首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Of the living apes, the chimpanzee (Pan troglodytes) and bonobo (Pan paniscus) are often presented as possible models for the evolution of hominid bipedalism. Bipedality in matched pairs of captive bonobos and chimpanzees was analyzed to test hypotheses for the evolution of bipedalism, derived from a direct referential model. There was no overall species difference in rates of bipedal positional behavior, either postural or locomotory. The hominoid species differed in the function or use of bipedality, with bonobos showing more bipedality for carrying and vigilance, and chimpanzees showing more bipedality for display.  相似文献   

2.
Recent studies have indicated that chimpanzee bipedality is mechanically inefficient and dynamically unlike that of humans, thus undermining the chimpanzee analogy for mechanical aspects of the early evolution of hominid bipedalism. This paper continues this theme by measuring the forces and stresses engendered by the muscles during bipedal locomotion, for an untrained chimpanzee and for data from chimpanzees which have been encouraged to walk bipedally, presented in the literature. Peak stresses in the triceps surae were lower for the untrained chimpanzee than for the trained subjects because during the late stance phase, when peak ankle moments occur, the centre of pressure of the ground reaction force on the foot of the untrained chimpanzee stayed close to the ankle joint. In contrast, for the trained subjects it moved closer to the toes, as in human bipedalism. Quadriceps and hip extensor stresses are approximately 30% larger for the untrained chimpanzee than for the trained subjects, because the trained chimpanzees walked with a more erect posture. These results may reflect the way in which muscles can develop in response to training, since research on humans has shown that muscle physiological cross-sectional area increases as a result of exercise, resulting in smaller stresses for a given muscle force. During a slow walk, untrained chimpanzees were found to exert far greater muscle stresses than humans do when running at moderate speed, particularly in the muscles that extend the hip, because of the bent-hip, bent-knee posture.  相似文献   

3.
For a long time, French scientists have been involved in the study of human evolution and especially of human origins. Their key works in Eastern Africa have led to the discovery of major fossil hominid sites, especially in the Afar region in Ethiopia, where numerous remains ofAustralopithecus afarensis have been unearthed. The major contribution of the French scholars to the interpretation of the Hadar sample was to demonstrate the impact of the postcranial features on taxonomy and phylogeny. Two groups were identified in the sample and by comparison with modern populations of wild primates, these groups are assigned to different taxa. The other major impact was to show that early hominid bipedalism was an exact replica of modern human bipedality.  相似文献   

4.
The bipedal behavior of a troop of olive baboons (Papio anubis) is described. Bipedalism is relatively rare but nevertheless occurs in a wide variety of situations, although bipedalism during feeding occurs much more frequently than in other situations. The incidence of bipedalism varies between different age-sex classes and between individuals within age-sex classes. This pattern of bipedalism occurred within an overall adaptive response, particularly in feeding behavior, which was similar to that of the gelada baboon (Theropithecus gelada). The data on bipedalism is used together with an existing model of early hominid differentiation based on T. gelada to indicate the types of bipedal behavior which might have occurred in early hominid small object feeders and to suggest how a bipedal pattern of this type might have served as a basis for the action of selection for a more committedly bipedal pattern at later stages of hominid evolution.  相似文献   

5.
We examined the relationship among carrying, food-sharing, and hand preference in tufted capuchins (Cebus apella). The rationale was to evaluate further the use of Cebus as an alternative primate model to Pan for behavior relevant to early hominid evolution. We first examined bipedalism and food-sharing within an established social group, and then examined the direction and strength of hand preference for food carrying in an expanded sample. Several aspects of capuchin behavior warrant discussion. First, bipedal carrying and food-sharing occurred more frequently when we provided bulky foods than when we provided smaller foods. Second, food-sharing was characterized by passive tolerance, rather than active giving, between subjects. Third, subjects shared food primarily with immatures and followed a pattern of reciprocal exchange. Finally, we found no evidence for population-level hand preference for carrying. We posit that an array of behavioral similarities among Cebus, Pan, and Homo evolved through convergent processes, and in this regard capuchins can be seen as an alternative primate model to chimpanzees for the evolution of early hominid behavior.  相似文献   

