首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
RANKL induces the formation of osteoclasts, which are responsible for bone resorption. Herein, we investigated the role of SWAP-70-like adapter of T cells (SLAT) in RANKL-induced osteoclastogenesis. Expression levels of SLAT were reduced during RANKL-induced osteoclastogenesis. Overexpression of SLAT in BMMs inhibited TRAP-positive multinuclear osteoclast formation and attenuated the expression of NFATc1, which is an important modulator in osteoclastogenesis. Furthermore, silencing of SLAT by RNA interference enhanced osteoclast formation as well as NFATc1 expression. In addition, SLAT was involved in RANKL-induced JNK activation in osteoclasts. Taken together, our data suggest that SLAT acts as a negative modulator of RANKL-induced osteoclastogenesis.  相似文献   

4.
5.
6.
Recent studies have reported that activin A enhances osteoclastogenesis in cultures of mouse bone marrow cells stimulated with receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). However, the exact mechanisms by which activin A functions during osteoclastogenesis are not clear. RANKL stimulation of RANK/TRAF6 signaling increases nuclear factor-kappaB (NFkappaB) nuclear translocation and activates the Akt/PKB cell survival pathway. Here we report that activin A alone activates IkappaB-alpha, and stimulates nuclear translocation of NFkappaB and receptor activator of nuclear factor-kappaB (RANK) expression for osteoclastogenesis, but not Akt/PKB survival signal transduction including BAD and mammalian target of rapamycin (mTOR) for survival in osteoclast precursors in vitro. Activin A alone failed to activate Akt, BAD, and mTOR by immunoblotting, and it also failed to prevent apoptosis in osteoclast precursors. While activin A activated IkappaB-alpha and induced nuclear translocation of phosphorylated-NFkappaB, and it also enhanced RANK expression in osteoclast precursors. Moreover, activin A enhanced RANKL- and M-CSF-stimulated nuclear translocation of NFkappaB. Our data suggest that activin A enhances osteoclastogenesis treated with RANKL and M-CSF via stimulation of RANK, thereby increasing the RANKL stimulation. Activin A alone activated the NFkappaB pathway, but not survival in osteoclast precursors in vitro, but it is, thus, insufficient as a sole stimulus to osteoclastogenesis.  相似文献   

7.
Tetracycline antibiotics, including doxycycli\e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.  相似文献   

8.
Osteoblasts or bone marrow stromal cells are required as supporting cells for the in vitro differentiation of osteoclasts from their progenitor cells. Soluble receptor activator of nuclear factor-kappaB ligand (RANKL) in the presence of macrophage colony-stimulating factor (M-CSF) is capable of replacing the supporting cells in promoting osteoclastogenesis. In the present study, using Balb/c-derived cultures, osteoclast formation in both systems-osteoblast/bone-marrow cell co-cultures and in RANKL-induced osteoclastogenesis-was inhibited by antibody to tumor necrosis factor-alpha (TNF-alpha), and was enhanced by the addition of this cytokine. TNF-alpha itself promoted osteoclastogenesis in the presence of M-CSF. However, even at high concentrations of TNF-alpha the efficiency of this activity was much lower than the osteoclastogenic activity of RANKL. RANKL increased the level of TNF-alpha mRNA and induced TNF-alpha release from osteoclast progenitors. Furthermore, antibody to p55 TNF-alpha receptors (TNF receptors-1) (but not to p75 TNF-alpha receptors (TNF receptors-2) inhibited effectively RANKL- (and TNF-alpha() induced osteoclastogenesis. Anti-TNF receptors-1 antibody failed to inhibit osteoclastogenesis in C57BL/6-derived cultures. Taken together, our data support the hypothesis that in Balb/c, but not in C57BL/6 (strains known to differ in inflammatory responses and cytokine modulation), TNF-alpha is an autocrine factor in osteoclasts, promoting their differentiation, and mediates, at least in part, RANKL's induction of osteoclastogenesis.  相似文献   

