首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gynodioecy, the co-occurrence of female and hermaphroditic individuals within a population, is an important intermediate in the evolution of separate sexes. The first step, female maintenance, requires females to have higher seed fitness compared with hermaphrodites. A common mechanism thought to increase relative female fitness is inbreeding depression avoidance, the magnitude of which depends on hermaphroditic selfing rates and the strength of inbreeding depression. Less well studied is the effect of biparental inbreeding on female fitness. Biparental inbreeding can affect relative female fitness only if its consequence or frequency differs between sexes, which could occur if sex structure and genetic structure both occur within populations. To determine whether inbreeding avoidance and/or biparental inbreeding can account for female persistence in Geranium maculatum, we measured selfing and biparental inbreeding rates in four populations and the spatial genetic structure in six populations. Selfing rates of hermaphrodites were low and did not differ significantly from zero in any population, leading to females gaining at most a 1–14% increase in seed fitness from inbreeding avoidance. Additionally, although significant spatial genetic structure was found in all populations, biparental inbreeding rates were low and only differed between sexes in one population, thereby having little influence on female fitness. A review of the literature revealed few sexual differences in biparental inbreeding among other gynodioecious species. Our results show that mating system differences may not fully account for female maintenance in this species, suggesting other mechanisms may be involved.  相似文献   

2.
Nowadays, the population genetics analysis of autopolyploid species faces many difficulties due to (i) limited development of population genetics tools under polysomic inheritance, (ii) difficulties to assess allelic dosage when genotyping individuals and (iii) a form of inbreeding resulting from the mechanism of ‘double reduction’. Consequently, few data analysis computer programs are applicable to autopolyploids. To contribute bridging this gap, this article first derives theoretical expectations for the inbreeding and identity disequilibrium coefficients under polysomic inheritance in a mixed mating model. Moment estimators of these coefficients are proposed when exact genotypes or just markers phenotypes (i.e. allelic dosage unknown) are available. This led to the development of estimators of the selfing rate based on adult genotypes or phenotypes and applicable to any even‐ploidy level. Their statistical performances and robustness were assessed by numerical simulations. Contrary to inbreeding‐based estimators, the identity disequilibrium‐based estimator using phenotypes is robust (absolute bias generally < 0.05), even in the presence of double reduction, null alleles or biparental inbreeding due to isolation by distance. A fairly good precision of the selfing rate estimates (root mean squared error < 0.1) is already achievable using a sample of 30–50 individuals phenotyped at 10 loci bearing 5–10 alleles each, conditions reachable using microsatellite markers. Diallelic markers (e.g. SNP) can also perform satisfactorily in diploids and tetraploids but more polymorphic markers are necessary for higher ploidy levels. The method is implemented in the software SPAGeDi and should contribute to reduce the lack of population genetics tools applicable to autopolyploids.  相似文献   

3.
Jarne P  David P 《Heredity》2008,100(4):431-439
We review molecular methods for estimating selfing rates and inbreeding in populations. Two main approaches are available: the population structure approach (PSA) and progeny-array approach (PAA). The PSA approach relies on single-generation samples and produces estimates that integrate the inbreeding history over several generations, but is based on strong assumptions (for example, inbreeding equilibrium). The PSA has classically relied on single-locus inbreeding coefficients averaged over loci. Unfortunately PSA estimates are very sensitive to technical problems such as the occurrence of null alleles at one or more of the loci. Consequently inbreeding might be substantially overestimated, especially in outbred populations. However, the robustness of the PSA has recently been greatly improved by the development of multilocus methods free of such bias. The PAA, on the other hand, is based on the comparison between offspring and mother genotypes. As a consequence, PAA estimates do not reflect long-term inbreeding history but only recent mating events of the maternal individuals studied ('here and now' selfing). In addition to selfing rates, the PAA allows estimating other mating system parameters, including biparental inbreeding and the correlation of selfing among sibs. Although PAA estimates could also be biased by technical problems, incompatibilities between the mother's genotype and her offspring allow the identification and correction of such bias. For all methods, we provide guidelines on the required number of loci and sample sizes. We conclude that the PSA and PAA are equally robust, provided multilocus information is used. Although experimental constraints may make the PAA more demanding, especially in animals, the two methods provide complementary information, and can fruitfully be conducted together.  相似文献   

