首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxalate catabolism is conducted by phylogenetically diverse organisms, including Methylobacterium extorquens AM1. Here, we investigate the central metabolism of this alphaproteobacterium during growth on oxalate by using proteomics, mutant characterization, and (13)C-labeling experiments. Our results confirm that energy conservation proceeds as previously described for M. extorquens AM1 and other characterized oxalotrophic bacteria via oxalyl-coenzyme A (oxalyl-CoA) decarboxylase and formyl-CoA transferase and subsequent oxidation to carbon dioxide via formate dehydrogenase. However, in contrast to other oxalate-degrading organisms, the assimilation of this carbon compound in M. extorquens AM1 occurs via the operation of a variant of the serine cycle as follows: oxalyl-CoA reduction to glyoxylate and conversion to glycine and its condensation with methylene-tetrahydrofolate derived from formate, resulting in the formation of C3 units. The recently discovered ethylmalonyl-CoA pathway operates during growth on oxalate but is nevertheless dispensable, indicating that oxalyl-CoA reductase is sufficient to provide the glyoxylate required for biosynthesis. Analysis of an oxalyl-CoA synthetase- and oxalyl-CoA-reductase-deficient double mutant revealed an alternative, although less efficient, strategy for oxalate assimilation via one-carbon intermediates. The alternative process consists of formate assimilation via the tetrahydrofolate pathway to fuel the serine cycle, and the ethylmalonyl-CoA pathway is used for glyoxylate regeneration. Our results support the notion that M. extorquens AM1 has a plastic central metabolism featuring multiple assimilation routes for C1 and C2 substrates, which may contribute to the rapid adaptation of this organism to new substrates and the eventual coconsumption of substrates under environmental conditions.  相似文献   

2.
3.
Methylobacterium extorquens AM1, a serine cycle facultative methylotroph, accumulates poly-beta-hydroxybutyrate (PHB) as a carbon and energy reserve material during growth on both multicarbon- and single-carbon substrates. Recently, the identification and mutation of the genes involved in the biosynthesis and degradation of PHB have been described for this bacterium, demonstrating that two of the genes of the PHB cycle (phaA and phaB) are also involved in C(1) and C(2) metabolism, as part of a novel pathway for glyoxylate regeneration in the serine cycle (N. Korotkova and M. E. Lidstrom, J. Bacteriol. 183:1038-1046, 2001; N. Korotkova, L. Chistoserdova, V. Kuksa, and M. E. Lidstrom, J. Bacteriol. 184:1750-1758, 2002). In this work, three new genes involved in PHB biosynthesis in this bacterium have been investigated via mutation and phenotypic analysis: gap11, gap20, and phaR. We demonstrate that gap11 and gap20 encode two major granule-associated proteins (phasins) and that mutants with mutations in these genes are defective in PHB production and also in growth on C(2) compounds, while they show wild-type growth characteristics on C(1) or multicarbon compounds. The phaR mutant shows defects in both PHB accumulation and growth characteristics when grown on C(1) compounds and has defects in PHB accumulation but grows normally on C(3) and C(4) compounds, while both PHB accumulation and growth rate are at wild-type levels during growth on C(2) compounds. Our results suggest that this phenotype is due to altered fluxes of acetyl coenzyme A (CoA), a major intermediate in C(1), C(2), and heterotrophic metabolism in M. extorquens AM1, as well as the entry metabolite for the PHB cycle. Therefore, it seems likely that PhaR acts to control acetyl-CoA flux to PHB in this methylotrophic bacterium.  相似文献   

4.
The metabolism of [2-13C]acetate by Pseudomonas M27(Icl-) and Pseudomonas MA(Icl+) was studied in vivo using 13C-NMR spectroscopy. The flux of 13C-label into bicarbonate, glutamate and citrate was observed in both organisms. In addition 13C-labelled alpha, alpha-trehalose was synthesized as a major metabolite by Pseudomonas M27 but not by Pseudomonas MA. The presence of this disaccharide in cell extracts of Pseudomonas AM1(Icl-) grown with [13C]methanol was also observed. The data from analysis of the trehalose multiplet signal observed in the spectra of Pseudomonas M27 cell extracts were consistent with the absence of the glyoxylate cycle in this methylotroph.  相似文献   

