首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探究小干扰RNA(small interference RNA,siRNA)介导的骨形态发生蛋白7(bone morphogenetic protein7,BMP7)基因沉默对钙盐诱导猪主动脉瓣膜间质细胞成骨分化的影响及机制,为钙化性主动脉瓣膜病(calcific aortic valve disease,CAVD)的干预及治疗提供理论依据。方法:非CAVD瓣膜组织(non-CAVD组)取自手术治疗的主动脉夹层患者,CAVD瓣膜组织(CAVD组)取自因钙化性主动脉瓣狭窄而进行主动脉瓣膜置换术的患者,采用免疫组化和Western blot法检测non-CAVD组和CAVD组中BMP7、Runt相关转录因子2(Runx2)的蛋白质表达水平。选取健康家猪处死后即刻于无菌条件下取主动脉瓣叶,采用胶原酶连续消化法分离主动脉瓣膜间质细胞,观察其形态特征,并用免疫荧光染色行表型鉴定。采用脂质体转染法将BMP7-siRNA转染猪主动脉瓣膜间质细胞,采用qPCR和Western blot法验证BMP7表达的变化;利用钙盐培养基诱导细胞成骨分化,建立体外主动脉瓣膜间质细胞钙化模型后,采用ALP染色和茜素红S染色实验分别检测细胞早期及晚期成骨分化能力;采用qPCR和Western blot法分别检测细胞成骨相关基因及蛋白质Runx2、OCN和OPN的表达情况。并用Western blot法检测BMP7下游信号通路中Smad1/5/8的磷酸化水平。结果:BMP7和Runx2蛋白在CAVD组中表达明显高于non-CAVD组。成功分离出原代猪主动脉瓣膜间质细胞,α-平滑肌肌动蛋白(α-SMA)及波形蛋白(vimentin)染色阳性,血管性血友病因子(von willebrand factor,vWF)染色阴性。转染BMP7-siRNA后猪主动脉瓣膜间质细胞中BMP7的mRNA和蛋白质水平均明显下调,早期及晚期成骨分化能力均明显降低。沉默BMP7基因的表达,可下调Runx2、OCN和OPN的基因及蛋白质表达,且磷酸化的Smad1/5/8(p-Smad1/5/8)蛋白水平明显降低。结论:BMP7基因沉默抑制钙盐诱导的主动脉瓣膜间质细胞的成骨分化能力,BMP7/Smads信号通路可能在该过程中发挥重要作用。  相似文献   

2.
Formation of the cardiac valves is an essential component of cardiovascular development. Consistent with the role of the bone morphogenetic protein (BMP) signaling pathway in cardiac valve formation, embryos that are deficient for the BMP regulator BMPER (BMP-binding endothelial regulator) display the cardiac valve anomaly mitral valve prolapse. However, how BMPER deficiency leads to this defect is unknown. Based on its expression pattern in the developing cardiac cushions, we hypothesized that BMPER regulates BMP2-mediated signaling, leading to fine-tuned epithelial-mesenchymal transition (EMT) and extracellular matrix deposition. In the BMPER-/- embryo, EMT is dysregulated in the atrioventricular and outflow tract cushions compared with their wild-type counterparts, as indicated by a significant increase of Sox9-positive cells during cushion formation. However, proliferation is not impaired in the developing BMPER-/- valves. In vitro data show that BMPER directly binds BMP2. In cultured endothelial cells, BMPER blocks BMP2-induced Smad activation in a dose-dependent manner. In addition, BMP2 increases the Sox9 protein level, and this increase is inhibited by co-treatment with BMPER. Consistently, in the BMPER-/- embryos, semi-quantitative analysis of Smad activation shows that the canonical BMP pathway is significantly more active in the atrioventricular cushions during EMT. These results indicate that BMPER negatively regulates BMP-induced Smad and Sox9 activity during valve development. Together, these results identify BMPER as a regulator of BMP2-induced cardiac valve development and will contribute to our understanding of valvular defects.  相似文献   