9.
10.
The epidermal growth factor receptor (EGFR) functions in various cellular physiological processes such as proliferation, differentiation, and motility. Although recent studies have reported that EGFR signaling is involved in osteoclast recruitment and formation, the molecular mechanism of EGFR signaling for the regulation of osteoclastogenesis remains unclear. We investigated the role of the EGFR in osteoclast differentiation and survival and show that the expression of the EGFR was highly up-regulated by receptor activator of nuclear factor-kappaB ligand (RANKL) during osteoclast differentiation. EGFR-specific tyrosine kinase inhibitors and EGFR knockdown blocked RANKL-dependent osteoclast formation, suggesting that EGFR signaling plays an important role in osteoclastogenesis. EGFR inhibition impaired the RANKL-mediated activation of osteoclastogenic signaling pathways, including c-Jun N-terminal kinase (JNK), NF-kappaB, and Akt/protein kinase B (PKB). In addition, EGFR inhibition in differentiated osteoclasts caused apoptosis through caspase activation. Inhibition of the phosphoinositide-3 kinase (PI3K)-Akt/PKB pathway and subsequent activation of BAD and caspases-9 and -3 may be responsible for the EGFR inhibition-induced apoptosis. The EGFR physically associated with receptor activator of nuclear factor-kappaB (RANK) and Grb2-associated binder 2 (Gab2). Moreover, RANKL transactivated EGFR. These data indicate that EGFR regulates RANKL-activated signaling pathways by cross-talking with RANK, suggesting that the EGFR may play a crucial role as a RANK downstream signal and/or a novel type of RANK co-receptor in osteoclast differentiation and survival.  相似文献   

11.
12.
Nuclear factor of activated T cells (NFAT) c1 plays a key role in receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation and function via induction of osteoclast-specific target genes including osteoclast-associated receptor (OSCAR), cathepsin K, and tartrate-resistant acid phosphatase. To elucidate which downstream target genes are regulated by NFATc1 during osteoclastogenesis, we used microarray analyses to examine gene expression profiles in the context of bone marrow-derived macrophages overexpressing a constitutively active form of NFATc1. Herein, we demonstrate that MHC class II transactivator (CIITA) is up-regulated downstream of NFATc1. Overexpression of CIITA in osteoclast precursors attenuates RANKL-induced osteoclast formation through down-regulation of NFATc1 and OSCAR. Epigenetic overexpression of CIITA regulates NFATc1 and OSCAR by competing with c-Fos and NFATc1 for CBP/p300 binding sites. Furthermore, silencing of CIITA by RNA interference in osteoclast precursors enhances osteoclast formation as well as NFATc1 and OSCAR expression. Taken together, our data reveal that CIITA can act as a modulator of RANKL-induced osteoclastogenesis.  相似文献   

13.
14.
Receptor activator of nuclear factor-kappa B (RANK) and its ligand, RANKL play critical roles in bone re-modeling, immune function, vascular disease and mammary gland development. To study the interaction of RANK and RANKL, we have expressed both extracellular domain of RANK and ectodomain of RANKL using Escherichia coli expression system. RANK was expressed as an inclusion body first which properly refolded later, while RANKL was initially produced as a GST fusion protein, after which the GST was removed by enzyme digestion. Soluble RANK existed as a monomer while RANKL was seen as a trimer in solution, demonstrated by gel filtration chromatography and cross-linking experiment. The recombinant RANK and RANKL could bind to each other and the binding affinity of RANKL for RANK was measured with surface plasmon resonance technology and KD value is about 1.09 × 10−10 M.  相似文献   