6.
Species level right-handedness is often considered to be unique to humans. Handedness is held to be interrelated to our language ability and has been used as a means of tracing the evolution of language. Here we examine handedness in 3 captive groups of bonobos (Pan paniscus) comprising 22 individuals. We found no evidence for species level handedness. Conclusions that can be drawn from these findings are: (1) species level handedness evolved after the divergence of the Pan and Homo lineages; (2) inconsistent preferences may represent precursors to human handedness, and (3) Pan may have language abilities but these cannot be measured using handedness.  相似文献   

7.
The locomotor anatomy of Australopithecus afarensis   总被引:6,自引:0,他引:6  
The postcranial skeleton of Australopithecus afarensis from the Hadar Formation, Ethiopia, and the footprints from the Laetoli Beds of northern Tanzania, are analyzed with the goal of determining (1) the extent to which this ancient hominid practiced forms of locomotion other than terrestrial bipedality, and (2) whether or not the terrestrial bipedalism of A. afarensis was notably different from that of modern humans. It is demonstrated that A. afarensis possessed anatomic characteristics that indicate a significant adaptation for movement in the trees. Other structural features point to a mode of terrestrial bipedality that involved less extension at the hip and knee than occurs in modern humans, and only limited transfer of weight onto the medial part of the ball of the foot, but such conclusions remain more tentative than that asserting substantive arboreality. A comparison of the specimens representing smaller individuals, presumably female, to those of larger individuals, presumably male, suggests sexual differences in locomotor behavior linked to marked size dimorphism. The males were probably less arboreal and engaged more frequently in terrestrial bipedalism. In our opinion, A. afarensis from Hadar is very close to what can be called a "missing link." We speculate that earlier representatives of the A. afarensis lineage will present not a combination of arboreal and bipedal traits, but rather the anatomy of a generalized ape.  相似文献   

8.
Chimpanzees (Pan troglodytes verus) at Fongoli, Senegal, consume termites year-round. Understanding the ecological context behind this behavior is especially important in light of the environmental conditions at Fongoli. This mosaic savanna habitat is one of the hottest and driest sites where chimpanzees have been studied. Two genera and four species of termites were found in association with tools used by chimpanzees in a sample of 124 termite mounds that were monitored. The chimpanzees of Fongoli termite fish predominantly in woodland and forest habitat types, and, although woodland accounts for the majority of the chimpanzees' home range, forest habitat types comprise only about 4% of their range. Thus, habitat type has an influence on the Fongoli chimpanzees' termite fishing. Termite consumption to the degree seen at Fongoli may have particular significance for hominid evolution, given the expansion of Pliocene hominids into increasingly open, hot, and dry habitats.  相似文献   

9.
The gluteal musculature of primates has been a focus of great research interest among those who study human evolution. Most current theorists agree that gluteus superficialis (= maximus) need not have changed its action in the step from pongid to hominid, but dispute has arisen over a purported change in action and role of the gluteus medius. To clarify the functions of gluteus medius, gluteus superficialis, and tensor fasciae femoris during ape locomotion, we conducted a telemetered electromyographic study of these muscles in two gibbons, one orangutan, and four chimpanzees as they walked bipedally on the ground and on a horizontal tree trunk, walked quadrupedally on the same substrates, and climbed a vertical tree trunk. The results indicate that the gluteus medius of apes is not, as has been previously suggested, primarily an extensor of the thigh; its action is chiefly that of medial rotation. The role of the gluteus medius during bipedality is the same in apes and humans–to provide side-to-side balance of the trunk at the hip. The change in the hominid lateral balance mechanism can be viewed as primarily osteological, allowing preservation of the same muscle function with an extended thigh. As a result, the stride length is increased and there occurs a diminution of the demands placed on other muscles to maintain anteroposterior balance at the hip and knee. Our data also support the view that vertical climbing may be specifically preadaptive to bipedalism. One may picture the earliest hominid as part biped, when on the ground traveling between scattered food trees, and part climber, when moving from the ground to food.  相似文献   

