首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 495 毫秒
1.
Responses (chemotaxis and changes in membrane potential) of Tetrahymena, Physarum, and Nitella against aqueous solution of homologous series of n-alcohols, n-aldehydes and n-fatty acids were studied for clarifying the hydrophobic character of chemoreceptive membranes. Results were: (1) All organisms studied responded to homologous compounds examined when the concentration of these chemicals exceeded their respective threshold, Cth, and the response, R, were expressed approximately as R=alpha log (C/Cth) for C greater than Cth. (2) Increase of the length of hydrocarbon chain in homologues decreased Cth. Plots of log Cth against the number of carbon atoms, n, in n-alcohols, n-aldehydes and n-fatty acids showed linear relationships as represented by long Cth=-An+B. A and B are positive constants for respective functional end groups of the chemicals and biological membranes used. The above empirical equation was interpreted in terms of the partition equilibrium of methylene groups between bulk solution and membrane phase. Parameter A was shown to be a measure of hydrophobicity of the membrane, and B represented the sensitivity of chemoreception of the membrane. (3) Thresholds, Cth, for various hydrophobic reagents were compared with those of human olfactory reception, T. Plots of log T against log Cth fell on straight lines for respective organisms with different slopes which were proportional to parameter A.  相似文献   

2.
Interaction between salt and sugar receptions in plasmodium of Physarum polycephalum was studied by using double-chamber method. Effect of sugars on salt reception was evaluated by measuring membrane potential and the motive force of tactic movement of the slime mold, where salt concentration in one compartment was increased successively with a fixed sugar concentration. Results are summarized as follows: (1) The presence of D-glucose, D-mannose, D-maltose, or sucrose in medium led to increase of the threshold concentration Cth, for salts (chlorides and nitrates of Li, Na, K), whereas D-ribose decreased the threshold for salt reception. D-galactose showed no appreciable effect on Cth of every salt species examined. No change in Cth for salt reception was observed until concentration of sugars exceeded their respective thresholds. (2) Double logarithmic plots of Cth for salts against sugar concentration followed different straight lines for different cations, whose slopes being closely correlated with the effects of lyotropic number of anions in the absence of sugars. (3) Plots of log Cth against the reciprocal of the absolute temperature, 1/T, gave linear relations, and the slopes of the straight line became small with increase of sugar concentration above their respective thresholds. Experimental results obtained here suggest that the structure of water at the interface of cell membrane plays an indispensable role in the interaction between salt and sugar receptions.  相似文献   

3.
Electrical response to excitable internodal cell of Nitella was studied by applying various kinds of odorants to the cell. Changes in membrane potential and resistance during responses induced by odorants were measured intracellularly under a variety of ionic environments in the media. Results were: 1) Some odorants (coumarin, isoamylacetate, methylacetate, 1-octanol, 1-butanol, 1-propanol) produced an all-or-nothing type action potential when the concentration of odorant exceeded a certain threshold. The action potential was followed by a gradual depolarization of the potential whose amplitude depended on the odorant concentration, C. Other odorants (heptanoic acid, beta-ionon) induced gradual depolarization of the membrane potential without evoking an action potential. 2) Membrane resistance Rm changed in various ways during depolarization: some odorants led to a temporal or gradual decrease in Rm, and others caused an increase in Rm when the membrane potential was depolarized by the application of odorants. 3) Magnitude of response to odorants OR was found to be represented by the following equation: OR =(alpha + beta square root I) log (C/Cth) for C greater than or equal to Cth where alpha and beta are constants for a given odorant, I the ionic strength in the medium, and Cth the threshold concentration of the odorant. 4) Plots of olfactory threshold of human and of internodal cell of Nitella gave a straight line having slope unity. 5) Local application of odorants on the internodal cell induced impulses which transmitted from the part treated by odorants to the other portion. Physico-chemical and physiological implications of the results obtained were discussed.  相似文献   

