首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Ethambutol (EMB) is a first line drug in tuberculosis treatment inhibiting the biosynthesis of arabinogalactan, which is a component of the mycobacterial cell wall. The growth of Mycobacterium vaccae cells in the presence of EMB increases cell wall permeability, which was monitored by beta-sitosterol biotransformation. GC/MS and GLC/MS (gas chromatography/mass spectrometry) analysis revealed dramatic changes in the content of covalently bound mycolic acids and in molar ratio galactose (Gal) to arabinose (Ara) in the cell envelopes of EMB-treated cells. The detected variations in the compositions of fatty acids indicate that both the cell wall skeleton and outer layer (free lipids) are decomposed due to EMB treatment.  相似文献   

2.
The cell wall of mycobacteria consists of an outer membrane, analogous to that of gram-negative bacteria, attached to the peptidoglycan (PG) via a connecting polysaccharide arabinogalactan (AG). Although the primary structure of these components is fairly well deciphered, issues such as the coverage of the PG layer by covalently attached mycolates in the outer membrane and the spatial details of the mycolic acid attachment to the arabinan have remained unknown. It is also not understood how these components work together to lead to the classical acid-fast staining of mycobacteria. Because the majority of Mycobacterium tuberculosis bacteria in established experimental animal infections are acid-fast negative, clearly cell wall changes are occurring. To address both the spatial properties of mycobacterial cell walls and to begin to study the differences between bacteria grown in animals and cultures, the cell walls of Mycobacterium leprae grown in armadillos was characterized and compared with that of M. tuberculosis grown in culture. Most fundamentally, it was determined that the cell wall of M. leprae contained significantly more mycolic acids attached to PG than that of in vitro grown M. tuberculosis (mycolate:PG ratios of 21:10 versus 16:10, respectively). In keeping with this difference, more arabinogalactan (AG) molecules, linking the mycolic acids to PG, were found. Differences in the structures of the AG were also found; the AG of M. leprae is smaller than that of M. tuberculosis, although the same basic structural motifs are retained.  相似文献   

3.
For the chemotaxonomic classification of actinomycetes, we developed a new method for the detection of the 2, 6-diaminopimelic acid (A(2)pm) stereoisomers and 3-hydroxy diaminopimelic acid (3-OH A(2)pm) in the cell wall peptidoglycan of actinomycetes using "the advanced Marfey's method", which consists of a chromatographic technique for the separation of amino acids into each of its enantiomers by derivatization with 1-fluoro-2, 4-dinitrophenyl-5-L-luecinamide (L-FDLA) and D-FDLA, and a detection method using liquid chromatography/mass spectrometry (LC/MS). This method was successfully applied to determine the absolute configuration of the A(2)pm and detect the 3-OH A(2)pm included in the cell wall peptidoglycan of the standard strains. Because the procedure can be performed with very small amounts of an amino acid, it was possible to use one colony from an agar plate of the actinomycetes for the acid hydrolysis. In addition, the constituent amino acids and their absolute configurations in the cell wall of the actinomycetes could be simultaneously determined. Thus, a reliable, sensitive and rapid analytical method for amino acids including A(2)pm in the peptidoglycan of the microorganisms was established.  相似文献   

4.
Payne KM  Hatfull GF 《PloS one》2012,7(3):e34052
The mycobacterial cell wall presents significant challenges to mycobacteriophages--viruses that infect mycobacterial hosts--because of its unusual structure containing a mycolic acid-rich mycobacterial outer membrane attached to an arabinogalactan layer that is in turn linked to the peptidoglycan. Although little is known about how mycobacteriophages circumvent these barriers during the process of infection, destroying it for lysis at the end of their lytic cycles requires an unusual set of functions. These include Lysin B proteins that cleave the linkage of mycolic acids to the arabinogalactan layer, chaperones required for endolysin delivery to peptidoglycan, holins that regulate lysis timing, and the endolysins (Lysin As) that hydrolyze peptidoglycan. Because mycobacterial peptidoglycan contains atypical features including 3→3 interpeptide linkages, it is not surprising that the mycobacteriophage endolysins also have non-canonical features. We present here a bioinformatic dissection of these lysins and show that they are highly diverse and extensively modular, with an impressive number of domain organizations. Most contain three domains with a novel N-terminal predicted peptidase, a centrally located amidase, muramidase, or transglycosylase, and a C-terminal putative cell wall binding domain.  相似文献   