10.
The vertical-climbing account of the evolution of locomotor behavior and morphology in hominid ancestry is reexamined in light of recent behavioral, anatomical, and paleontological findings and a more firmly established phylogeny for the living apes. The behavioral record shows that African apes, when arboreal, are good vertical climbers, and that locomotion during traveling best separates the living apes into brachiators (gibbons), scrambling/climbing/brachiators (orangutans), and terrestrial quadrupeds (gorillas and chimpanzees). The paleontological record documents frequent climbing as an ancestral catarrhine ability, while a reassessment of the morphology of the torso and forelimb in living apes and Atelini suggests that their shared unique morphological pattern is best explained by brachiation and forelimb suspensory positional behavior. Further, evidence from the hand and foot points to a terrestrial quadrupedal phase in hominoid evolution prior to the adoption of bipedalism. The evolution of positional behavior from early hominoids to hominids appears to have begun with an arboreal quadrupedal-climbing phase and proceeded though an orthograde, brachiating, forelimb-suspensory phase, which was in turn followed by arboreal and terrestrial quadrupedal phases prior to the advent of hominid bipedality. The thesis that protohominids climbed down from the trees to become terrestrial bipeds needs to be reexamined in light of a potentially long history of terrestriality in the ancestral protohominid. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Based on 244 measurements of the relationship of the squamosal suture to the landmark asterion in 49 chimpanzee skulls, it is shown that in the normal lateral view the squamosal suture is very rarely inferior to asterion. In hominid crania, the squamosal suture is always well superior to asterion. Even in Pan, that part of the squamosal suture most homologous with the remnant found on the Hadar AL 162-28 Australopithecus afarensis hominid cranial fragment is very rarely inferior to asterion. Such variability suggests that Falk's (Nature 313:45-47, 1985) orientation of the Hadar specimen is incorrect; she places asterion superior to the position of the squamosal suture if projected endocranially. The implication for the brain endocast is that, however the fragment is oriented, the posterior aspect of the intraparietal (IP) sulcus is in a very posterior position relative to any chimpanzee brain. The distance from the posterior aspect of IP to occipital pole is twice as great in chimpanzee brain casts than on the Hadar AL 162-28 endocast, even though the chimpanzee brain casts are smaller in overall size. This suggests that brain reorganization, at least as exemplified as a reduction in primary visual striate cortex (area 17 of Brodmann), occurred early in hominid evolution, prior to any major brain expansion.  相似文献   

12.
Costs of mating effort can affect the reproductive strategies and lifetime fitness of male primates, but interspecific and interindividual variation in the magnitude and distribution of costs is poorly understood. Male costs have primarily been recognized in seasonally breeding species that experience concentrated periods of mating competition. Here, we examine foraging costs associated with male mating effort in chimpanzees (Pan troglodytes schweinfurthii), a polygynandrous species, in which mating opportunities occur intermittently throughout the year. To quantify male feeding, aggression, and mating, we conducted focal follows on 12 males in a wild community (Kanyawara, Kibale National Park, Uganda) for 11 mo. Males fed less on days when high-value mating opportunities (estrous parous females) were available than on days without any mating opportunities. Reductions in feeding time were related to increased rates of aggression and copulation, indicating that the proximate cause of changes in male foraging was mating effort. Surprisingly, however, there was no relationship between dominance rank and the extent to which feeding time was reduced. High costs of mating effort may reduce the degree of reproductive skew and limit the use of possessive tactics in chimpanzees. We suggest that male bonding in chimpanzees may be favored not only for its benefits but because intragroup competition is so costly. Our results complement the available data on mammals, and primates in particular, by showing that mating effort can have measurable foraging costs even in species, in which breeding is aseasonal and only moderately skewed.  相似文献   

