首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Although three major classes of systemic antifungal agents are clinically available, each is characterized by important limitations. Thus, there has been considerable ongoing effort to develop novel and repurposed agents for the therapy of invasive fungal infections. In an effort to address these needs, we developed a novel high-throughput, multiplexed screening method that utilizes small molecules to probe candidate drug targets in the opportunistic fungal pathogen Candida albicans. This method is amenable to high-throughput automated screening and is based upon detection of changes in GFP levels of individually tagged target proteins. We first selected four GFP-tagged membrane-bound proteins associated with virulence or antifungal drug resistance in C. albicans. We demonstrated proof-of-principle that modulation of fluorescence intensity can be used to assay the expression of specific GFP-tagged target proteins to inhibitors (and inducers), and this change is measurable within the HyperCyt automated flow cytometry sampling system. Next, we generated a multiplex of differentially color-coded C. albicans strains bearing C-terminal GFP-tags of each gene encoding candidate drug targets incubated in the presence of small molecules from the Prestwick Chemical Library in 384-well microtiter plate format. Following incubation, cells were sampled through the HyperCyt system and modulation of protein levels, as indicated by changes in GFP-levels of each strain, was used to identify compounds of interest. The hit rate for both inducers and inhibitors identified in the primary screen did not exceed 1% of the total number of compounds in the small-molecule library that was probed, as would be expected from a robust target-specific, high-throughput screening campaign. Secondary assays for virulence characteristics based on null mutant strains were then used to further validate specificity. In all, this study presents a method for the identification and verification of new antifungal drugs targeted to fungal virulence proteins using C. albicans as a model fungal pathogen.  相似文献   

4.
Invasion and colonization of host cells by bacterial pathogens depend on the activity of a large number of prokaryotic proteins, defined as virulence factors, which can subvert and manipulate key host functions. The study of host/pathogen interactions is therefore extremely important to understand bacterial infections and develop alternative strategies to counter infectious diseases. This approach however, requires the development of new high-throughput assays for the unbiased, automated identification and characterization of bacterial virulence determinants. Here, we describe a method for the generation of a GFP-tagged mutant library by transposon mutagenesis and the development of high-content screening approaches for the simultaneous identification of multiple transposon-associated phenotypes. Our working model is the intracellular bacterial pathogen Coxiellaburnetii, the etiological agent of the zoonosis Q fever, which is associated with severe outbreaks with a consequent health and economic burden. The obligate intracellular nature of this pathogen has, until recently, severely hampered the identification of bacterial factors involved in host pathogen interactions, making of Coxiella the ideal model for the implementation of high-throughput/high-content approaches.  相似文献   

5.
Erwinia carotovora subsp. atroseptica was mutage-nized and assayed for virulence in planta. Those mutants which exhibited reduced virulence (Rvi-) were assayed for growth rate, auxotrophy and extracellular enzyme secretion and seven mutants were found to be wild type for all of these phenotypes. When screened for other phenotypes, two were found to be non-motile. One mutant was complemented for motility by a heterologous gene library. A 2.7kb XmaIII-Clal complementing fragment was sequenced and the gene products were found to have similarity to flagella biosynthesis gene products from several bacteria. Further similarity was found to a pathogenicity protein from the plant pathogen Xanthomonas campestris pv. glycines and to the Spa pathogenicity proteins of the human pathogen Shigella fiexneri, which are involved in the surface presentation of antigens. These studies highlight the emergence of common themes in the molecular strategies employed by both plant and animal bacterial pathogens for the targeting of proteins involved in the elaboration of disease.  相似文献   