5.
Mycolic acids are essential components of the cell walls of bacteria belonging to the suborder Corynebacterineae, including the important human pathogens Mycobacterium tuberculosis and Mycobacterium leprae. Mycolic acid biosynthesis is complex and the target of several frontline antimycobacterial drugs. The condensation of two fatty acids to form a 2-alkyl-3-keto mycolate precursor and the subsequent reduction of this precursor represent two key and highly conserved steps in this pathway. Although the enzyme catalyzing the condensation step has recently been identified, little is known about the putative reductase. Using an extensive bioinformatic comparison of the genomes of M. tuberculosis and Corynebacterium glutamicum, we identified NCgl2385, the orthologue of Rv2509 in M. tuberculosis, as a potential reductase candidate. Deletion of the gene in C. glutamicum resulted in a slow growing strain that was deficient in arabinogalactan-linked mycolates and synthesized abnormal forms of the mycolate-containing glycolipids trehalose dicorynomycolate and trehalose monocorynomycolate. Analysis of the native and acetylated trehalose glycolipids by MALDI-TOF mass spectrometry indicated that these novel glycolipids contained an unreduced beta-keto ester. This was confirmed by analysis of sodium borodeuteride-reduced mycolic acids by gas chromatography mass spectrometry. Reintroduction of the NCgl2385 gene into the mutant restored the transfer of mature mycolic acids to both the trehalose glycolipids and cell wall arabinogalactan. These data indicate that NCgl2385, which we have designated CmrA, is essential for the production of mature trehalose mycolates and subsequent covalent attachment of mycolic acids onto the cell wall, thus representing a focus for future structural and pathogenicity studies.  相似文献   

6.
The mycobacterial cell envelope consists of a characteristic cell wall skeleton (CWS), a mycoloyl arabinogalactan peptidoglycan complex, and related hydrophobic components that contribute to the cell surface properties. Since mycolic acids have recently been reported to play crucial roles in host immune response, detailed molecular characterization of mycolic acid subclasses and sub-subclasses of CWS from Mycobacterium bovis BCG Tokyo 172 (SMP-105) was performed. Mycolic acids were liberated by alkali hydrolysis from SMP-105, and their methyl esters were separated by silica gel TLC into three subclasses: alpha-, methoxy-, and keto-mycolates. Each mycolate subclass was further separated by silver nitrate (AgNO(3))-coated silica gel TLC into sub-subclasses. Molecular weights of individual mycolic acid were determined by MALDI-TOF mass spectrometry. alpha-Mycolates were sub-grouped into cis, cis-dicyclopropanoic (alpha1), and cis-monocyclopropanoic-cis-monoenoic (alpha2) series; methoxy-mycolates were sub-grouped into cis-monocyclopropanoic (m1), trans-monocyclopropanoic (m2), trans-monoenoic (m3), cis-monocyclopropanoic-trans-monoenoic (m4), cis-monoenoic (m5), and cis-monocyclopropanoic-cis-monoenoic (m6) series; and keto-mycolates were sub-grouped into cis-monocyclopropanoic (k1), trans-monocyclopropanoic (k2), trans-monoenoic (k3), cis-monoenoic (k4), and cis-monocyclopropanoic-cis-monoenoic (k5) series. The position of each functional group, including cyclopropane rings and methoxy and keto groups, was determined by analysis of the meromycolates with fast atom bombardment (FAB) mass spectrometry and FAB mass-mass spectrometry, and the cis/trans ratio of cyclopropane rings and double bonds were determined by NMR analysis of methyl mycolates. Mycolic acid subclass and molecular species composition of SMP-105 showed characteristic features including newly-identified cis-monocyclopropanoic-trans-monoenoic mycolic acid (m4).  相似文献   