4.
Lysosomal acid phospholipase A1, as well as other lysosomal enzymes, may be released under pathophysiological conditions into extralysosomal compartments. As shown here, several unspecific mechanisms exist which inhibit the hydrolysis of membrane diacylphospholipids by lysosomal acid phospholipase A1 and hence prevent an uncontrolled membrane destruction. These findings were obtained by employing partially purified rat liver lysosomal acid phospholipase A1 and sonicated radioactively labeled phosphatidylethanolamine or phosphatidylcholine as substrate. The inhibitory principles found include (1) pH, (2) inorganic cations, and (3) various proteins. Inorganic cations and proteins, however, inhibited lysosomal acid phospholipase A1 activity only below pH 6.0, and inhibition never exceeded 96%. Of the inorganic cations studied, the divalent species, as compared to the monovalent one, impaired lysosomal acid phospholipase A1 activity at significantly lower concentrations. Virtually all of the intracellular and extracellular proteins studied inhibited the enzyme activity, but the inhibitory potencies of the different proteins varied considerably. In general, basic and hydrophobic proteins were the most potent inhibitors, whereas glycoproteins appeared to be less inhibitory. The degree of inhibition of the enzyme activity in both proteins and inorganic cations depended on the substrate concentration and not on that of the enzyme. Binding studies provided evidence for inhibitor-substrate and against inhibitor-enzyme interactions.  相似文献   

5.
The amount of total monovalent cations in leaves of Sorghum bicolor , L. Moench, RS 610, which were exposed to salinity stress, was a function of both the osmotic potential and the concentration of K+ of growth media. The plants have a Na+ exclusion mechanism that keeps the level of Na+ in leaves low. Thus, most of the osmotic adjustment in leaves was due to K+. Proline did not start to accumulate in leaves until the concentration of total monovalent cations in leaves reached a threshold of approximately 200 μmol/g fresh weight. Above this threshold, the contents of prolioe and monovalent cations in leaves increased with increasing salinity of the medium. The ratio of proline to monovalent cation was 5% of that amount of monovalent cation in excess of the threshold concentration. Therefore, if the cations are located in the vacuoles and proline accumulates in the cytoplasm, then the amount of accumulated proline is sufficient to act as a balancing osmoticum across the tonoplast. Very little proline accumulated in roots because this tissue contained much less total monovalent cations than leaves from the same salt-stressed plants. The same threshold of 200 μmol/g fresh weight of total monovalent cations was required in roots as in leaves to initiate proline accumulation.  相似文献   

6.
SYNOPSIS. Protostelium was cultured monoxenically with the yeast Rhodotorula mucilaginosa on either corn meal agar or in liquid corn meal medium. Nearly synchronous encystment was induced in amoebae by washing them free of yeast and incubating them in an encystment medium devised by Neff et al. (1964) for Acanthamoeba.
The extrinsic requirements for encystment were investigated by replacing various components of the encystment medium with other substances. The results indicate that encystment depends on a high concentration of inorganic monovalent cations and that it occurs best at a basic pH. The effect of the ions does not appear to be strictly osmotic.  相似文献   

7.
Summary In the plasmodium ofPhysarum polycephalum application of various monovalent cation salts elicited either a depolarization or a hyperpolarization of the membrane potential. The hyperpolarization was restricted to phosphates and bicarbonates of large cations (Na+, Li+, NMe4 +, NEt4 +). More than 50 other combinations of cations (K+, Rb+, Cs+, NH4 +) and anions (Cl, NO3 , SO4 2–, acetate, lactate, citrate, etc.) induced the depolarization. In both cases the magnitude of the deflection in membrane potential () varied linearly with logarithm of concentration above the threshold Cth (10–4 M for all monovalent cation salts examined) according to the following equation: =± R log (C/Cth).The value of R was 10–15 mV, and plus and minus signs correspond to depolarization and hyperpolarization, respectively. Depolarizing and hyperpolarizing agents competed with each other and exhibited a sharp transition between the two states of the membrane which were characterized by — R and R in the above equation or displayed a strong hysteresis, depending on which agents had first been applied to the plasmodial membrane. This transition in the membrane potential corresponded to the transition between positive and negative taxis at the behavioral level.  相似文献   