3.
It has been speculated that heart valve interstitial cells (VICs) maintain valvular tissue homeostasis through regulated extracellular matrix (primarily collagen) biosynthesis. VICs appear to be phenotypically plastic, inasmuch as they transdifferentiate into myofibroblasts during valve development, disease, and remodeling. Under normal physiological conditions, transvalvular pressures (TVPs) on the right and left side of the heart are vastly different. Hence, we hypothesize that higher left-side TVPs impose larger local tissue stress on VICs, which increases their stiffness through cytoskeletal composition, and that this relation affects collagen biosynthesis. To evaluate this hypothesis, isolated ovine VICs from the four heart valves were subjected to micropipette aspiration to assess cellular stiffness, and cytoskeletal composition and collagen biosynthesis were quantified by using the surrogates smooth muscle alpha-actin (SMA) and heat shock protein 47 (HSP47), respectively. VICs from the aortic and mitral valves were significantly stiffer (P < 0.001) than those from the pulmonary and tricuspid valves. Left-side isolated VICs contained significantly more (P < 0.001) SMA and HSP47 than right-side VICs. Mean VIC stiffness correlated well (r = 0.973) with TVP; SMA and HSP47 also correlated well (r = 0.996) with one another. Assays were repeated for VICs in situ, and, as with in vitro results, left-side VIC protein levels were significantly greater (P < 0.05). These findings suggest that VICs respond to local tissue stress by altering cellular stiffness (through SMA content) and collagen biosynthesis. This functional VIC stress-dependent biosynthetic relation may be crucial in maintaining valvular tissue homeostasis and also prove useful in understanding valvular pathologies.  相似文献   

4.
该文主要探究了LPS通过上调骨形态发生蛋白4(bone morphogenetic protein 4,BMP4)促进猪主动脉瓣膜间质细胞(valve interstitial cells,VICs)成骨样分化的作用及机制,为钙化性主动脉瓣膜病(calcific aortic valve disease,CAVD)的干...  相似文献   

5.
Valvular interstitial cells (VICs) are the main population of cells found in cardiac valves. These resident fibroblastic cells play important roles in maintaining proper valve function, and their dysregulation has been linked to disease progression in humans. Despite the critical functions of VICs, their cellular composition is still not well defined for humans and other mammals. Given the limited availability of healthy human valves and the similarity in valve structure and function between humans and pigs, we characterized porcine VICs (pVICs) based on expression of cell surface proteins and sorted a specific subpopulation of pVICs to study its functions. We found that small percentages of pVICs express the progenitor cell markers ABCG2 (~5%), NG2 (~5%) or SSEA-4 (~7%), whereas another subpopulation (~5%) expresses OB–CDH, a type of cadherin expressed by myofibroblasts or osteo-progenitors. pVICs isolated from either aortic or pulmonary valves express most of these protein markers at similar levels. Interestingly, OB–CDH, NG2 and SSEA-4 all label distinct valvular subpopulations relative to each other; however, NG2 and ABCG2 are co-expressed in the same cells. ABCG2+ cells were further characterized and found to deposit more calcified matrix than ABCG2- cells upon osteogenic induction, suggesting that they may be involved in the development of osteogenic VICs during valve pathology. Cell profiling based on flow cytometry and functional studies with sorted primary cells provide not only new and quantitative information about the cellular composition of porcine cardiac valves, but also contribute to our understanding of how a subpopulation of valvular cells (ABCG2+ cells) may participate in tissue repair and disease progression.  相似文献   

6.
In fetal valve maturation the mechanisms by which the relatively homogeneous proteoglycan-rich extracellular matrix (ECM) of endocardial cushions is replaced by a specialized and stratified ECM found in mature valves are not understood. Therefore, we reasoned that uncovering proteases critical for ‘remodeling’ the proteoglycan rich (extracellular matrix) ECM may elucidate novel mechanisms of valve development. We have determined that mice deficient in ADAMTS5, (A Disintegrin-like And Metalloprotease domain with ThromboSpondin-type 1 motifs) which we demonstrated is expressed predominantly by valvular endocardium during cardiac valve maturation, exhibited enlarged valves. ADAMTS5 deficient valves displayed a reduction in cleavage of its substrate versican, a critical cardiac proteoglycan. In vivo reduction of versican, in Adamts5−/− mice, achieved through Vcan heterozygosity, substantially rescued the valve anomalies. An increase in BMP2 immunolocalization, Sox9 expression and mesenchymal cell proliferation were observed in Adamts5−/− valve mesenchyme and correlated with expansion of the spongiosa (proteoglycan-rich) region in Adamts5−/− valve cusps. Furthermore, these data suggest that ECM remodeling via ADAMTS5 is required for endocardial to mesenchymal signaling in late fetal valve development. Although adult Adamts5−/− mice are viable they do not recover from developmental valve anomalies and have myxomatous cardiac valves with 100% penetrance. Since the accumulation of proteoglycans is a hallmark of myxomatous valve disease, based on these data we hypothesize that a lack of versican cleavage during fetal valve development may be a potential etiology of adult myxomatous valve disease.  相似文献   