5.
In Pseudomonas AM1, conversion of 3-hydroxybutyrate to acetyl-CoA is mediated by an inducible 3-hydroxybutyrate dehydrogenase, an acetoacetate: succinate coenzyme A transferase (specific for succinyl-CoA) and an inducible beta-ketothiolase. Ethanol is oxidized to acetate by the same enzymes as are involved in methanol oxidation to formate. An inducible acetyl-CoA synthetase has been partially purified and characterized; it is essential for growth only on ethanol, malonate and acetate plus glyoxylate, as shown by the growth characteristics of a mutant (ICT54) lacking this enzyme. Free acetate is not involved in the assimilation of acetyl-CoA, and hydroxypyruvate reductase is not involved in the oxidation of acetyl-CoA to glyoxylate during growth on 3-hydroxybutyrate. A mutant (ICT51), lacking 'malate synthase' activity has been isolated and its characteristics indicate that this activity is normally essential for growth, of Pseudomonas AM1 on ethanol, malonate and 3-hydroxybutyrate, but not for growth on other substrates such as pyruvate, succinate and C1 compounds. The growth properties of a revertant (ICT51R) and of a mutant lacking malyl-CoA lyase (PCT57) indicate that an alternative route must exist for assimilation of compounds metabolized exclusively by way of acetyl-CoA.  相似文献   

6.
The anoxygenic green sulfur bacteria (GSBs) assimilate CO2 autotrophically through the reductive (reverse) tricarboxylic acid (RTCA) cycle. Some organic carbon sources, such as acetate and pyruvate, can be assimilated during the phototrophic growth of the GSBs, in the presence of CO2 or HCO3. It has not been established why the inorganic carbonis required for incorporating organic carbon for growth and how the organic carbons are assimilated. In this report, we probed carbon flux during autotrophic and mixotrophic growth of the GSB Chlorobaculum tepidum. Our data indicate the following: (a) the RTCA cycle is active during autotrophic and mixotrophic growth; (b) the flux from pyruvate to acetyl-CoA is very low and acetyl-CoA is synthesized through the RTCA cycle and acetate assimilation; (c) pyruvate is largely assimilated through the RTCA cycle; and (d) acetate can be assimilated via both of the RTCA as well as the oxidative (forward) TCA (OTCA) cycle. The OTCA cycle revealed herein may explain better cell growth during mixotrophic growth with acetate, as energy is generated through the OTCA cycle. Furthermore, the genes specific for the OTCA cycle are either absent or down-regulated during phototrophic growth, implying that the OTCA cycle is not complete, and CO2 is required for the RTCA cycle to produce metabolites in the TCA cycle. Moreover, CO2 is essential for assimilating acetate and pyruvate through the CO2-anaplerotic pathway and pyruvate synthesis from acetyl-CoA.  相似文献   

7.
8.
9.
The facultative methylotroph Methylobacterium extorquens AM1 possesses two pterin-dependent pathways for C(1) transfer between formaldehyde and formate, the tetrahydrofolate (H(4)F)-linked pathway and the tetrahydromethanopterin (H(4)MPT)-linked pathway. Both pathways are required for growth on C(1) substrates; however, mutants defective for the H(4)MPT pathway reveal a unique phenotype of being inhibited by methanol during growth on multicarbon compounds such as succinate. It has been previously proposed that this methanol-sensitive phenotype is due to the inability to effectively detoxify formaldehyde produced from methanol. Here we present a comparative physiological characterization of four mutants defective in the H(4)MPT pathway and place them into three different phenotypic classes that are concordant with the biochemical roles of the respective enzymes. We demonstrate that the analogous H(4)F pathway present in M. extorquens AM1 cannot fulfill the formaldehyde detoxification function, while a heterologously expressed pathway linked to glutathione and NAD(+) can successfully substitute for the H(4)MPT pathway. Additionally, null mutants were generated in genes previously thought to be essential, indicating that the H(4)MPT pathway is not absolutely required during growth on multicarbon compounds. These results define the role of the H(4)MPT pathway as the primary formaldehyde oxidation and detoxification pathway in M. extorquens AM1.  相似文献   

10.
11.
Hu B  Lidstrom M 《Journal of bacteriology》2012,194(11):2802-2808
The ethylmalonyl coenzyme A (ethylmalonyl-CoA) pathway is one of the central methylotrophy pathways in Methylobacterium extorquens involved in glyoxylate generation and acetyl-CoA assimilation. Previous studies have elucidated the operation of the ethylmalonyl-CoA pathway in C(1) and C(2) assimilation, but the regulatory mechanisms for the ethylmalonyl-CoA pathway have not been reported. In this study, a TetR-type activator, CcrR, was shown to regulate the expression of crotonyl-CoA reductase/carboxylase, an enzyme of the ethylmalonyl-CoA pathway involved in the assimilation of C(1) and C(2) compounds in Methylobacterium extorquens AM1. A ccrR null mutant strain was impaired in its ability to grow on C(1) and C(2) compounds, correlating with the reduced activity of crotonyl-CoA reductase/carboxylase. Promoter fusion assays demonstrated that the activity of the promoter required for ccr expression (the katA-ccr promoter) decreased as much as 50% in the absence of ccrR compared to wild-type M. extorquens AM1. Gel mobility shift assays confirmed that CcrR directly binds to the region upstream of the katA-ccr promoter. A palindromic sequence upstream of katA at positions -334 to -321 with respect to the predicted translational start site was identified, and mutations in this region eliminated the gel retardation of the katA-ccr promoter region by CcrR. CcrR does not appear to regulate the expression of other ethylmalonyl-CoA pathway genes, suggesting the existence of additional regulators.  相似文献   