8.
Summary Zero current potential and conductance of ionic channels formed by polyene antibiotic amphotericin B in a lipid bilayer were studied in various electrolyte solutions. Nonpermeant magnesium and sulphate ions were used to independently vary the concentration of monovalent anions and cations as well as to maintain the high ionic strength of the two solutions separated by the membrane. Under certain conditions the channels select very strongly for anions over cations. They are permeable to small inorganic anions. However, in the absence of these anions the channels are practically impermeable to any cation. In the presence of a permeant anion the contribution of monovalent cations to channel conductance grows with an increase in the anion concentration. The ratio of cation-to-anion permeability coefficients is independent of the membrane potential and cation concentration, but it does depend linearly on the sum of concentrations of a permeant anion in the two solutions. These results are accounted for on the assumption that a cation can enter only an anion-occupied channel to form an ionic pair at the center of the channel. The cation is also assumed to slip past the anion and then to leave the channel for the opposite solution. This model with only few parameters can quantitatively describe the concentration dependences of conductance and zero current potential under various conditions.  相似文献   

9.
The interaction of phosphatidylserine dispersions with "hydrophobic", organic cations (acetylcholine, tetraethylammonium ion) is compared with that of simple inorganic cations (Na+, Ca2+); differences in the hydration properties of the two classes of ions exist in the bulk phase as evident from spin-lattice relaxation time T1 measurements. It is shown that the reaction products (cation-phospholipid) differ markedly in their physicochemical behaviour. With increasing concentration both classes of ions reduce the zota-potential of phosphatidylserine surfaces, the monovalent inorganic cations being only slightly more effective than the hydrophobic cations. Inorganic cations cause precipitation of the lipid once the surface charge of the bilayer is reduced to a certain threshold value. This is not the case with the organic cations. The difference is probably associated with the different hydration properties of the resulting complexes. Thus binding of Ca2+ causes displacement of water of hydration and formation of an anhydrous, hydrophobic calcium-phosphatidylserine complex which is insoluble in water, whereas the product of binding of the organic cations is hydrated, hydrophilic and water soluble. The above findings are consistent with NMR results which show that the phosphodiester group is involved in the binding of both classes of cations as well as being the site of the primary hydration shell. Besides affecting interbilayer membrane interactions such as those involved in cell adhesion and membrane fusion, the binding of both classes of cation can affect the molecular packing within a bilayer.  相似文献   

10.
The interaction of phosphatidylserine dispersions with “hydrophobic”, organic cations (acetylcholine, tetraethylammonium ion) is compared with that of simple inorganic cations (Na+, Ca2+); differences in the hydration properties of the two classes of ions exist in the bulk phase as evident from spin-lattice relaxation time T1, measurements. It is shown that the reaction products (cation-phospholipid) differ markedly in their physicochemical behaviour. With increasing concentration both classes of ions reduce the ζ-potential of phosphatidylserine surfaces, the monovalent inorganic cations being only slightly more effective than the hydrophobic cations. Inorganic cations cause precipitation of the lipid once the surface charge of the bilayer is reduced to a certain threshold value. This is not the case with the organic cations. The difference is probably associated with the different hydration properties of the resulting complexes. Thus binding of Ca2+ causes displacement of water of hydration and formation of an anhydrous, hydrophobic calcium-phosphatidylserine complex which is insoluble in water, whereas the product of binding of the organic cations is hydrated, hydrophilic and water soluble. The above findings are consistent with NMR results which show that the phosphodiester group is involved in the binding of both classes of cations as well as being the site of the primary hydration shell. Besides affecting interbilayer membrane interactions such as those involved in cell adhesion and membrane fusion, the binding of both classes of cation can affect the molecular packing within a bilayer.  相似文献   