4.
Even though parasitic flatworms are one of the most species‐rich groups of hermaphroditic organisms, we know virtually nothing of their mating systems (selfing or kin‐mating rates) in nature. Hence, we lack an understanding of the role of inbreeding in parasite evolution. The natural mating systems of parasitic flatworms have remained elusive due to the inherent difficulty in generating progeny‐array data in many parasite systems. New developments in pedigree reconstruction allow direct inference of realized selfing rates in nature by simply using a sample of genotyped individuals. We built upon this advancement by utilizing the closed mating systems, that is, individual hosts, of endoparasites. In particular, we created a novel means to use pedigree reconstruction data to estimate potential kin‐mating rates. With data from natural populations of a tapeworm, we demonstrated how our newly developed methods can be used to test for cosibling transmission and inbreeding depression. We then showed how independent estimates of the two mating system components, selfing and kin‐mating rates, account for the observed levels of inbreeding in the populations. Thus, our results suggest that these natural parasite populations are in inbreeding equilibrium. Pedigree reconstruction analyses along with the new companion methods we developed will be broadly applicable across a myriad of parasite species. As such, we foresee that a new frontier will emerge wherein the diverse life histories of flatworm parasites could be utilized in comparative evolutionary studies to broadly address ecological factors or life history traits that drive mating systems and hence inbreeding in natural populations.  相似文献   

5.
Breeding programs aimed at conserving genetic diversity in populations of wildlife or rare domestic breeds rely on detailed pedigree analysis for selection of breeders that will minimize the loss of alleles, reduce the accumulation of inbreeding, and maintain gene diversity. Commonly, techniques use a matrix of kinship coefficients to derive measures of genetic variation, inbreeding, and the value of individuals as breeders. Although these techniques were first developed for use on known pedigrees of diploid individuals, the concepts and methods can be extended to apply to any entity that contains genes derived from definable sources (e.g., individual parents, social groups, colonies, gene banks) via a definable mechanism of heredity (e.g., sexual reproduction between separate sexes, hermaphroditic selfing, autozygous production of homozygous or haploid offspring, cloning). Individuals with partly unknown ancestry or multiple possible parents can also be incorporated into kinship calculations, based on probabilistic assignment of parental contributions. This paper presents the algorithms used in new PMx software to extend traditional pedigree analysis techniques used for complete pedigrees of sexually reproducing, diploid species to deal with missing information due to unknown or uncertain parentage, and other breeding systems such as clones, selfing hermaphrodites, and haploid offspring or autogamy.  相似文献   

6.
Understanding how the mating system varies with population size in plant populations is critical for understanding their genetic and demographic fates. We examined how the mating system, characterized by outcrossing rate, biparental inbreeding rate, and inbreeding coefficient, and genetic diversity varied with population size in natural populations of the biennial Sabatia angularis. We found a significant, positive relationship between outcrossing and population size. Selfing was as high as 40% in one small population but was only 7% in the largest population. Despite this pattern, observed heterozygosity did not vary with population size, and we suggest that selection against inbred individuals maintains observed heterozygosity in small populations. Consistent with this hypothesis, we found a trend of lower inbreeding coefficients in the maternal than progeny generation in all of the populations, and half of the populations exhibited significant excesses of adult heterozygosity. Moreover, genetic diversity was not related to population size and was similar across all populations examined. Our results suggest that the consequences of increased selfing for population fitness in S. angularis, a species that experiences significant inbreeding depression, will depend on the relative magnitude and consistency of inbreeding depression and the demographic cost of selection for outcrossed progeny in small populations.  相似文献   