12.
Pseudomonas AM1 grows on beta-hydroxybutyrate and methanol at similar rates. beta-Hydroxybutyrate is not metabolized by way of the glyoxylate bypass, but is assimilated by the novel route (with acetate as an intermediate) that operates during growth of this organism on ethanol. Evidence from short-term labelling experiments indicates that acetate, which is a possible intermediate in the assimilation of C(1) compounds, is rapidly metabolized to glycine during growth of Pseudomonas AM1 on methanol.  相似文献   

13.
Acetate accumulation is a common problem observed in aerobic high cell density Escherichia coli cultures. A previous report has hypothesized that the glyoxylate shunt is active in a low acetate producer, E. coli BL21, and inactive in a high acetate producer, JM109. To further investigate this hypothesis, we now develop a model for the incorporation of (13)C from uniformly labeled glucose into key TCA cycle intermediates. The (13)C isotopomer distributions of oxaloacetate and acetyl-CoA are first determined using NMR and MS techniques. These distributions are next validated by predicting the NMR spectrum of glutamate. Under steady state isotopic conditions, and with knowledge of the full isotopomer distributions of oxaloacetate and acetyl-CoA, the flux ratios through the TCA cycle and the glycoxylate shunt are obtained with respect to the flux through the PPC anaplerotic shunt. We conclude that in BL21, the glyoxylate shunt is active at 22% of the flux through the TCA cycle, and is inactive in JM109. Further, in BL21, the flux through the TCA cycle equals the flux through the PPC shunt, while in JM109 the TCA cycle flux is only third of the flux through the PPC shunt.  相似文献   

14.
Cell extracts of Rhodobacter capsulatus grown on acetate contained an apparent malate synthase activity but lacked isocitrate lyase activity. Therefore, R. capsulatus cannot use the glyoxylate cycle for acetate assimilation, and a different pathway must exist. It is shown that the apparent malate synthase activity is due to the combination of a malyl-coenzyme A (CoA) lyase and a malyl-CoA-hydrolyzing enzyme. Malyl-CoA lyase activity was 20-fold up-regulated in acetate-grown cells versus glucose-grown cells. Malyl-CoA lyase was purified 250-fold with a recovery of 6%. The enzyme catalyzed not only the reversible condensation of glyoxylate and acetyl-CoA to L-malyl-CoA but also the reversible condensation of glyoxylate and propionyl-CoA to beta-methylmalyl-CoA. Enzyme activity was stimulated by divalent ions with preference for Mn(2+) and was inhibited by EDTA. The N-terminal amino acid sequence was determined, and a corresponding gene coding for a 34.2-kDa protein was identified and designated mcl1. The native molecular mass of the purified protein was 195 +/- 20 kDa, indicating a homohexameric composition. A homologous mcl1 gene was found in the genomes of the isocitrate lyase-negative bacteria Rhodobacter sphaeroides and Rhodospirillum rubrum in similar genomic environments. For Streptomyces coelicolor and Methylobacterium extorquens, mcl1 homologs are located within gene clusters implicated in acetate metabolism. We therefore propose that L-malyl-CoA/beta-methylmalyl-CoA lyase encoded by mcl1 is involved in acetate assimilation by R. capsulatus and possibly other glyoxylate cycle-negative bacteria.  相似文献   

15.
The mutant deficient in glucose-6-phosphate dehydrogenase (G6PDH) was constructed by disrupting zwf gene by one-step inactivation protocol using polymerase chain reaction primers. The knockout of zwf gene was shown to have different influence on the metabolism of Escherichia coli grown on glucose or acetate. The decreased rates of substrate uptake and CO(2) production were found for the mutant grown on acetate, whereas these two rates were increased during the growth on glucose. The metabolic flux analysis based on (13)C-labeling experiments indicates that the metabolism of the mutant grown on glucose is related to the higher flux via tricorboxylic acid (TCA) cycle to generate anabolic reducing equivalents normally provided by the oxidative pentose phosphate pathway. However, the metabolism of the mutant grown on acetate shows a lower flux towards the TCA cycle as compared with the parent strain. The decreased flux through TCA cycle is associated with an increased flux via the glyoxylate shunt, by which the carbon source can bypass the two decarboxylative steps of TCA cycle in which CO(2) is released, thus conserving more carbon for biosynthesis in response to the decreased uptake rate of the carbon source.  相似文献   