11.
The Ca2+-induced aggregation of porcine intestinal brush border membranes could be inhibited by addition of monovalent cations to the medium or by increasing the ionic strength of the medium, as measured by the change in optical density of the membrane suspension. The relative effectiveness of monovalent cations at 100 mM in the inhibition was in the order, (Na+ approximately equal to NH4+) greater than (K+ approximately equal to Rb+ approximately equal to Li+) greater than choline+. The Ca2+ concentration dependence profile of the membrane aggregation showed that the Ca2+ threshold at which the aggregation began was distinctly shifted to a higher concentration by the addition of KCl. In addition, the results of fluorometric studies with 1-anilino-8-naphthalene sulfonate suggested that the inhibition of the membrane aggregation by extravesicular KCl is due to a decrease of the binding affinity of Ca2+ for the membranes as a result of neutralization of the surface charges. On the other hand, measurements of the incorporation of 1,6-diphenyl-1, 3,5-hexatriene (DPH) into the membrane vesicles and of the anisotropy of DPH-labeled membranes suggested that the imposition of a salt gradient across the membrane vesicles (out greater than in) causes an increase of lipid fluidity of the membranes. Based on these results, a possible contribution of membrane surface charges and/or membrane fluidity to the Ca2+-induced aggregation of the membranes is discussed.  相似文献   

12.
The internal cation levels of chloroplasts isolated from a green sea alga, Bryopsis maxima, were studied. Atomic absorption spectroscopy, combined with the determination of the sorbitol-impermeable and water-permeable spaces, revealed that chloroplasts contain an extremely high concentration of K+ and high levels of Na+, Mg2+ and Ca2+. A method was developed to estimate the thermodynamic activities of monovalent and divalent cations present in chloroplasts. pH changes induced by the addition of an ionophore (plus an H+ carrier), which makes the outer limiting membranes of chloroplasts permeable to both a cation and H+, were determined. Provided that the external pH was set equal to the internal pH, the internal concentration of the cation was estimated by determining the external cation concentration which gave rise to no electrochemical potential difference of the cation and hence no pH change on addition of the ionophore. The internal pH was determined by measuring distributions of radioactive methylamine and 5,5-dimethyloxazolidine-2,4-dione between the chloroplast and medium (Heldt, H.W., Werdan, K., Milovancev, M. and Geller, G. (1973) Biochim. Biophys. Acta 314, 224–241). The internal pH was also estimated by measuring pH changes caused by the disruption of the outer limiting membrane with Triton X-100. The results indicate that a significant part of the monovalent cations and most of the divalent cations are attracted into a diffuse layer adjacent to the negatively charged surfaces of membranes and proteins, or form complexes with organic and inorganic compounds present in the intact chloroplasts.  相似文献   

13.
The uptake of Ca2+ and Sr2+ by the yeast Saccharomyces cerevisiae is energy dependent, and shows a deviation from simple Michaelis-Menten kinetics. A model is discussed that takes into account the effect of the surface potential and the membrane potential on uptake kinetics. The rate of Ca2+ and Sr2+ uptake is influenced by the cell pH and by the medium pH. The inhibition of uptake at low concentration of Ca2+ and Sr2+ at low pH may be explained by a decrease of the surface potential. The inhibition of Ca2+ and Sr2+ uptake by monovalent cations is independent of the divalent cation concentration. The inhibition shows saturation kinetics, and the concentration of monovalent cation at which half-maximal inhibition is observed, is equal to the affinity constant of this ion for the monovalent cation transport system. The inhibition of divalent cation uptake by monovalent cations appears to be related to depolarization of the cell membrane. Phosphate exerts a dual effect on uptake of divalent cations: and initial inhibition and a secondary stimulation. The inhibition shows saturation kinetics, and the inhibition constant is equal to the affinity constant of phosphate for its transport mechanism. The secondary stimulation can only partly be explained by a decrease of the cell pH, suggesting interaction of intracellular phosphate, or a phosphorylated compound, with the translocation mechanism.  相似文献   