7.
Inbreeding is a major component of the mating system in populations of many plants and animals, particularly hermaphroditic species. In flowering plants, inbreeding can occur through self-pollination within flowers (autogamy), self-pollination between flowers on the same plant (geitonogamy), or cross-pollination between closely related individuals (biparental inbreeding). We performed a floral emasculation experiment in 10 populations of Aquilegia canadensis (Ranunculaceae) and used allozyme markers to estimate the relative contribution of each mode of inbreeding to the mating system. We also examined how these modes of inbreeding were influenced by aspects of population structure and floral morphology and display predicted to affect the mating system. All populations engaged in substantial inbreeding. On average, only 25% of seed was produced by outcrossing (range among populations = 9-37%), which correlated positively with both population size (r = +0.61) and density (r = +0.64). Inbreeding occurred through autogamy and biparental inbreeding, and the relative contribution of each was highly variable among populations. Estimates of geitonogamy were not significantly greater than zero in any population. We detected substantial biparental inbreeding (mean = 14% of seeds, range = 4-24%) by estimating apparent selfing in emasculated plants with no opportunity for true selfing. This mode of inbreeding correlated negatively with population size (r = -0.87) and positively with canopy cover (r = +0.90), suggesting that population characteristics that increase outcross pollen transfer reduce biparental inbreeding. Autogamy was the largest component of the mating system in all populations (mean = 58%, range = 37-84%) and, as expected, was lowest in populations with the most herkogamous flowers (r = -0.59). Although autogamy provides reproductive assurance in natural populations of A. canadensis, it discounts ovules from making superior outcrossed seed. Hence, high autogamy in these populations seems disadvantageous, and therefore it is difficult to explain the extensive variation in herkogamy observed both among and especially within populations.  相似文献   

8.
The effect of biparental inbreeding on the conditions governing the evolution of selfing is examined using recursions in mating-type frequencies. Sibmating in combination with random outcrossing influences two key determinants of the adaptive value of selfing: 1) the meiotic cost of biparental reproduction and 2) the level of inbreeding depression due to deleterious mutations. Biparental inbreeding serves to maintain biparental reproduction by increasing relatedness between parents and their biparentally derived offspring and introduces the possibility of an optimal mating system that incorporates both modes of reproduction. Biparental inbreeding serves to promote uniparental reproduction by reducing the relative inbreeding depression suffered by uniparental offspring. The net effect of these two antagonistic trends depends upon the extent to which mutational load accounts for differences in the numbers of the two types of offspring. A brief summary of the empirical literature suggests that: 1) biparental inbreeding may occur in populations exhibiting mixed mating systems; 2) while inbreeding depression represents an important factor, it does not account entirely for differences in offspring number between the two modes of reproduction.  相似文献   

9.
Ritland K 《Heredity》2002,88(4):221-228
Inferences about plant mating systems increasingly use highly informative genetic markers, and investigate finer facets of the mating system. Here, four extensions of models for the estimation mating systems are described. (1) Multiallelic probabilities for the mixed selfing-random mating model are given; these are especially suitable for microsatellites; a generalized Kronecker operator is basis of this formula. (2) Multilocus probabilities for the "correlated-matings model" are given; interestingly, comparisons between single- vs multilocus estimates of correlated-paternity can provide a new measure of population substructure. (3) A measure of biparental inbreeding, the "correlation of selfing among loci", is shown to approximate the fraction of selfing due to uniparental (as opposed to biparental) inbreeding; also joint estimation of 1- 2- and 3-locus selfing rates allow separation, under a simple model, of the frequency vs the magnitude of biparental inbreeding. (4) Method-of-moments estimators for individual outcrossing rates are given. Formulae are given for both gymnosperms and angiosperms, and the computer program "MLTR" implements these methods.  相似文献   

10.
We inferred Lloyd's modes of selfing in a natural population of the common monkeyflower, Mimulus guttatus. Estimates were obtained using floral manipulations combined with seed counts and isozyme analyses of selfing rates. Of the 25% selfing estimated from isozyme markers, about one-half was competing, about one-third was geitonogamous, and at least one-fifth (perhaps twice this) was due to biparental inbreeding. Estimates of prior and delayed selfing were small and did not significantly differ from zero. These results were obtained using plants with the characteristic pair of open flowers at an inflorescence node. The second-opening flower showed twice the rate of selfing, presumably because of protogynous-based geitonogamy differences. Solitary-flowered plants, which have smaller flowers but no geitonogamy, showed about 50% selfing, consisting of about equal components of competing selfing and biparental inbreeding. While geitonogamy and biparental inbreeding might be unavoidable by-products of adaptations for outcrossing, competing selfing is subject to more direct natural selection and warrants adaptive explanations.  相似文献   