6.
Dysentery caused by Shigella species is characterized by infiltration of polymorphonuclear leucocytes (PMNs) into the colonic mucosa. Shigella spp. evolved into pathogens by the acquisition of virulence genes and by the deletion of 'antivirulence' genes detrimental to its pathogenic lifestyle. An example is cad A (encoding lysine decarboxylase), which is uniformly absent in Shigella spp., whereas it is present in nearly all isolates of the closely related non-pathogen Escherichia coli . Here, using monolayers of T84 cells to model the human intestinal epithelium, we determined that the introduction of cad A into S. flexneri and the expression of lysine decarboxylase attenuated the bacteria's ability to induce PMN influx across model intestinal epithelium. Such inhibition was caused by cadaverine generated from the decarboxylation of lysine. Cadaverine treatment of model intestinal epithelia specifically inhibited S. flexneri induction of PMN transepithelial migration, while having no effect on the ability of Salmonella or enteropathogenic E. coli (EPEC) to induce PMN migration. These observations not only provide insight into mechanisms of S. flexneri pathogen evolution and pathogenesis, but also suggest a potential for the use of cadaverine in the treatment of dysentery.  相似文献   

7.
Toll-like receptors (TLRs) contribute to host resistance to microbial pathogens and can drive the evolution of virulence mechanisms. We have examined the relationship between host resistance and pathogen virulence using mice with a functional allele of the nramp-1 gene and lacking combinations of TLRs. Mice deficient in both TLR2 and TLR4 were highly susceptible to the intracellular bacterial pathogen Salmonella typhimurium, consistent with reduced innate immune function. However, mice lacking additional TLRs involved in S. typhimurium recognition were less susceptible to infection. In these TLR-deficient cells, bacteria failed to upregulate Salmonella pathogenicity island 2 (SPI-2) genes and did not form a replicative compartment. We demonstrate that TLR signaling enhances the rate of acidification of the Salmonella-containing phagosome, and inhibition of this acidification prevents SPI-2 induction. Our results indicate that S. typhimurium requires cues from the innate immune system to regulate virulence genes necessary for intracellular survival, growth, and systemic infection.  相似文献   

8.
Iron and virulence in Shigella   总被引:13,自引:3,他引:10  
Iron limitation, a condition encountered within mammalian hosts, induces the synthesis of a number of proteins in pathogenic Shigella species. These include several outer membrane proteins, Shiga toxin, and proteins involved in the biosynthesis and transport of high-affinity iron-binding compounds or siderophores. Although siderophores have been shown to play a major role in the virulence of some bacterial pathogens, these compounds do not appear to be essential for the virulence of Shigella species. Unlike those pathogens which are restricted to the extracellular compartments of the host, the Shigella species invade and multiply within host cells. Alternative iron-acquisition systems, such as the ability to utilize haem-iron, permit growth of the intracellular bacteria. Virulent shigellae also possess a cell-surface haem-binding protein, and synthesis of this protein correlates with infectivity and virulence. This protein does not appear to be involved in iron acquisition. Rather, it may allow the bacteria to coat themselves with haem compounds, thus enhancing their ability to interact with target host cells.  相似文献   

9.
E A Groisman  H Ochman 《The EMBO journal》1993,12(10):3779-3787
The enteric pathogens Salmonella typhimurium and Shigella flexneri differ in most virulence attributes including infectivity, pathology and host range. We have identified a new assemblage of genes responsible for invasion properties of Salmonella which is remarkably similar in order, arrangement and sequence to the gene cluster controlling the presentation of surface antigens (spa) on the virulence plasmid of Shigella. In Salmonella, this chromosomally encoded complex consists of over 12 genes, mutations in which abolish bacterial entry into epithelial cells. Although these genera use distinct invasion antigens, a non-invasive spa mutant of Salmonella could be rescued by the corresponding Shigella homolog. While spa promotes equivalent functions in Shigella and Salmonella, this constellation of genes has been acquired independently by each genus and displays motifs used by diverse antigen export systems including those required for flagellar assembly and protein secretion.  相似文献   