14.
Action potentials were examined using intracellular recording techniques to study the ionic mechanisms of excitability in oocytes and embryos of the mouse from the 1-cell through to the 16-cell stages of development. At all stages examined, action potentials dependent on monovalent cations (Na+ or Li+) were observed under Ca2+-free conditions, and the maximum rate of rise (MRR) of the Na action potential was larger than that of the Li action potential at a given concentration of monovalent cations. Both the Na and Li action potentials were insensitive to tetrodotoxin, and they were blocked by inorganic (Co2+, Cd2+, Mn2+, La3+) and organic (diltiazem) Ca antagonists. These properties were exactly the same as those of the Ca channels present in the membranes of the mouse embryos. In addition, competition was observed between permeant monovalent and divalent cations: the overshoot and MRR of the Na or Li action potentials were reduced in the presence of Ca2+. These results suggest that Na+ or Li+ go through the Ca channels when the external Ca2+ concentration was very low, and that the Ca channels are more permeable to Na+ than to Li+. Separate Na channels could not be detected or induced at any stages of development.  相似文献   

15.
The generator potential of both slowly and rapidly adapting crayfish stretch receptor cells can still be elicited by mechanical stimuli when all the Na of the bathing medium is replaced by various organic cations. In the presence of tris(hydroxymethyl)aminomethane (Tris), the generator potential is particularly large, about 30–50 % of that in the control saline, while spike electrogenesis of the cell is abolished. Persistence of the generator response is not due to retention of Na by a diffusion barrier, and ionic contributions to the electrogenesis by Ca and Cl can also be excluded. Thus, whereas the electrogenesis of the generator membrane must be due to an increased permeability to monovalent cations, the active receptor membrane appears to be less selective for different monovalent cations than is the receptor component of some other cells, or the conductile component of the stretch receptor neuron.  相似文献   

16.
A system of equations, based upon the assumption that the only force acting on each ionic species is due to the gradient of its electrochemical potential, is used to deduce, in the non-steady state for zero net current, the expression of the difference of electric potential between two solutions separated by an ion exchange membrane with fixed monovalent sites. The membrane is assumed to be solely permeable to cations or anions, depending on whether the charge of the sites is -1 or +1, and not to permit any flow of solvent. Under the assumptions that the difference of standard chemical potentials of any pair of permeant monovalent species and the ratio of their mobilities are constant throughout the membrane, even when the spacing of sites is variable, explicit expressions are derived for the diffusion potential and total membrane potential as functions of time and of solution activities. The expressions are valid for any number of permeant monovalent species having ideal behavior and for two permeant monovalent species having “n-type” non-ideal behavior. The results show that for a step change in solution composition the observable potential across a membrane having fixed, but not necessarily uniformly spaced, sites becomes independent of time once equilibria are established at the boundaries of the membrane and attains its steady-state value even while the ionic concentration profiles and the electric potential profile within the membrane are changing with time.  相似文献   

17.
The effects of chemicals were examined on the isometric tension of the plasmodial strand of the true slime mold Physarum polycephalum, and chemotactic motive forces were compared with the contractile properties of the strand. The results were:
1. 1. Isometric tension changed rhythmically within a period of 3–4 min and a few mg in amplitude. Application of attractants (glucose, galactose, maltose, Ca(H2PO4)2, and K(H2PO4) led to a decrease in the amplitude of the tension. Contrary to this, repellents (sucrose, inorganic salts) increased the amplitude of the tension. The base line of the tension did not change appreciably unless the concentration of chemicals applied was not too high as compared with respective thresholds.
2. 2. Changes in the isometric tension, F, induced by application of chemicals were analysed quantitatively in terms of integral of isometric tension with respect to time during a period as defined by S=F dt. The values of S changed gradually with increase of concentration of chemicals above their respective thresholds.
3. 3. The threshold concentrations of chemicals determined by measurements of the isometric tension agreed with those obtained from chemotactic motive force and from membrane potential changes.
4. 4. The plasmodium of Physarum polycephalum moved away vigorously from high osmolarity by producing a large transient increase of motive force of the protoplasmic movement. Similarly, the isometric tension increased transiently with a high peak when the concentration of sugars and glycerol exceeded 0.2 M. The maximum tension was linearly proportional to the diameter of the strand.
These results indicate that contraction or relaxation of the plasma gel is the primary cause of the negative and positive chemotaxis in the slime molds.  相似文献   