7.
Nagy E  Bäck M 《FEBS letters》2012,586(9):1325-1329
Valvular interstitial cells (VICs) are of mesenchymal origin and may differentiate into immune-like cells. This phenotypic plasticity is a key feature of aortic valve stenosis, but the role of epigenetic mechanisms has not previously been explored. Here we compared normal and calcified human aortic valve tissue. Calcified tissue exhibited decreased DNA-methylation in the promoter of the gene encoding the proinflammatory enzyme 5-lipoxygenase (5-LO), accompanied by increased 5-LO mRNA levels. Treatment of cultured VICs with the DNA methyltransferase inhibitor: 5-Aza-2'-deoxycytidine increased 5-LO mRNA levels and leukotriene production. These findings provide a first piece of evidence for epigenetic modifications of VICs in valvular heart disease.  相似文献   

8.
目的:探讨二尖瓣成形术(Mitral valve plasty,MVP)与二尖瓣生物瓣置换术(Mitral valve replacement,MVR)治疗风湿性二尖瓣重度关闭的临床疗效和安全性。方法:选择我院2014年1月至2019年1月收治的因风湿性二尖瓣重度关闭而行二尖瓣成形术或二尖瓣生物瓣置换术的患者60例,其中二尖瓣成形术组(MVP组)27例,二尖瓣生物瓣置换术组(MVR组)33例。比较两组患者的围手术期各项指标,治疗前后的心功能指标(左心室射血分数,左心房内径、左心室收缩末期内径、左心室舒张末期内径)及二尖瓣反流情况以及术后并发症的发生情况。结果:(1)MVP组患者的手术时间、体外循环时间均明显长于MVR组(P0.05);而术中出血量、呼吸机使用时间、住院时间MVP组均显著低于MVR组(P0.05);(2)术后,MVP组的LVEF和LVEDD水平高于MVR组,而LAD和LVESD水平则低于MVR组(P 0.05);(3)出院前及末次随访时,MVP组二尖瓣反流发生率与MVR组相比差异均无统计学意义(P0.05)。(4)MVP组患者的术后并发症发生率低于MVR组(P 0.05)。结论:二尖瓣成形术治疗风湿性二尖瓣重度关闭的临床疗效和安全性优于二尖瓣生物瓣置换术,但术者需严格掌控MVP的手术适应症。  相似文献   

9.
10.
11.
12.
Degenerative mitral valve disease (DMVD), which includes the syndromes of mitral valve prolapse (MVP) and flail leaflet, is a common valvular condition which can be complicated by mitral regurgitation and adverse cardiovascular outcomes. Although several genetic and other studies of MVP in dog models have provided some information regarding the underlying disease mechanisms, the proteins and molecular events mediating human MVP pathogenesis have not been unraveled. In this study, we report the first large‐scale proteome profiling of mitral valve tissue resected from patients with MVP. A total of 1134 proteins were identified, some of which were validated using SWATH‐MS and western blotting. GO annotation of these proteins confirmed the validity of this proteome database in various cardiovascular processes. Among the list of proteins, we found several structural and extracellular matrix proteins, such as asporin, biglycan, decorin, lumican, mimecan, prolargin, versican, and vinculin, that have putative roles in the pathophysiology of MVP. These proteins could also be involved in the cardiac remodeling associated with mitral regurgitation. All MS data have been deposited in the ProteomeXchange with identifier PXD000774 ( http://proteomecentral.proteomexchange.org/dataset/PXD000774 ).  相似文献   