7.
The mycobacterial cell wall is extraordinarily thick and tight consisting mainly of (1). long chain fatty acids, the mycolic acids, and (2). a unique polysaccharide, arabinogalactan (AG). These two chemical constituents are covalently linked through ester bonds. Minnikin (The Biology of the Mycobacteria; Academic: London, 1982) proposed that the mycobacterial cell wall is composed of an asymmetric lipid bilayer. The inner leaflet of the cell wall contains mycolic acids covalently linked to AG. This inner leaflet is believed to have the lowest permeability to organic compounds of the overall cell wall. Conformational search and molecular dynamics simulation were used to explore the conformational profile of AG and the conformations and structural organization of the mycolic acid-AG complex, and overall, an inner leaflet molecular model of the cell wall was constructed. The terminal arabinose residues of AG that serve as linkers between AG and mycolic acids were found to exist in four major chemical configurations. The mycolate hydrocarbon chains were determined to be tightly packed and perpendicular to the "plane" formed by the oxygen atoms of the 5-hydroxyl groups of the terminal arabinose residues. For Mycobacterium tuberculosis, the average packing distance between mycolic acids is estimated to be approximately 7.3 A. Thus, Minnikin's model is supported by this computational study. Overall, this modeling and simulation approach provides a way to probe the mechanism of low permeability of the cell wall and the intrinsic drug resistance of M. tuberculosis. In addition, monolayer models were built for both dipalmitoylphosphatidylethanolamine and dimyristoylphosphatidylcholine, two common phospholipids in bacterial and animal membranes, respectively. Structural comparisons of these cell wall phospholipid membrane models were made to the M. tuberculosis cell wall model.  相似文献   

8.
The long-posed question of the nature of the link between the mycolylarabinogalactan and the underlying peptidoglycan of the cell walls of Mycobacterium sp. has been addressed. The insoluble cell wall matrix of Mycobacterium leprae, Mycobacterium tuberculosis, and Mycobacterium bovis was partially hydrolyzed with acid either before or after per-O-methylation and the resulting oligosaccharides further derivatized and analyzed by gas chromatography/mass spectrometry. The structures of fragments arising from the reducing end of arabinogalactan demonstrated the existence of the terminal sequence----5)-D-Galf-(1----4)-L-Rhap-(1---3)-D-GlcNAc. Other analyses confirmed the presence of muramyl-6-P within the peptidoglycan of these mycobacteria. Based on the acid lability of the 3-linked GlcNAc unit, the presence of about equimolar amounts of Rhap-(1----3)-D-GlcNAc and muramyl-6-P in an isolated cell wall fragment, and 31P NMR analysis, it was concluded that the GlcNAc residue of the terminal triglycosyl unit of arabinogalactan is joined by 1-O-phosphoryl linkage to the 6-position of some muramyl residues within the peptidoglycan. Thus, it is reasoned that the massive mycolylarabinogalactan of mycobacteria, responsible for aspects of disease pathogenesis and much of the antibody response in infections, is attached to the peptidoglycan framework by the actinomycete-specific diglycosylphosphoryl bridge, L-Rhap-(1----3)-D-GlcNAc-(1----P, perhaps thereby providing a unique target for site-directed chemotherapy of mycobacterial infections.  相似文献   

9.
The arabinogalactan (AG) of Corynebacterianeae is a critical macromolecule that tethers mycolic acids to peptidoglycan, thus forming a highly impermeable cell wall matrix termed the mycolyl-arabinogalactan peptidoglycan complex (mAGP). The front line anti-tuberculosis drug, ethambutol (Emb), targets the Mycobacterium tuberculosis and Corynebacterium glutamicum arabinofuranosyltransferase Mt-EmbA, Mt-EmbB and Cg-Emb enzymes, respectively, which are responsible for the biosynthesis of the arabinan domain of AG. The substrate utilized by these important glycosyltransferases, decaprenylmonophosphoryl-D-arabinose (DPA), is synthesized via a decaprenylphosphoryl-5-phosphoribose (DPPR) synthase (UbiA), which catalyzes the transfer of 5-phospho-ribofuranose-pyrophosphate (pRpp) to decaprenol phosphate to form DPPR. Glycosyl compositional analysis of cell walls extracted from a C. glutamicum::ubiA mutant revealed a galactan core consisting of alternating beta(1-->5)-Galf and beta(1-->6)-Galf residues, completely devoid of arabinan and a concomitant loss of cell-wall-bound mycolic acids. In addition, in vitro assays demonstrated a complete loss of arabinofuranosyltransferase activity and DPA biosynthesis in the C. glutamicum::ubiA mutant when supplemented with p[14C]Rpp, the precursor of DPA. Interestingly, in vitro arabinofuranosyltransferase activity was restored in the C. glutamicum::ubiA mutant when supplemented with exogenous DP[14C]A substrate, and C. glutamicum strains deficient in ubiA, emb, and aftA all exhibited different levels of DPA biosynthesis.  相似文献   