18.
A study was made on the correlation between the degree of membrane fusion and surface tension increase of phosphatidic acid membranes caused by divalent cations. Membrane fusion was followed by the Tb3+/dipicolinic acid assay, monitoring the fluorescent intensity for mixing of the internal aqueous contents of small unilamellar lipid vesicles. The surface tension and surface potential of monolayers made of the same lipids as used in the fusion experiments were measured as a function of divalent cation concentration. It was found that the 'threshold' concentration to induce massive vesicle membrane fusion was the same for Ca2+ and Mg2+, and that the surface tension increase in the monolayer, induced by changing divalent cation concentration from zero to a concentration which corresponds to its threshold value, inducing vesicle membrane fusion, was approximately the same: 6.3 dyn/cm for both Ca2+ and Mg2+. Both the divalent cation's threshold concentrations as well as the surface tension change corresponding to the threshold concentration for the phosphatidic acid membrane were smaller than those for the phosphatidylserine membrane. The different fusion capability of these divalent cations for phosphatidic acid and phosphatidylserine membranes is discussed in terms of the different ion binding capabilities of these ions to the membranes.  相似文献   

19.
The effects of monovalent cations - inorganic alakali metal cations and organic quanternary ammonium cations - and monovalent inorganic anions on ADP-induced aggregation of bovine platelets were investigated. In the presence of K+, Rb+, Cs+, choline or tetramethylammonium, aggeregation proceeded. However, aggregation was markedly restricted in media containing Li+, Na+, tetrabutylammonium or dimethyldibenzylammonium. With anions, aggregation proceeded in the order Cl > Br > I > Clo4 > SCN. The effects of cations significantly depended on Ca2+ concentration, whereas those of the anions depended little of Ca2+. Anions such as SCN and ClO4 markedly decreased the fluorescence of the surface charge probe 2-p-tuluidinylnaphthalene-6-sulfonate, whereas cations had less pronouced effects. The relative effects of the anions on the fluorescence were consistent with their relative inhibitory effects on aggregation. These results suggest that inhibition of platelet aggregation by the anions is due to a change in the surface change of the platelet plasma membrane. On the other hand, kinetic analysis suggests that the effects of monovalent cations on platelet aggregation are due to their competition with Ca2+ during the process of aggregation.  相似文献   

20.
General rate equations have been developed for the co-transport of an anion with one or two cations across a negatively charged biological membrane. The effects of surface potential on the kinetical parameters of co-transport of monovalent anions with monovalent cations have been investigated in more detail. The influence of changes in the surface potential on ion uptake kinetics appears to be markedly affected by the properties of the co-transport system. This can be shown by investigating boundary cases of the general model, namely (a) random order of binding of the ions, (b) anion binds before cations, (c) cations bind before anion. Since the effects of the surface potential are different for these three cases, these effects might serve as (additional) discrimination criteria.The effect of the surface potential on anion uptake kinetics via a co-transport system to which two cations can bind is rather complex: maxima or minima of the apparent affinity constant Km of anion uptake may occur. Not only the magnitude of the effect of changes in the surface potential, but also its direction (stimulation, inhibition), is influenced by the co-substrate (cation) concentration. Such effects may also occur if only one cation can bind to the translocator, provided that OH? ions compete for the anion transport site.In addition, the case of co-transport of a neutral solute with a monovalent cation has been investigated. It has been shown, that monovalent cation has been investigated. It has been shown, that also in this case, the effect of changes in the surfaces potential is affected by the order of binding of the substrates to the translocator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号