10.
HrpI, a 78-kDa protein, functions in the secretion of harpin, a proteinaceous elicitor of the hypersensitive response from Erwinia amylovora. The predicted amino acid sequence of HrpI is remarkably similar to that of LcrD of Yersinia species, the first member of a recently described protein family. Other proteins of the family are MixA from Shigella flexneri, InvA from Salmonella typhimurium, FlhA from Caulobacter crescentus, HrpI from Pseudomonas syringae pv. syringae, HrpO from Pseudomonas solanacearum, and HrpC2 from Xanthomonas campestris pv. vesicatoria. Cells of E. amylovora containing mutated hrpI genes or cells of Escherichia coli containing the cloned hrp gene cluster with mutated hrpI produce but do not export harpin. When similar cells with functional hrpI genes were grown at 25 degrees C, but not at 37 degrees C, harpin was exported to the culture supernatant. Direct evidence that HrpI is involved in the secretion of a virulence protein has been offered. Two other loci of the hrp gene cluster are involved in the regulation of harpin, and four other loci also are involved in the secretion of harpin. Since harpin and other proteins likely to be secreted by the LcrD family of proteins lack typical signal peptides, their secretion mechanism is distinct from the general protein export pathway.  相似文献   

11.
FliI is a Salmonella typhimurium protein that is needed for flagellar assembly and may be involved in a specialized protein export pathway that proceeds without signal peptide cleavage. FliI shows extensive sequence similarity to the catalytic beta subunit of the F0F1 ATPase (A. P. Volger, M. Homma, V. M. Irikura, and R. M. Macnab, J. Bacteriol. 173:3564-3572, 1991). It is even more similar to the Spa47 protein of Shigella flexneri (M. M. Venkatesan, J. M. Buysse, and E. V. Oaks, J. Bacteriol. 174:1990-2001, 1992) and the HrpB6 protein of Xanthomonas campestris (S. Fenselau, I. Balbo, and U. Bonas, Mol. Plant-Microbe Interact. 5:390-396, 1992), which are believed to play a role in the export of virulence proteins. Site-directed mutagenesis of residues in FliI that correspond to catalytically important residues in the F1 beta subunit resulted in loss of flagellation, supporting the hypothesis that FliI is an ATPase. FliI was overproduced and purified almost to homogeneity. It demonstrated ATP binding but not hydrolysis. An antibody raised against FliI permitted detection of the protein in wild-type cells and an estimate of about 1,500 subunits per cell. An antibody directed against the F1 beta subunit of Escherichia coli cross-reacted with FliI, confirming that the proteins are structurally related. The relationship between three proteins involved in flagellar assembly (FliI, FlhA, and FliP) and homologs in a variety of virulence systems is discussed.  相似文献   

12.
Yersinia virulence is dependent on the expression of plasmid-encoded secreted proteins called Yops. After bacterial adherence to receptors on the mammalian cell membrane, several Yops are transported by a type III secretion pathway into the host cell cytoplasm. Two Yops, YopH and YopE, prevent macrophages from phagocytosing Yersinia by disrupting the host cell cytoskeleton and signal transduction pathways. In contrast to this active inhibition of phagocytosis by Yersinia , other pathogens such as Salmonella , Shigella , Listeria and Edwardsiella actively promote their entry into mammalian cells by binding to specific host surface receptors and exploiting existing cell cytoskeletal and signalling pathways. We have tested whether Yersinia Yops can prevent the uptake of these diverse invasive pathogens. We first infected epithelial cells with Yersinia to permit delivery of Yops and subsequently with an invasive pathogen. We then measured the level of bacterial invasion. Preinfection with Yersinia inhibited invasion of Edwardsiella , Shigella and Listeria , but not Salmonella . Furthermore, we found that either YopE or YopH prevented Listeria invasion, whereas only YopE prevented Edwardsiella and Shigella invasion. We correlated the inhibitory effect of the Yops with the inhibitory action of the cell-signalling inhibitors Wortmannin, LY294002 and NDGA, and concluded that the four invasive pathogenic species enter epithelial cells using at least three distinct host cell pathways. We also speculate that YopE affects the rho pathway.  相似文献   

