledge, this phenomenon has not been described for this enzyme. Cell-based Ag-presentation analysis was consistent with changes in the substrate inhibition constant K(i), further supporting that ERAP1 allelic composition may affect Ag processing in vivo. We propose that these phenomena should be taken into account when evaluating the possible link between Ag processing and autoimmunity.  相似文献   

16.
The malarial aminopeptidases have emerged as promising new drug targets for the development of novel antimalarial drugs. The M18AAP of Plasmodium falciparum malaria is a metallo-aminopeptidase that we show demonstrates a highly restricted specificity for peptides with an N-terminal Glu or Asp residue. Thus, the enzyme may function alongside other aminopeptidases in effecting the complete degradation or turnover of proteins, such as host hemoglobin, which provides a free amino acid pool for the growing parasite. Inhibition of PfM18AAP's function using antisense RNA is detrimental to the intra-erythrocytic malaria parasite and, hence, it has been proposed as a potential novel drug target. We report the X-ray crystal structure of the PfM18AAP aminopeptidase and reveal its complex dodecameric assembly arranged via dimer and trimer units that interact to form a large tetrahedron shape that completely encloses the 12 active sites within a central cavity. The four entry points to the catalytic lumen are each guarded by 12 large flexible loops that could control substrate entry into the catalytic sites. PfM18AAP thus resembles a proteasomal-like machine with multiple active sites able to degrade peptide substrates that enter the central lumen. The Plasmodium enzyme shows significant structural differences around the active site when compared to recently determined structures of its mammalian and human homologs, which provides a platform from which a rational approach to inhibitor design of new malaria-specific drugs can begin.  相似文献   

17.
The association of ERAP1 with ankylosing spondylitis (AS)1 among HLA-B27-positive individuals suggests that ERAP1 polymorphism may affect pathogenesis by altering peptide-dependent features of the HLA-B27 molecule. Comparisons of HLA-B*27:04-bound peptidomes from cells expressing different natural variants of ERAP1 revealed significant differences in the size, length, and amount of many ligands, as well as in HLA-B27 stability. Peptide analyses suggested that the mechanism of ERAP1/HLA-B27 interaction is a variant-dependent alteration in the balance between epitope generation and destruction determined by the susceptibility of N-terminal flanking and P1 residues to trimming. ERAP1 polymorphism associated with AS susceptibility ensured efficient peptide trimming and high HLA-B27 stability. Protective polymorphism resulted in diminished ERAP1 activity, less efficient trimming, suboptimal HLA-B27 peptidomes, and decreased molecular stability. This study demonstrates that natural ERAP1 polymorphism affects HLA-B27 antigen presentation and stability in vivo and proposes a mechanism for the interaction between these molecules in AS.The mechanism underlying the strong association of HLA-B27 with ankylosing spondylitis (AS) remains unknown. Three main possibilities, each one based on a different molecular feature of HLA-B27, are currently being investigated. The arthritogenic peptide hypothesis (1), based on the canonic antigen-presenting properties of Major Histocompatibility Complex class I (MHC-I) molecules, assumes that a peptide epitope of external origin would activate HLA-B27-restricted T-cells, whose cross-reactivity with a self-derived HLA-B27 ligand would result in autoimmune damage. The misfolding hypothesis (2) is based on the slow folding and tendency to misfold of HLA-B27 (3, 4). An accumulation of misfolded heavy chains (HCs) in the endoplasmic reticulum (ER) would elicit an unfolded protein response and activate pro-inflammatory pathways. The surface homodimer hypothesis (5, 6) is based on the expression of HLA-B27 HC homodimers at the cell surface and their recognition by leukocyte receptors (7), which leads to immunomodulation of inflammatory responses. Because the constitutive binding of endogenous peptides by MHC-I molecules determines not only their antigen-presenting specificity, but also their folding and stability, it was proposed that the HLA-B27 peptidome, through its global influence on the biological behavior of the molecule, is critical to its pathogenetic role (8). This idea found strong support with the discovery of the association of ER aminopeptidase (ERAP) 1 with AS (9) in HLA-B27-positive, but not B27-negative, disease (10). With an estimated population attributable risk of 26%, ERAP1 is the non-MHC gene most strongly associated with AS. Given that ERAP1 is involved in the N-terminal trimming of peptides to their optimal size for MHC-I binding (1113), its association with AS suggests a pathogenetic mechanism of functional interaction with HLA-B27 that influences peptide binding and antigen presentation. ERAP1 trimming is limited by peptide size, becoming highly inefficient for 8-mers and shorter peptides (13, 14). This is a seemingly unique feature of ERAP1 that is not even shared by its analog ERAP2 (14, 15). The only putative exception, which has not been entirely ruled out, might be insulin-regulated amino peptidase (IRAP), an endosomal analog of ERAP1 involved in cross-presentation, but probably not in processing of constitutive MHC-I ligands (16, 17). IRAP degrades peptides to smaller products than ERAP1 in vitro (18). The three-dimensional structure of ERAP1 reveals a substrate binding cavity close to the catalytic site, as well as four domains; the conformational rearrangement between an open and a closed conformation, presumably induced upon substrate binding, regulates its enzymatic activity (19, 20). The polymorphic residues found among natural ERAP1 variants (21), and often co-occurring in complex allotypes, are located in various topological regions, including some in close proximity to the catalytic site, the substrate binding cavity, or domain junctions. Therefore, they might alter ERAP1 activity by directly affecting catalysis, altering substrate binding, or modulating domain rearrangements. The association of ERAP1 with AS does not by itself reveal the specific feature(s) determining the pathogenetic role of HLA-B27. Indeed, ERAP1 might influence the generation of specific pathogenetic epitopes; have a general effect on the HLA-B27 peptidome, altering the stability or other features of the molecule; or both. This study investigated general effects of ERAP1 polymorphism on the HLA-B27 peptidome by comparing the size distribution, molecular features, and N-terminal flanking sequences of peptides from human cells expressing the AS-associated B*27:04 subtype and different natural variants of ERAP1.  相似文献   