13.
14.
The differentiation of valvular interstitial cells (VICs) to a myofibroblastic or osteoblast-like phenotype is commonly found in calcific valvular stenosis, although the molecular-level mechanisms of this process remain poorly understood. Due to the role of the Rho pathway in various vascular diseases and in the expression of a myofibroblast phenotype, the present study was inspired by the hypothesis that Rho activation is involved in regulating cellular processes related to valve calcification. It was found that increased RhoA and Rho kinase (ROCK) activity was associated with increased nodule formation in VIC cultures in vitro, and intentional induction of RhoA activity led to a further increase in nodules and expression of α-smooth muscle actin. VICs treated with ROCK inhibitors were also examined for nodule formation, proliferation, apoptosis, and expression of myofibroblastic or osteoblastic markers. ROCK inhibition dramatically reduced myofibroblast-regulated nodule formation in VIC cultures, as evidenced by a decrease in nodule number, total nodule area, α-smooth muscle actin-positive stress fibers, apoptosis, and gene expression of myofibroblast-related phenotypic markers. Meanwhile, ROCK inhibition was less effective at reducing nodule formation associated with osteogenic activity. In fact, ROCK inhibition increased the expression of alkaline phosphatase and effected only a modest decrease in nodule number when applied to VIC cultures with higher osteogenic activity. Thus, the Rho pathway possesses a complex role in regulating the VIC phenotype and nodule formation, and it is hoped that further elucidation of these molecular-level events will lead to an improved understanding of valvular disease and identification of potential treatments.  相似文献   

15.
Although the signaling molecules regulating the early stages of valvular development have been well described, little is known on the late steps leading to mature fibrous leaflets. We hypothesized that atrioventricular (AV) valve development continues after birth to adjust to the postnatal maturation of the heart. By doing a systematic analysis of the AV valves of mice from embryonic day (E) 15.5 to 8 weeks old, we identified key developmental steps that map the maturation process of embryonic cushion-like leaflets into adult stress-resistant valves. Condensation of the mesenchymal cells occurred between E15.5 and E18.5 and was accompanied by increased cellular proliferation and adhesion. Cellular proliferation also contributed transiently to the concomitant elongation of the leaflets. Patterning of the extracellular matrix (ECM) proteins along the AV axis was achieved 1 week after birth, with the differentiation of two reciprocal structural regions, glycosaminoglycans and versican at the atrial side, and densely packed collagen fibers at the ventricular side. Formation and remodeling of the nodular thickenings at the closure points of the leaflets occurred between N4.5 and N11.5. In conclusion, AV valve development during late embryonic and postnatal stages includes condensation, elongation, formation of nodular thickenings, and remodeling of tension-resistant ECM proteins.  相似文献   

16.
Both aortic and mitral valves calcify in pathological conditions; however, the prevalence of aortic valve calcification is high whereas mitral valve leaflet calcification is somewhat rare. Patterns of valvular calcification may differ due to valvular architecture, but little is known to that effect. In this study, we investigated the intrinsic osteogenic differentiation potential of aortic versus mitral valve interstitial cells provided minimal differentiation conditions. For the assessment of calcification at the cellular level, we used classic inducers of osteogenesis in stem cells: β-glycerophosphate (β-Gly), dexamethasone (Dex), and ascorbate (Asc). In addition to proteomic analyses, osteogenic markers and calcium precipitates were evaluated across treatments of aortic and mitral valve cells. The combination of β-Gly, Asc, and Dex induced aortic valve interstitial cells to synthesize extracellular matrix, overexpress osteoblastic markers, and deposit calcium. However, no strong evidence showed the calcification of mitral valve interstitial cells. Mitral cells mainly responded to Asc and Dex by cell activation. These findings provide a deeper understanding of the physiological properties of aortic and mitral valves and tendencies for calcific changes within each valve type, contributing to the development of future therapeutics for heart valve diseases.  相似文献   