16.
The serine cycle methylotroph Methylobacterium extorquens AM1 contains two pterin-dependent pathways for C(1) transfers, the tetrahydrofolate (H(4)F) pathway and the tetrahydromethanopterin (H(4)MPT) pathway, and both are required for growth on C(1) compounds. With the exception of formate-tetrahydrofolate ligase (FtfL, alternatively termed formyl-H(4)F synthetase), all of the genes encoding the enzymes comprising these two pathways have been identified, and the corresponding gene products have been purified and characterized. We present here the purification and characterization of FtfL from M. extorquens AM1 and the confirmation that this enzyme is encoded by an ftfL homolog identified previously through transposon mutagenesis. Phenotypic analyses of the ftfL mutant strain demonstrated that FtfL activity is required for growth on C(1) compounds. Unlike mutants defective for the H(4)MPT pathway, the ftfL mutant strain does not exhibit phenotypes indicative of defective formaldehyde oxidation. Furthermore, the ftfL mutant strain remained competent for wild-type conversion of [(14)C]methanol to [(14)C]CO(2). Collectively, these data confirm our previous presumptions that the H(4)F pathway is not the key formaldehyde oxidation pathway in M. extorquens AM1. Rather, our data suggest an alternative model for the role of the H(4)F pathway in this organism in which it functions to convert formate to methylene H(4)F for assimilatory metabolism.  相似文献   

17.
In this study, the growth characteristics of Fusariumoxysporum were evaluated in minimal medium using acetate or different mixtures of acetate and glucose as carbon source. The minimum inhibitory concentration (MIC) of acetic acid that F.oxysporum cells could tolerate was 0.8%w/v while glucose was consumed preferentially to acetate. The activity of isocitrate lyase was high when cells were grown on acetate and acetate plus glucose indicating an activation of the glyoxylate cycle. Investigation of the metabolic fingerprinting and footprinting revealed higher levels of intracellular and extracellular TCA cycle intermediates when F.oxysporum cells were grown on mixtures of acetate and glucose compared to growth on only glucose. Our data support the hypothesis that a higher flux through TCA cycle during acetate consumption could significantly increase the pool of NADH, resulting in the activation of succinate-propionate pathway which consumes reducing power (NADH) via conversion of succinate to propionyl-CoA and produce propionate.  相似文献   

18.
The photosynthetic green sulfur bacterium Chlorobaculum tepidum assimilates CO(2) and organic carbon sources (acetate or pyruvate) during mixotrophic growth conditions through a unique carbon and energy metabolism. Using a (13)C-labeling approach, this study examined biosynthetic pathways and flux distributions in the central metabolism of C. tepidum. The isotopomer patterns of proteinogenic amino acids revealed an alternate pathway for isoleucine synthesis (via citramalate synthase, CimA, CT0612). A (13)C-assisted flux analysis indicated that carbons in biomass were mostly derived from CO(2) fixation via three key routes: the reductive tricarboxylic acid (RTCA) cycle, the pyruvate synthesis pathway via pyruvate:ferredoxin oxidoreductase, and the CO(2)-anaplerotic pathway via phosphoenolpyruvate carboxylase. During mixotrophic growth with acetate or pyruvate as carbon sources, acetyl-CoA was mainly produced from acetate (via acetyl-CoA synthetase) or citrate (via ATP citrate lyase). Pyruvate:ferredoxin oxidoreductase converted acetyl-CoA and CO(2) to pyruvate, and this growth-rate control reaction is driven by reduced ferredoxin generated during phototrophic growth. Most reactions in the RTCA cycle were reversible. The relative fluxes through the RTCA cycle were 80~100 units for mixotrophic cultures grown on acetate and 200~230 units for cultures grown on pyruvate. Under the same light conditions, the flux results suggested a trade-off between energy-demanding CO(2) fixation and biomass growth rate; C. tepidum fixed more CO(2) and had a higher biomass yield (Y(X/S), mole carbon in biomass/mole substrate) in pyruvate culture (Y(X/S) = 9.2) than in acetate culture (Y(X/S) = 6.4), but the biomass growth rate was slower in pyruvate culture than in acetate culture.  相似文献   

19.
The glyoxylate cycle, identified by Kornberg et al. in 1957, provides a simple and efficient strategy for converting acetyl-CoA into anapleurotic and gluconeogenic compounds. Studies of a number of bacteria capable of growth with C2 compounds as the sole carbon source have revealed that they lack the key glyoxylate cycle enzyme isocitrate lyase, suggesting that alternative pathway(s) for acetate assimilation exist in these bacteria. Recent studies of acetate assimilation in methylotrophs and purple phototrophs have revealed remarkable and complex new pathways for assimilation of acetate in the absence of isocitrate lyase. The details of these new pathways are the subject of this MicroCommentary.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号