13.
Yersinia pestis is a gram negative zoonotic pathogen responsible for causing bubonic and pneumonic plague in humans. The pathogen uses a type III secretion system (T3SS) to deliver virulence factors directly from bacterium into host mammalian cells. The system contains a single ATPase, YscN, necessary for delivery of virulence factors. In this work, we show that deletion of the catalytic domain of the yscN gene in Y. pestis CO92 attenuated the strain over three million-fold in the Swiss-Webster mouse model of bubonic plague. The result validates the YscN protein as a therapeutic target for plague. The catalytic domain of the YscN protein was made using recombinant methods and its ATPase activity was characterized in vitro. To identify candidate therapeutics, we tested computationally selected small molecules for inhibition of YscN ATPase activity. The best inhibitors had measured IC(50) values below 20 μM in an in vitro ATPase assay and were also found to inhibit the homologous BsaS protein from Burkholderia mallei animal-like T3SS at similar concentrations. Moreover, the compounds fully inhibited YopE secretion by attenuated Y. pestis in a bacterial cell culture and mammalian cells at μM concentrations. The data demonstrate the feasibility of targeting and inhibiting a critical protein transport ATPase of a bacterial virulence system. It is likely the same strategy could be applied to many other common human pathogens using type III secretion system, including enteropathogenic E. coli, Shigella flexneri, Salmonella typhimurium, and Burkholderia mallei/pseudomallei species.  相似文献   

14.
A coordinated effort combining bioinformatic tools with high-throughput cell-based screening assays was implemented to identify novel factors involved in T-cell biology. We generated a unique library of cDNAs encoding predicted secreted and transmembrane domain-containing proteins generated by analyzing the Human Genome Sciences cDNA database with a combination of two algorithms that predict signal peptides. Supernatants from mammalian cells transiently transfected with this library were incubated with primary T cells and T-cell lines in several high-throughput assays. Here we describe the discovery of a T cell factor, TIP (T cell immunomodulatory protein), which does not show any homology to proteins with known function. Treatment of primary human and murine T cells with TIP in vitro resulted in the secretion of IFN-gamma, TNF-alpha, and IL-10, whereas in vivo TIP had a protective effect in a mouse acute graft-versus-host disease (GVHD) model. Therefore, combining functional genomics with high-throughput cell-based screening is a valuable and efficient approach to identifying immunomodulatory activities for novel proteins.  相似文献   

15.
Zhang W  Liu G  Tang F  Shao J  Lu Y  Bao Y  Yao H  Lu C 《PloS one》2011,6(6):e21234
Streptococcus suis serotype 2 (SS2) is a zoonotic pathogen that can cause infections in pigs and humans. Bacterial surface proteins are often investigated as potential vaccine candidates and biomarkers of virulence. In this study, a novel method for identifying bacterial surface proteins is presented, which combines immunoproteomic and immunoserologic techniques. Critical to the success of this new method is an improved procedure for generating two-dimensional electrophoresis gel profiles of S. suis proteins. The S. suis surface proteins identified in this study include muramidase-released protein precursor (MRP) and an ABC transporter protein, while MRP is thought to be one of the main virulence factors in SS2 located on the bacterial surface. Herein, we demonstrate that the ABC transporter protein can bind to HEp-2 cells, which strongly suggests that this protein is located on the bacterial cell surface and may be involved in pathogenesis. An immunofluorescence assay confirmed that the ABC transporter is localized to the bacterial outer surface. This new method may prove to be a useful tool for identifying surface proteins, and aid in the development of new vaccine subunits and disease diagnostics.  相似文献   