10.
The cell wall of Mycobacterium tuberculosis has a complex ultrastructure that consists of mycolic acids connected to peptidoglycan via arabinogalactan (AG) and abbreviated as the mAGP complex. The mAGP complex is crucial for the survival and pathogenicity of M. tuberculosis and is the target of several anti-tubercular agents. Apart from sharing a similar mAGP and the availability of the complete genome sequence, Corynebacterium glutamicum has proven useful in the study of orthologous M. tuberculosis genes essential for viability. Here we examined the effects of particular genes involved in AG polymerization by gene deletion in C. glutamicum. The anti-tuberculosis drug ethambutol is thought to target a set of arabinofuranosyltransferases (Emb) that are involved in arabinan polymerization. Deletion of emb in C. glutamicum results in a slow growing mutant with profound morphological changes. Chemical analysis revealed a dramatic reduction of arabinose resulting in a novel truncated AG structure possessing only terminal arabinofuranoside (t-Araf) residues with a corresponding loss of cell wall bound mycolic acids. Treatment of wild-type C. glutamicum with ethambutol and subsequent cell wall analyses resulted in an identical phenotype comparable to the C. glutamicum emb deletion mutant. Additionally, disruption of ubiA in C. glutamicum, the first enzyme involved in the biosynthesis of the sugar donor decaprenol phosphoarabinose (DPA), resulted in a complete loss of cell wall arabinan. Herein, we establish for the first time, (i) that in contrast to M. tuberculosis embA and embB mutants, deletion of C. glutamicum emb leads to a highly truncated AG possessing t-Araf residues, (ii) the exact site of attachment of arabinan chains in AG, and (iii) DPA is the only Araf sugar donor in AG biosynthesis suggesting the presence of a novel enzyme responsible for "priming" the galactan domain for further elaboration by Emb, resulting in the final maturation of the native AG polysaccharide.  相似文献   

11.
Nocardomycolic acids from Nocardia rubra were fully separated and characterized by a combination of argentation thin-layer chromatography and gas chromatography — mass spectrometry (GCMS). The occurrence of 20 or more different molecular species of mycolic acids was demonstrated. GCMS analysis of each subclass of mycolic acids after separation on AgNO3 thin-layer chromatography revealed that in general the major species consisted of the even-carbon mycolic acids ranging from C38 to C52. However, the most abundant species differed by the subclasses; C44 being in saturated, C46 in monoenoic and C46 in dienoic mycolic acids, respectively. All these acids were shown to possess C12 or C14 alkyl branch at 2 position, while double bonds were located in longer straight chain alkyl unit.By using this method, distinctive changes in mycolic acid composition by growth temperature were observed. The ratios of saturated, monoenoic to dienoic mycolic acids in a mixture of certain carbon numbered mycolic acids varied greatly, according to the shift of growth temperature. The mass fragmentographic analysis, monitoring M-15 ions derived from the loss of methyl group from the molecular ions showed the lower temperature (15°C) grown cells contained more unsaturated (especially dienoic) mycolic acids, while the higher temperature (40°C) grown cells contained more saturated mycolic acids in both extractable and cell-wall bound lipids. These changes in mycolic acid composition occurred shortly after shifting up the growth temperature from 20°C to 43°C at a logarithmic stage of the bacterial growth.  相似文献   

12.
A mutant strain of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids was recently isolated (Liu, J., and Nikaido, H. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 4011-4016). This mutant failed to synthesize full-length mycolic acids and accumulated a series of long chain beta-hydroxymeromycolates. In this work, we provide a detailed characterization of the localization of meromycolates and of the cell wall structure of the mutant. Thin layer chromatography showed that the insoluble cell wall matrix remaining after extraction with chloroform/methanol and SDS still contained a large portion of the total meromycolates. Matrix-assisted laser desorption/ionization and electrospray ionization mass spectroscopy analysis of fragments arising from Smith degradation of the insoluble cell wall matrix revealed that the meromycolates were covalently attached to arabinogalactan at the 5-OH positions of the terminal arabinofuranosyl residues. The arabinogalactan appeared to be normal in the mutant strain, as analyzed by NMR. Analysis of organic phase lipids showed that the mutant cell wall contained some of the extractable lipids but lacked glycopeptidolipids and lipooligosaccharides. Differential scanning calorimetry of the mutant cell wall failed to show the large cooperative thermal transitions typical of intact mycobacterial cell walls. Transmission electron microscopy showed that the mutant cell wall had an abnormal ultrastructure (without the electron-transparent zone associated with the asymmetric mycolate lipid layer). Taken together, these results demonstrate the importance of mycolic acids for the structural and functional integrity of the mycobacterial cell wall. The lack of highly organized lipid domains in the mutant cell wall explains the drug-sensitive and temperature-sensitive phenotypes of the mutant.  相似文献   