18.
Kozlov G  Gehring K  Ekiel I 《Biochemistry》2000,39(10):2572-2580
The solution structure of the second PDZ domain (PDZ2) from human phosphatase hPTP1E has been determined using 2D and 3D heteronuclear NMR experiments. The binding of peptides derived from the C-terminus of the Fas receptor to PDZ2 was studied via changes in backbone peptide and protein resonances. The structure is based on a total of 1387 nonredundant experimental NMR restraints including 1261 interproton distance restraints, 45 backbone hydrogen bonds, and 81 torsion angle restraints. Analysis of 30 lowest-energy structures resulted in rmsd values of 0.41 +/- 0.09 A for backbone atoms (N, Calpha, C') and 1.08 +/- 0.10 A for all heavy atoms, excluding the disordered N- and C-termini. The hPTP1E PDZ2 structure is similar to known PDZ domain structures but contains two unique structural features. In the peptide binding domain, the first glycine of the GLGF motif is replaced by a serine. This serine appears to replace a bound water observed in PDZ crystal structures that hydrogen bonds to the bound peptide's C-terminus. The hPTP1E PDZ2 structure also contains an unusually large loop following strand beta2 and proximal to the peptide binding site. This well-ordered loop folds back against the PDZ domain and contains several residues that undergo large amide chemical shift changes upon peptide binding. Direct observation of peptide resonances demonstrates that as many as six Fas peptide residues interact with the PDZ2 domain.  相似文献   

19.
Immunological homology was shown between the active site regions of pig and rabbit aminopeptidases N and between those of the corresponding aminopeptidases A. However, no homology was detectable between the aminopeptidases N and A (EC 3.4.11.-) in a given species. The dimeric structure of pig aminopeptidases did not significantly modify their catalytic properties in aqueous solution compared to those of the monomeric rabbit enzymes. Only a slight difference in binding conditions was noted in the case of aminopeptidases N. Aminopeptidase A activity towards acidic substrates was enhanced by physiological concentrations of Ca2+ while that towards neutral substrates was considerably reduced. Therefore, acidic amino acid residues in proteins and peptides may be assumed to be mostly split off in vivo by aminopeptidase A, neutral residues by aminopeptidases N and basic residues by both enzymes. The respective specificity of aminopeptidase A and N for acidic and neutral amino acid residues was found to be mainly due to a more productive binding mode of the substrate rather than to a better affinity.  相似文献   

20.
In the classical human leukocyte antigen (HLA) class I antigen processing and presentation pathway, the antigenic peptides are generated from viral proteins by multiple proteolytic cleavages of the proteasome (and in some cases other cytosolic proteases) and transported to the endoplasmic reticulum (ER) lumen where they are exposed to aminopeptidase activity. In human cells, two different ER-resident enzymes, ERAP1 and ERAP2, can trim the N-terminally extended residues of peptide precursors. In this study, the possible cooperative effect of generating five naturally processed HLA-B27 ligands by both proteases was analyzed. We identified differences in the products obtained with increased detection of natural HLA-B27 ligands by comparing double versus single enzyme digestions by mass spectrometry analysis. These in vitro data suggest that each enzyme can use the degradation products of the other as a substrate for new N-terminal trimming, indicating concerted aminoproteolytic activity of ERAP 1 and ERAP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号