16.
Entry into non-phagocytic mammalian cells by the invasive pathogens Salmonella and Shigella is triggered by the delivery of bacterial virulence effector proteins into the host cell. This is dependent upon Salmonella SipB or its Shigella homologue IpaB, which insert into the eukaryotic cell plasma membrane. Here we show that a SipB-derived 166 residue alpha-helical polypeptide is a potent inhibitor of SipB-directed liposome fusion in vitro, preventing the membrane-associated form of SipB from inserting deeply into the bilayer. This polypeptide blocks Salmonella entry into cultured mammalian cells at 10(-10) M, and is a heterologous inhibitor of analogous IpaB activity and Shigella cell entry. These findings reveal a potential strategy to identify inhibitors of the 'trigger' mechanism underlying cell entry by these major invasive pathogens.  相似文献   

17.
以合成的单链序列特异性标签为模板,通过PCR得到双链DNA标签并将其克隆到自杀质粒pUT-Tn5 Km2的转座子中,转化大肠杆菌S17-1λpir;然后用经转化的S17-1λpir与福氏志贺菌2a 2457T交配,挑出对氨苄青霉素敏感,对卡那霉素和萘啶酮酸抗性的菌落,结果表明构建了包含4376个福氏志贺菌突变体信号标签诱变库,为进一步鉴定该病原体的毒力基因打下了基础。  相似文献   

18.
The genetic differences between the human pathogen, Shigella flexneri, and the non-pathogenic Escherichia coli were investigated in an attempt to identify pathogenicity islands (PAIs) in the S. flexneri genome. Genomic subtraction identified a large unique region of DNA which was present in S. flexneri serotype 2a but absent from E. coli K-12. This 42-kb DNA segment was localised to the S. flexneri chromosome and was found to contain a number of elements often associated with PAIs including: insertion sequence elements, bacteriophage genes, and a previously identified Shigella virulence gene (criR). These findings indicate that this region may form a new PAI in the S. flexneri genome.  相似文献   

19.
The ability to translocate virulence proteins into host cells through a type III secretion apparatus (TTSS) is a hallmark of several Gram-negative pathogens including Shigella, Salmonella, Yersinia, Pseudomonas, and enteropathogenic Escherichia coli. In common with other types of bacterial secretion apparatus, the assembly of the TTSS complex requires the preceding formation of its integral outer membrane secretin ring component. We have determined at 1.5 A the structure of MxiM28-142, the Shigella pilot protein that is essential for the assembly and membrane association of the Shigella secretin, MxiD. This represents the first atomic structure of a secretin pilot protein from the several bacterial secretion systems containing an orthologous secretin component. A deep hydrophobic cavity is observed in the novel 'cracked barrel' structure of MxiM, providing a specific binding domain for the acyl chains of bacterial lipids, a proposal that is supported by our various lipid/MxiM complex structures. Isothermal titration analysis shows that the C-terminal domain of the secretin, MxiD525-570, hinders lipid binding to MxiM.  相似文献   

20.
Bacteria use a variety of secretion systems to transport proteins beyond their cell membrane to interact with their environment. For bacterial pathogens, these systems are key virulence determinants that transport bacterial proteins into host cells. Genetic screens to identify bacterial genes required for export have relied on enzymatic or fluorescent reporters fused to known substrates to monitor secretion. However, they cannot be used in analysis of all secretion systems, limiting the implementation across bacteria. Here, we introduce the first application of a modified form of whole colony MALDI-TOF MS to directly detect protein secretion from intact bacterial colonies. We show that this method is able to specifically monitor the ESX-1 system protein secretion system, a major virulence determinant in both mycobacterial and Gram-positive pathogens that is refractory to reporter analysis. We validate the use of this technology as a high throughput screening tool by identifying an ESAT-6 system 1-deficient mutant from a Mycobacterium marinum transposon insertion library. Furthermore, we also demonstrate detection of secreted proteins of the prevalent type III secretion system from the Gram-negative pathogen, Pseudomonas aeruginosa. This method will be broadly applicable to study other bacterial protein export systems and for the identification of compounds that inhibit bacterial protein secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号