13.
Variability selection (abbreviated as VS) is a process considered to link adaptive change to large degrees of environment variability. Its application to hominid evolution is based, in part, on the pronounced rise in environmental remodeling that took place over the past several million years. The VS hypothesis differs from prior views of hominid evolution, which stress the consistent selective effects associated with specific habitats or directional trends (e.g., woodland, savanna expansion, cooling). According to the VS hypothesis, wide fluctuations over time created a growing disparity in adaptive conditions. Inconsistency in selection eventually caused habitat-specific adaptations to be replaced by structures and behaviors responsive to complex environmental change. Key hominid adaptations, in fact, emerged during times of heightened variability. Early bipedality, encephalized brains, and complex human sociality appear to signify a sequence of VS adaptations—i.e., a ratcheting up of versatility and responsiveness to novel environments experienced over the past 6 million years. The adaptive results of VS cannot be extrapolated from selection within a single environmental shift or relatively stable habitat. If some complex traits indeed require disparities in adaptive setting (and relative fitness) in order to evolve, the VS idea counters the prevailing view that adaptive change necessitates long-term, directional consistency in selection. © 1998 Wiley-Liss, Inc.  相似文献   

14.
Studies on Cercopithecine primate maternal styles, using factor analysis on a set of maternal behaviors, commonly render two factors that describe separate dimensions of maternal behavior: protectiveness and rejection. The aims of this study were to 1) investigate whether this method for determining maternal styles in Cercopithecine species can be applied to bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), 2) determine whether they follow the same pattern, and 3) assess whether species differences in maternal style are apparent. We performed a factor analysis on nine maternal behaviors using data on eight mother-infant pairs of each species. This resulted in three factors: protectiveness, distance, and refusal. Protectiveness is positively correlated with time spent in ventral contact, making contact, approaching, and restraining. Distance is positively related with breaking contact and leaving. Refusal is positively correlated with rejecting and nipple-rejecting. The pattern of protectiveness corresponds with the pattern found in Cercopithecine species, suggesting a high consistency of this dimension across species and higher taxa. The retention of the other two factors indicates that in the Pan species, breaking contact and leaving represent another dimension, apart from rejecting and nipple-rejecting, which usually fall under one dimension in Cercopithecine species. An interspecific comparison of the factor scores for each dimension of maternal behavior reveals that, on average, bonobos and chimpanzees score equally on protectiveness. Scores on distance increase positively with infant age in chimpanzees, and negatively in bonobos, and on average bonobos have higher scores on refusal. These interspecies differences in maternal style are discussed in the light of interspecies differences in infant development, infant vulnerability to aggression, interbirth intervals, and female sociality.  相似文献   

15.
Skeletal dimensions of pygmy (Pan paniscus) and common (Pan troglodytes) chimpanzees were compared. Significant differences were found in the clavicles, scapulae, pelvises, and in the humerus/femur and femur head/length ratios. No significant differences were observed in long bone lengths or talar breadths. There is extensive overlap in body weights, so that the observed differences cannot be accounted for by body size alone. We conclude that pygmy and common chimpanzees are morphologically distinct. Implications for hominoid evolution are discussed.  相似文献   

16.
Cross-population comparisons of chimpanzees can shed light on the pathways of hominid evolution. So far, no eco-ethological data exist for the recently recognized subspecies Pan troglodytes vellerosus. We report on the first 2 years of a new long-term study from what is perhaps their last remaining stronghold: the Gashaka Gumti National Park, Nigeria. The mosaic habitat (woodland, lowland and gallery forest) receives 1,826 mm rain/year, with 4-5 months being completely dry. Primates at Gashaka are not hunted, and the chimpanzees are therefore relatively tolerant of human observers. We focused on the Gashaka-Kwano community, investing 3,000 h of patrols. A total of 95 sightings were achieved which lasted for an average of 27 min (range 1-190 min). Party size averaged 3.7 animals (range 1-17) but was, similarly to encounter length, susceptible to a wide range of methodological, social and ecological factors. The Kwano community comprises at least 35 members which occupy a home range of at least 26 km(2), yielding a density of 1.3/km(2). The area represents the West African equivalent of a chimpanzee site similar to the forest-woodland habitat in which early humans might have evolved.  相似文献   