17.
Increasing evidence indicates that the progression of calcific aortic valve disease (CAVD) is influenced by the mechanical forces experienced by valvular interstitial cells (VICs) embedded within the valve matrix. The ability of VICs to sense and respond to tissue-level mechanical stimuli depends in part on cellular-level biomechanical properties, which may change with disease. In this study, we used micropipette aspiration to measure the instantaneous elastic modulus of normal VICs and of VICs induced to undergo pathological differentiation in vitro to osteoblast or myofibroblast lineages on compliant and stiff collagen gels, respectively. We found that VIC elastic modulus increased after subculturing on stiff tissue culture-treated polystyrene and with pathological differentiation on the collagen gels. Fibroblast, osteoblast, and myofibroblast VICs had distinct cellular-level elastic properties that were not fully explained by substrate stiffness, but were correlated with α-smooth muscle actin expression levels. C-type natriuretic peptide, a peptide expressed in aortic valves in vivo, prevented VIC stiffening in vitro, consistent with its ability to inhibit α-smooth muscle actin expression and VIC pathological differentiation. These data demonstrate that VIC phenotypic plasticity and mechanical adaptability are linked and regulated both biomechanically and biochemically, with the potential to influence the progression of CAVD.  相似文献   

18.
Congenital heart disease occurs in approximately 1% of all live births and includes structural abnormalities of the heart valves. However, this statistic underestimates congenital valve lesions, such as bicuspic aortic valve (BAV) and mitral valve prolapse (MVP), that typically become apparent later in life as progressive valve dysfunction and disease. At present, the standard treatment for valve disease is replacement, and approximately 95,000 surgical procedures are performed each year in the United States. The most common forms of congenital valve disease include abnormal valve cusp morphogenesis, as in the case of BAV, or defects in extracellular matrix (ECM) organization and homeostasis, as occurs in MVP. The etiology of these common valve diseases is largely unknown. However, the study of murine and avian model systems, along with human genetic linkage studies, have led to the identification of genes and regulatory processes that contribute to valve structural malformations and disease. This review focuses on the current understanding and therapeutic implications of molecular regulatory pathways that control valve development and contribute to valve disease.  相似文献   

19.
The interstitial cells of cardiac valves represent one of the most frequent cell types in the mammalian heart. In order to provide a cell and molecular biological basis for the growth of isolated valvular interstitial cells (VICs) in cell culture and for the use in re-implantation surgery we have examined VICs in situ and in culture, in fetal, postnatal and adult hearts, in re-associations with scaffolds of extracellular matrix (ECM) material and decellularized heart valves. In all four mammalian species examined (human, bovine, porcine and ovine), the typical mesenchymal-type cell-cell adherens junctions (AJs) connecting VICs appear as normal N-cadherin based puncta adhaerentia. Their molecular ensemble, however, changes under various growth conditions insofar as plakophilin-2 (Pkp2), known as a major cytoplasmic plaque component of epithelial desmosomes, is recruited to and integrated in the plaques of VIC-AJs as a major component under growth conditions characterized by enhanced proliferation, i.e., in fetal heart valves and in cell cultures. Upon re-seeding onto decellularized heart valves or in stages of growth in association with artificial scaffolds, Pkp2 is - for the most part - lost from the AJs. As Pkp2 has recently also been detected in AJs of cardiac myxomata and diverse other mesenchymal tumors, the demonstrated return to the normal Pkp2-negative state upon re-association with ECM scaffolds and decellularized heart valves may now provide a safe basis for the use of cultured VICs in valve replacement surgery. Even more surprising, this type of transient acquisition of Pkp2 has also been observed in distinct groups of endothelial cells of the endocardium, where it seems to correspond to the cell type ready for endothelial-mesenchymal transition (EMT).  相似文献   

20.
Heart valve disease is a major burden in the Western world and no effective treatment is available. This is mainly due to a lack of knowledge of the molecular, cellular and mechanical mechanisms underlying the maintenance and/or loss of the valvular structure. Current models used to study valvular biology include in vitro cultures of valvular endothelial and interstitial cells. Although, in vitro culturing models provide both cellular and molecular mechanisms, the mechanisms involved in the 3D-organization of the valve remain unclear. While in vivo models have provided insight into the molecular mechanisms underlying valvular development, insight into adult valvular biology is still elusive. In order to be able to study the regulation of the valvular 3D-organization on tissue, cellular and molecular levels, we have developed the Miniature Tissue Culture System. In this ex vivo flow model the mitral or the aortic valve is cultured in its natural position in the heart. The natural configuration and composition of the leaflet are maintained allowing the most natural response of the valvular cells to stimuli. The valves remain viable and are responsive to changing environmental conditions. This MTCS may provide advantages on studying questions including but not limited to, how does the 3D organization affect valvular biology, what factors affect 3D organization of the valve, and which network of signaling pathways regulates the 3D organization of the valve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号