15.
16.
17.
目的探讨吴茱萸碱对破骨细胞分化与骨吸收功能的调控及对骨质疏松症的治疗作用。 方法取小鼠原代骨髓来源巨噬细胞分别给予0、10、20、50、100、200 μmol/L吴茱萸碱处理,CCK8检测细胞活力;然后利用原代骨髓来源巨噬细胞给予小鼠重组可溶性核因子κB受体活化因子配体与集落刺激因子行破骨细胞分化诱导,分别给予20与50 μmol/L吴茱萸碱干预。抗酒石酸酸性磷酸酶(TRAP)染色检测破骨细胞形成能力,荧光定量PCR分析破骨细胞分化相关基因表达,免疫荧光检测F肌动蛋白(F-actin)形成,扫描电镜观察破骨细胞骨吸收能力。7月龄C57BL/6小鼠灌胃给予100与200 mg/kg吴茱萸碱,给药3个月后Micro-CT检测小鼠骨密度与骨质量。采用单因素方差分析和t检验进行统计学分析。 结果CCK8结果显示,与对照组相比,给予10、20、50、100 μmol/L吴茱萸碱处理后细胞活力无明显变化,差异无统计学意义(P > 0.05);而给予200 μmol/L吴茱萸碱的细胞活力下降(100.64±0.18比47.54±5.58),差异具有统计学意义(P < 0.01)。与对照组相比,20 μmol/L吴茱萸碱的TRAP染色阳性细胞数[(200.57±28.35)比(142.29±19.21)个]、Trap (1.00±0.13比0.55±0.16)、组织蛋白酶K(Ctsk) (1.01±0.17比0.59±0.11)mRNA水平、骨吸收面积比(1.00±0.15比0.79±0.19)均减少,差异有统计学意义(P < 0.05)。与对照组相比,50 μmol/L吴茱萸碱的TRAP阳性细胞数[(200.57±28.35)比(112.71±12.18)个]、Trap (1.00±0.13比0.46±0.17)、Ctsk(1.01±0.17比0.49±0.12)、树突状细胞-特异性跨膜蛋白(DC- Stamp) (1.00±0.10比0.55±0.14)、c-Fos (1.01±0.10比0.58±0.14)、活化T细胞核因子c1 (Nfatc1) (1.00±0.10比0.59±0.14)、H+转运ATP酶v0亚基d2 (Atp6v0d2)的mRNA表达(1.00±0.10比0.59±0.18)、F-actin数量[(165.00± 18.50)比(98.33±21.15)个]和骨吸收面积比(1.00±0.15比0.62±0.10)均降低,差异有统计学意义(P < 0.05)。Micro-CT结果显示,与生理盐水组相比,100 mg/kg吴茱萸碱组小鼠骨密度有一定升高[(0.19±0.03)比(0.21±0.01)g/cm3],但差异无统计学意义(P > 0.05);与生理盐水组相比,200 mg/kg吴茱萸碱组小鼠胫骨的骨密度[(0.19±0.03)比(0.23±0.01)g/cm3]、骨体积比[(9.79±1.39)﹪比(11.62±1.18)﹪]、骨小梁数量[(2.43±0.29)比(3.08±0.43)/mm]上升,骨小梁分离度[(0.44±0.06)比(0.27±0.05)mm]下降,差异具有统计学意义(P < 0.05)。 结论吴茱萸碱通过抑制破骨细胞分化与骨吸收功能延缓小鼠骨量丢失。  相似文献   

18.
Src family kinases are involved in transducing growth factor signals for cellular differentiation and proliferation in a variety of cell types. The activity of all Src family kinases (SFKs) is controlled by phosphorylation at their C-terminal 527-tyrosine residue by C-terminal SRC kinase, CSK. There is a paucity of information regarding the role of CSK and/or specific Src family kinases in neuronal differentiation. Pretreatment of PC12 cells with the Src family kinase inhibitor, PP1, blocked NGF-induced activation of SFKs and obliterated neurite outgrowth. To confirm a role for CSK and specific isoforms of SFKs in neuronal differentiation, we overexpressed active and catalytically dead CSK in the rat pheochromocytoma cell line, PC12. CSK overexpression caused a profound inhibition of NGF-induced activation of FYN, YES, RAS, and ERK and inhibited neurite outgrowth, NGF-stimulated integrin-directed migration and blocked the NGF-induced conversion of GDP-RAC to its GTP-bound active state. CSK overexpression markedly augmented the activation state of AKT following NGF stimulation. In contrast, kinase-dead CSK augmented the activation of FYN, RAS, and ERK and increased neurite outgrowth. These data suggest a distinct requirement for CSK in the regulation of NGF/TrkA activation of RAS, RAC, ERK, and AKT via the differential control of SFKs in the orchestration of neuronal differentiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号