11.
Abstract.— Partial self-fertilization is common in higher plants. Mating system variation is known to have important consequences for how genetic variation is distributed within and among populations. Selfing is known to reduce effective population size, and inbreeding species are therefore expected to have lower levels of genetic variation than comparable out crossing taxa. However, several recent empirical studies have shown that reductions in genetic diversity within populations of inbreeding species are far greater than the expected reductions based on the reduced effective population size. Two different processes have been argued to cause these patterns, selective sweeps (or hitchhiking) and background selection. Both are expected to be most effective in reducing genetic variation in regions of low recombination rates. Selfing is known to reduce the effective recombination rate, and inbreeding taxa are thus thought to be particularly vulnerable to the effects of hitchhiking or background selection. Here I propose a third explanation for the lower-than-expected levels of genetic diversity within populations of selfing species; recurrent extinctions and recolonizations of local populations, also known as metapopulation dynamics. I show that selfing in a metapopulation setting can result in large reductions in genetic diversity within populations, far greater than expected based the lower effective population size inbreeding species is expected to have. The reason for this depends on an interaction between selfing and pollen migration.  相似文献   

12.
McClure NS  Whitlock MC 《Heredity》2012,109(3):173-179
We describe a new method of estimating the selfing rate (S) in a mixed mating population based on a population structure approach that accounts for possible intergenerational correlation in selfing rate, giving rise to an estimate of the upper limit for heritability of selfing rate (h(2)). A correlation between generations in selfing rate is shown to affect one- and two-locus probabilities of identity by descent. Conventional estimates of selfing rate based on a population structure approach are positively biased by intergenerational correlation in selfing. Multilocus genotypes of individuals are used to give maximum-likelihood estimates of S and h(2) in the presence of scoring artifacts. Our multilocus estimation of selfing rate and its heritability (MESH) method was tested with simulated data for a range of conditions. Selfing rate estimates from MESH have low bias and root mean squared error, whereas estimates of the heritability of selfing rate have more uncertainty. Increasing the number of individuals in a sample helps to reduce bias and root mean squared error more than increasing the number of loci of sampled individuals. Improved estimates of selfing rate, as well as estimates of its heritability, can be obtained with this method, although a large number of loci and individuals are needed to achieve best results.  相似文献   

13.
Abstract An extensive allozyme survey was conducted within a natural "meta" population of the native North American annual legume, Chamaecrista fasciculata (Leguminosae) to quantify genetic structure at different spatial scales. Gene flow was then estimated by a recently developed indirect method based on a continuous population model, using pairwise kinship coefficients between individuals. The indirect estimates of gene flow, quantified in terms of neighborhood size, with an average value on the order of 150 individuals, were concordant among different spatial scales (subpopulation, population, metapopulation). This gene-flow value lies within the range of direct estimates previously documented from observations of pollen and seed dispersal for the same metapopulation. Monte Carlo simulations using the direct measures of gene flow as parameters further demonstrated that the observed spatial pattern of allozyme variation was congruent with a model of isolation by distance. Combining previously published estimates of pollen dispersal distances with kinship coefficients from this study, we quantified biparental inbreeding relative to either a single subpopulation or the whole metapopulation. At the level of a neighborhood, little biparental inbreeding was observed and most departure from Hardy-Weinberg genotypic proportions was explained by self-fertilization, whereas both selfing and biparental inbreeding contributed to nonrandom mating at the metapopulation level. Gene flow was also estimated from indirect methods based on a discontinuous population structure model. We discuss these results with respect to the effect of a patchy population structure on estimation of gene flow.  相似文献   