13.
Small amounts of free mycolic acids and trehalose dimycolate that are rapidly formed by Mycobacterium tuberculosis H37Ra are probably derived from mycolyl acetyl trehalose and transferred to the cell wall. However, the transfer of mycolic acids from mycolyl acetyl trehalose to the cell wall still appears to be the more prominent route.  相似文献   

14.
Mycolic acids constitute the waxy layer of the outer cell wall of Mycobacterium spp. and a few other genera. They are diverse in structure, providing a unique chromatographic foot-print for almost each of the more than 70 Mycobacterium species. Although mainly esterified to cell wall arabinogalactan, trehalose or glucose, some free mycolic acid is secreted during in vitro growth of Mycobacterium tuberculosis. In M. tuberculosis, α-, keto- and methoxy-mycolic acids are the main classes, each differing in their ability to attract neutrophils, induce foamy macrophages or adopt an antigenic structure for antibody recognition. Of interest is their particular relationship to cholesterol, discovered by their ability to attract cholesterol, to bind Amphotericin B or to be recognised by monoclonal antibodies that cross-react with cholesterol. The structural elements that determine this diverse functionality include the carboxylic acid in the mycolic motif, as well as the nature and stereochemistry of the two functional groups in the merochain. The functional diversity of mycolic acid classes implies that much information may be contained in the selective expression and secretion of mycolic acids to establish tuberculosis after infection of the host. Their cholesteroid nature may relate to how they utilize host cholesterol for their persistent survival.  相似文献   

15.
An overview is presented of gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS), the two major hyphenated techniques employed in metabolic profiling that complement direct 'fingerprinting' methods such as atmospheric pressure ionization (API) quadrupole time-of-flight MS, API Fourier transform MS, and NMR. In GC/MS, the analytes are normally derivatized prior to analysis in order to reduce their polarity and facilitate chromatographic separation. The electron ionization mass spectra obtained are reproducible and suitable for library matching, mass spectral collections being readily available. In LC/MS, derivatization and library matching are at an early stage of development and mini-reviews are provided. Chemical derivatization can dramatically increase the sensitivity and specificity of LC/MS methods for less polar compounds and provides additional structural information. The potential of derivatization for metabolic profiling in LC/MS is demonstrated by the enhanced analysis of plant extracts, including the potential to measure volatile acids such as formic acid, difficult to achieve by GC/MS. The important role of mass spectral library creation and usage in these techniques is discussed and illustrated by examples.  相似文献   

16.
The influence of the carbon source on cell wall properties was analyzed in an efficient alkane-degrading strain of Rhodococcus erythropolis (strain E1), with particular focus on the mycolic acid content. A clear correlation was observed between the carbon source and the mycolic acid profiles as estimated by high-performance liquid chromatography and mass spectrometry. Two types of mycolic acid patterns were observed after growth either on saturated linear alkanes or on short-chain alkanoates. One type of pattern was characterized by the lack of odd-numbered carbon chains and resulted from growth on linear alkanes with even numbers of carbon atoms. The second type of pattern was characterized by mycolic acids with both even- and odd-numbered carbon chains and resulted from growth on compounds with odd-numbered carbon chains, on branched alkanes, or on mixtures of different compounds. Cellular short-chain fatty acids were twice as abundant during growth on a branched alkane (pristane) as during growth on acetate, while equal amounts of mycolic acids were found under both conditions. More hydrocarbon-like compounds and less polysaccharide were exposed at the cell wall surface during growth on alkanes. Whatever the substrate, the cells had the same affinity for aqueous-nonaqueous solvent interfaces. By contrast, bacteria displayed completely opposite susceptibilities to hydrophilic and hydrophobic antibiotics and were found to be strongly stained by hydrophobic dyes after growth on pristane but not after growth on acetate. Taken together, these data show that the cell wall composition of R. erythropolis E1 is influenced by the nutritional regimen and that the most marked effect is a radical change in cell wall permeability.  相似文献   