17.
It has long been recognized that the bipedal posture reduces the surface area of the body exposed to the sun. In recent years, a theory has been developed by Wheeler that bipedalism evolved in the ancestor of the Hominidae in order to help relieve thermal stress on the animals in open equatorial environments. Bipedalism was said to afford a distinct adaptive advantage over quadrupedalism by permitting hominids to remain active in the open throughout the day. The heat load of the hypothetical hominid comprises the external environment as modelled by Wheeler and the animal's internal environment (i.e., the internal heat generated by its metabolic and locomotor activities, and its evaporative and respirative cooling capacities). When these factors are integrated in the calculation of the animal's thermal budget, the putative advantage of the bipedal over the quadrupedal posture is considerably reduced. The simulations conducted in this study suggest that the increased time afforded to early hominids in the open by bipedalism was relatively short and, therefore, of little or no adaptive significance. These results suggest that thermoregulatory considerations cannot be implicated as a first cause in the evolution of bipedalism in the hominid ancestor.  相似文献   

18.
The sciatic notch has been widely used as a sexing criterion in modern humans. In order to better understand the sex differences of this feature in modern humans and great apes, four measurements of the sciatic notch were taken on samples of modern humans and great apes of known sex. Univariate (ANOVA) analysis and discriminant function analysis were performed on the extant taxa to determine: (1) the discriminating power of each variable in these samples of known group membership; and (2) which of these extant taxa shows the best discrimination between the sexes for the sciatic notch. Of the four extant taxa, the sciatic notch of Homo sapiens is the most sexually dimorphic, followed by Gorilla gorilla, and more weakly by Pongo pygmaeus, while Pan troglodytes is the least dimorphic of these taxa. Since the presence of a well defined sciatic notch is a hominid trait resulting from the dorsal extension of the posterior ilium, the close approximation of the sacrum to the acetabulum, the shortened ischium, and the accentuation of the ischial spine as part of the bipedal adaptation, it seems likely that the configuration of the sciatic notch in hominids was initially related to bipedalism, not reproduction. The development of sex differences in the sciatic notch of modern humans is more likely to have occurred after the transition to bipedality. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Fossil evidence from the Plio-Pleistocene of Africa apparently has confirmed a multi-lineage interpretation of early hominid evolution. Empirical refutation of the single species hypothesis must now be matched to the evolutionary ecology theory, which can underwrite taxonomic assessment and help to explain sympatric hominid coexistence. This paper contributes to that goal by reassessing the ecological rationale provided for the single-species hypothesis. Limiting similarity concepts indicate that the allowable ecological overlap between sympatric competitors is greater than the degrees of metric overlap often advanced as standards for identifying fossil species. Optimal foraging theory and the compression hypothesis show that the initial ecological reaction of a hominid to a sympatric competitor would likely be micro-habitat divergence and possibly also temporal differentiation of resource use. The long-term, evolutionary response is niche divergence, probably involving diet as well. General niche partitioning studies suggest that diet and habitat are the most common dimensions of niche separation, although temporal separation is unusually frequent in carnivores. The equation of niche with culture, basic to the single-species hypothesis, has no analytic meaning. Finally, four minor points are discussed, suggesting that (a) extinction is not unlikely, even for a long-lived and competitively competent hominid lineage, (b)parsimony is fickle, (c)interspecific mutualism may jeopardize survival, and (d)generalists are subordinate competitors, but for hominids, seemingly, successful ones. I argue that analog models of hominid paleoecology should be replaced by the use of zoological and anthropological observations to assess the generality and reliability of ecological theory and comcepts that may encompass early hominids.  相似文献   

20.
The debate about how early hominids walked may be characterised as two competing hypotheses: They moved with a fully upright (FU) gait, like modern humans, or with a bent-hip, bent-knee (BK) gait, like apes. Both have assumed that this bipedalism was almost exclusively on land, in trees or a combination of the two. Recent findings favoured the FU hypothesis by showing that the BK gait is 50–60% more energetically costly than a FU human gait on land. We confirm these findings but show that in water this cost differential is markedly reduced, especially in deeper water, at slower speeds and with greater knee flexion. These data suggest that the controversy about australopithecine locomotion may be eased if it is assumed that wading was a component of their locomotor repertoire and supports the idea that shallow water might have been an environment favourable to the evolution of early forms of “non-optimal” hominid bipedalism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号