14.
Selfing or mating between related individuals in self-compatible hermaphroditic tree species may lead to inbreeding depression (ID) due to homozygosis in recessive, identical by descent alleles. In general, studies of ID in tree species have been based on comparisons of selfed individuals (produced by controlled pollination) with outcrossed individuals for quantitative traits in progeny tests. However, this approach requires a long time to quantify the extent of ID. Thus, we used an approach based on genetic markers to estimate coancestry coefficients between assigned parents from paternity analysis in two populations of the Neotropical tree Cariniana legalis. Using this method, we were able to determine which seedlings in a nursery trial originated from; (i) outcrossing between un-related trees, (ii) mating between related trees and (iii) selfing. We detected a low selfing rate (<10 %), but a substantial quantity of seedlings from mating between related parents (minimum of 35.7 %). In general, the outcrossed seedlings from unrelated parents exhibited significantly greater genetic diversity than those resulting from selfing and mating among relatives. The extent of ID varied among traits and populations. Outcrossed seedlings originating from unrelated trees generally showed greater survival than seedlings originating from selfing and related parents. Inbreeding depression was greater in the selfed seedlings than in those from mating among related parents. The results are discussed in terms of implications for genetic conservation, breeding and environmental restoration using the species.  相似文献   

15.
Most models of mating system evolution predict mixed mating to be unstable, although it is commonly reported from nature. Ecological interactions with mutualistic pollinators can help account for this discrepancy, but antagonists such as herbivores are also likely to play a role. In addition, inbreeding can alter ecological interactions and directly affect selfing rates, which may also contribute to maintaining mating system variation. We explored herbivore and inbreeding effects on pollinator behavior and selfing rates in Mimulus guttatus. First, individual spittlebug (Philaenus spumarius) herbivores were applied to native plants in two populations. Spittlebugs reduced flower size, increased anther-stigma distance, and increased selfing rates. A second experiment factorially crossed spittlebug treatment with inbreeding history (self- vs. cross-fertilized), using potted plants in arrays. Spittlebugs did not affect pollinator behavior, but they reduced flower size and nearly doubled the selfing rate. Inbreeding reduced the frequency of pollinator visits and increased flower-handling time, and this may be the first report that inbreeding affects pollinator behavior. Selfing rates of inbred plants were reduced by one half, which may reflect early inbreeding depression or altered pollinator behavior. The contrasting effects of herbivory and inbreeding on selfing rates may help maintain mating system variation in M. guttatus.  相似文献   

16.

Premise of Study

In a seminal body of theory, Lloyd showed that the fitness consequences of selfing will depend on its timing in anthesis. Selfing that occurs after opportunities for outcrossing or pollen dispersal can provide reproductive assurance when pollinators are limited and is expected to incur little cost, even when inbreeding depression is high. As a result, delayed selfing is often interpreted as a “best‐of‐both‐worlds” mating system that combines the advantages of selfing and outcrossing.

Methods

We surveyed 65 empirical studies of delayed selfing, recording floral mechanisms and examining information on inbreeding depression, autofertility, and other parameters to test the support for delayed selfing as a best‐of‐both‐worlds strategy.

Key Results

Phylogenetic distribution of the diverse floral mechanisms suggests that some basic floral structures may predispose plant taxa to evolve delayed selfing. Delayed selfing appears to serve as a best‐of‐both‐worlds strategy in some but not all species. While the capacity for autonomous selfing is often high, it is lower, in some cases, than in related species with earlier modes of selfing. In other delayed‐selfers, low inbreeding depression and reduced investment in corollas and pollen suggest limited benefits from outcrossing.

Conclusions

Despite a growing literature on the subject, experimental evidence for delayed selfing is limited and major gaps in knowledge remain, particularly with respect to the stability of delayed selfing and the conditions that may favor transitions between delayed and earlier selfing. Finally, we suggest a potential role of delayed selfing in facilitating transitions from self‐incompatibility to selfing.  相似文献   