17.
The influence of the carbon source on cell wall properties was analyzed in an efficient alkane-degrading strain of Rhodococcus erythropolis (strain E1), with particular focus on the mycolic acid content. A clear correlation was observed between the carbon source and the mycolic acid profiles as estimated by high-performance liquid chromatography and mass spectrometry. Two types of mycolic acid patterns were observed after growth either on saturated linear alkanes or on short-chain alkanoates. One type of pattern was characterized by the lack of odd-numbered carbon chains and resulted from growth on linear alkanes with even numbers of carbon atoms. The second type of pattern was characterized by mycolic acids with both even- and odd-numbered carbon chains and resulted from growth on compounds with odd-numbered carbon chains, on branched alkanes, or on mixtures of different compounds. Cellular short-chain fatty acids were twice as abundant during growth on a branched alkane (pristane) as during growth on acetate, while equal amounts of mycolic acids were found under both conditions. More hydrocarbon-like compounds and less polysaccharide were exposed at the cell wall surface during growth on alkanes. Whatever the substrate, the cells had the same affinity for aqueous-nonaqueous solvent interfaces. By contrast, bacteria displayed completely opposite susceptibilities to hydrophilic and hydrophobic antibiotics and were found to be strongly stained by hydrophobic dyes after growth on pristane but not after growth on acetate. Taken together, these data show that the cell wall composition of R. erythropolis E1 is influenced by the nutritional regimen and that the most marked effect is a radical change in cell wall permeability.  相似文献   

18.
Fatty acid methyl ester analysis (FAME) by gas chromatography coupled to mass spectrometry (GC‐MS) is a widely used technique in biodiesel/bioproduct (e.g. poly‐unsaturated fatty acids, PUFA) research but typically does not allow distinguishing between bound and free fatty acids. To understand and optimize biosynthetic pathways, however, the origin of the fatty acid is an important information. Furthermore the annotation of PUFAs is compromised in classical GC‐EI‐MS because the precursor molecular ion is missing. In the present protocol an alkaline methyl esterification step with TMS derivatization enabling the simultaneous analysis of bound and free fatty acids but also further lipids such as sterols in one GC‐MS chromatogram is combined. This protocol is applied to different lipid extracts from single cell algae to higher plants: Chlorella vulgaris, Chlamydomonas reinhardtii, Coffea arabica, Pisum sativum and Cuscuta japonica. Further, field ionization (GC‐FI‐MS) is introduced for a better annotation of fatty acids and exact determination of the number of double bonds in PUFAs. The proposed workflow provides a convenient strategy to analyze algae and other plant crop systems with respect to their capacity for third generation biodiesel and high‐quality bioproducts for nutrition such as PUFAs.  相似文献   

19.
Mycobacterium tuberculosis arabinogalactan (AG) is an essential cell wall component. It provides a molecular framework serving to connect peptidoglycan to the outer mycolic acid layer. The biosynthesis of the arabinan domains of AG and lipoarabinomannan (LAM) occurs via a combination of membrane bound arabinofuranosyltransferases, all of which utilize decaprenol-1-monophosphorabinose as a substrate. The source of arabinose ultimately destined for deposition into cell wall AG or LAM originates exclusively from phosphoribosyl-1-pyrophosphate (pRpp), a central metabolite which is also required for other essential metabolic processes, such as de novo purine and pyrimidine biosyntheses. In M. tuberculosis, a single pRpp synthetase enzyme (Mt-PrsA) is solely responsible for the generation of pRpp, by catalyzing the transfer of pyrophosphate from ATP to the C1 hydroxyl position of ribose-5-phosphate. Here, we report a detailed biochemical and biophysical study of Mt-PrsA, which exhibits the most rapid enzyme kinetics reported for a pRpp synthetase.  相似文献   

20.
Cell envelope composition and organisation in the genus Rhodococcus   总被引:2,自引:0,他引:2  
A knowledge of the organisation of the rhodococcal cell envelope is of fundamental importance if the environmental and biotechnological significance of these bacteria are to be understood and succesfully exploited. The genus Rhodococcus belongs to a distinctive suprageneric taxon, the mycolata, which includes among others the genera Corynebacterium, Mycobacterium and Nocardia. Members of this taxon exhibit an unusual complexity in their cell envelope composition and organisation compared to other Gram-positive bacteria. Models that describe the architecture of the mycobacterial cell envelope are extrapolated here to provide a model of the rhodococcal cell envelope. The rhodococcal cell envelope is dominated by the presence of an arabinogalactan cell wall polysaccharide and large 2-alkyl 3-hydroxy branched-chain fatty acids, the mycolic acids, which are covalently assembled into a peptidoglycan–arabinogalactan–mycolic acid matrix. This review further emphasises that the mycolic acids in this complex form the basis of an outer lipid permeability barrier. The localisation and roles of other cell envelope components, notably complex free lipids, lipoglycans, proteins and lipoproteins are also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号