17.
Experimental analysis of biparental inbreeding in a self-fertilizing plant   总被引:2,自引:0,他引:2  
Abstract.— Localized dispersal and mating may genetically structure plant populations, resulting in matings among related individuals. This biparental inbreeding has significant consequences for the evolution of mating systems, yet is difficult to estimate in natural populations. We estimated biparental inbreeding in two populations of the largely self-fertilizing plant Aquilegia canadensis using standard inference as well as a novel experiment comparing apparent selfing between plants that were randomly relocated within populations to experimental control plants. Using two allozyme markers, biparental inbreeding ( b ) inferred from the difference between single-locus and multilocus estimates of selfing ( b = ss – sm ) was low. Less than 3% of matings involved close relatives (mean b = 0.029). In contrast, randomly relocating plants greatly reduced apparent selfing (mean ss = 0.674) compared to control plants that had been dug up and replanted in their original locations ( ss = 0.953, P = 0.002). Based on this difference in ss , we estimated that approximately 30% of all matings involved close relatives (mean b = 0.279, 95% CL = 0.072–0.428). Inference from ss – sm underestimated b in these populations by more than an order of magnitude. Biparental inbreeding is thought to influence the evolution of self-fertilization primarily through reducing the genetic cost of outcrossing. This is unlikely to be of much significance in A. canadensis because inbreeding depression (a major cost of selfing) is much stronger than the cost of outcrossing. However, biparental inbreeding combined with strong inbreeding depression may influence selection on dispersal.  相似文献   

18.
Inbreeding depression is a key factor affecting the persistence of natural populations, particularly when they are fragmented. In species with mixed mating systems, inbreeding depression can be estimated at the population level by regressing the average progeny fitness by the selfing rate of their mothers. We applied this method using simulated populations to investigate how population genetic parameters can affect the detection power of inbreeding depression. We simulated individual selfing rates and genetic loads from which we computed fitness values. The regression method yielded high statistical power, inbreeding depression being detected as significant (5?% level) in 92?% of the simulations. High individual variation in selfing rate and high mean genetic load led to better detection of inbreeding depression while high among-individual variation in genetic load made it more difficult to detect inbreeding depression. For a constant sampling effort, increasing the number of progenies while decreasing the number of individuals per progeny enhanced the detection power of inbreeding depression. We discuss the implication of among-mother variability of genetic load and selfing rate on inbreeding depression studies.  相似文献   

19.
Inbreeding depression should evolve with selfing rate when frequent inbreeding results in exposure of and selection against deleterious alleles. The selfing rate may be modified by plant traits such as flower size, or by population characteristics such as census size that can affect the probability of biparental inbreeding. Here we quantify inbreeding depression (δ) among different population sizes of Collinsia parviflora, a wildflower with interpopulation variation in flower size, by comparing fitness components and multiplicative fitness of experimentally produced selfed and outcrossed offspring. Selfed offspring had reduced multiplicative fitness compared to outcrossed offspring, but inbreeding depression was low in all combinations of population size and flower size (δ ≤ 0.05) except in large populations of large-flowered plants (δ = 0.45). The decrement to multiplicative fitness with inbreeding was not affected by population size nested within flower size, but differed between small- and large-flowered plants: small-flowered populations had lower overall inbreeding depression (δ = 0.04) compared to large-flowered populations (δ = 0.25). The difference in load with flower size suggests that either selection has removed deleterious recessive alleles or these alleles have become fixed in small-flowered, potentially more selfing populations, but that purging has not occurred to the same extent in presumably outcrossing large-flowered populations.  相似文献   

20.
Inbreeding depression is one of the main forces opposing the evolution of self-fertilization. Of central importance is the hypothesis that inbreeding depression and selfing coevolve antagonistically, generating either low selfing rate and high inbreeding depression or vice versa. However, there is limited evidence for this coevolution within species. We investigated this topic in the hermaphroditic snail Physa acuta . In this species, isolated individuals delay the onset of egg laying compared to individuals having access to mates. Longer delays ("waiting times") indicate more intense selfing avoidance. We measured inbreeding depression and waiting time in a large quantitative-genetic experiment (281 outbred families derived from 26 natural populations). We observed large genetic variance for both traits and a strong positive genetic covariance between them, most of which resided within rather than among populations. It means that, within populations, individuals with higher mutation load avoided selfing more strongly on average. This genetic covariance may result from pleiotropy and/or linkage disequilibrium. Whatever its genetic architecture, the fact it emerges specifically when individuals are deprived of mates suggests it is not fortuitous and rather reflects the action of natural selection. We conclude that a diversity of mating strategies can arise within populations subjected to variation in inbreeding depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号