首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interleukin-17A-producing T cells, especially Th17, have been shown to be involved in inflammatory autoimmune diseases and host defense against extracellular infections. However, whether and how IL-17A or IL-17A-producing cells can help protection against intracellular bacteria remains controversial, especially how it regulates the adaptive immunity besides recruitment of neutrophils in the innate immune system. By infecting IL-17A-deficient mice with Listeria monocytogenes, we show in this study that IL-17A is required for the generation of Ag-specific CD8(+) CTL response against primary infection, but not for the generation of memory CD8(+) T cells against secondary challenge. Interestingly, we identify γδT cells, but not conventional CD4(+) Th17 cells, as the main cells for innate IL-17A production during L. monocytogenes infection. Furthermore, γδT cells are found to promote Ag-specific CD8(+) T cell proliferation by enhancing cross-presentation of dendritic cells through IL-17A. Adoptive transfer of Il17a(+/+) γδT cells, but not Il17a(-/-) γδT cells or Il17a(+/+) CD4(+) T cells, were sufficient to recover dendritic cells cross-presentation and defective CD8(+) T cell response in Il17a(-/-) mice. Our findings indicate an important role of infection-inducible IL-17A-producing γδT cells and their derived IL-17A against intracellular bacterial infection, providing a mechanism of IL-17A for regulation of innate and adaptive immunity.  相似文献   

2.
Mucosal, but not parenteral, immunization induces immune responses in both systemic and secretory immune compartments. Thus, despite the reports that Abs to the protective Ag of anthrax (PA) have both anti-toxin and anti-spore activities, a vaccine administered parenterally, such as the aluminum-adsorbed anthrax vaccine, will most likely not induce the needed mucosal immunity to efficiently protect the initial site of infection with inhaled anthrax spores. We therefore took a nasal anthrax vaccine approach to attempt to induce protective immunity both at mucosal surfaces and in the peripheral immune compartment. Mice nasally immunized with recombinant PA (rPA) and cholera toxin (CT) as mucosal adjuvant developed high plasma PA-specific IgG Ab responses. Plasma IgA Abs as well as secretory IgA anti-PA Abs in saliva, nasal washes, and fecal extracts were also induced when a higher dose of rPA was used. The anti-PA IgG subclass responses to nasal rPA plus CT consisted of IgG1 and IgG2b Abs. A more balanced profile of IgG subclasses with IgG1, IgG2a, and IgG2b Abs was seen when rPA was given with a CpG oligodeoxynucleotide as adjuvant, suggesting a role for the adjuvants in the nasal rPA-induced immunity. The PA-specific CD4(+) T cells from mice nasally immunized with rPA and CT as adjuvant secreted low levels of CD4(+) Th1-type cytokines in vitro, but exhibited elevated IL-4, IL-5, IL-6, and IL-10 responses. The functional significance of the anti-PA Ab responses was established in an in vitro macrophage toxicity assay in which both plasma and mucosal secretions neutralized the lethal effects of Bacillus anthracis toxin.  相似文献   

3.
Increasing evidence suggests ion channels have critical functions in the differentiation and plasticity of T cells. Kv1.3, a voltage-gated K(+) channel, is a functional marker and a pharmacological target for activated effector memory T cells. Selective Kv1.3 blockers have been shown to inhibit proliferation and cytokine production by human and rat effector memory T cells. We used Kv1.3 knockout (KO) mice to investigate the mechanism by which Kv1.3 blockade affects CD4(+) T cell differentiation during an inflammatory immune-mediated disease. Kv1.3 KO animals displayed significantly lower incidence and severity of myelin oligodendrocyte glycoprotein (MOG) peptide-induced experimental autoimmune encephalomyelitis. Kv1.3 was the only K(V) channel expressed in MOG 35-55-specific CD4(+) T cell blasts, and no K(V) current was present in MOG-specific CD4(+) T cell-blasts from Kv1.3 KO mice. Fewer CD4(+) T cells migrated to the CNS in Kv1.3 KO mice following disease induction, and Ag-specific proliferation of CD4(+) T cells from these mice was impaired with a corresponding cell-cycle delay. Kv1.3 was required for optimal expression of IFN-γ and IL-17, whereas its absence led to increased IL-10 production. Dendritic cells from Kv1.3 KO mice fully activated wild-type CD4(+) T cells, indicating a T cell-intrinsic defect in Kv1.3 KO mice. The loss of Kv1.3 led to a suppressive phenotype, which may contribute to the mechanism by which deletion of Kv1.3 produces an immunotherapeutic effect. Skewing of CD4(+) T cell differentiation toward Ag-specific regulatory T cells by pharmacological blockade or genetic suppression of Kv1.3 might be beneficial for therapy of immune-mediated diseases such as multiple sclerosis.  相似文献   

4.
The Ag-specific CD4(+) regulatory T (Tr) cells play an important role in immune suppression in autoimmune diseases and antitumor immunity. However, the molecular mechanism for Ag-specificity acquisition of adoptive CD4(+) Tr cells is unclear. In this study, we generated IL-10- and IFN-gamma-expressing type 1 CD4(+) Tr (Tr1) cells by stimulation of transgenic OT II mouse-derived naive CD4(+) T cells with IL-10-expressing adenovirus (AdV(IL-10))-transfected and OVA-pulsed dendritic cells (DC(OVA/IL-10)). We demonstrated that both in vitro and in vivo DC(OVA/IL-10)-stimulated CD4(+) Tr1 cells acquired OVA peptide MHC class (pMHC) I which targets CD4(+) Tr1 cells suppressive effect via an IL-10-mediated mechanism onto CD8(+) T cells, leading to an enhanced suppression of DC(OVA)-induced CD8(+) T cell responses and antitumor immunity against OVA-expressing murine B16 melanoma cells by approximately 700% relative to analogous CD4(+) Tr1 cells without acquired pMHC I. Interestingly, the nonspecific CD4(+)25(+) Tr cells can also become OVA Ag specific and more immunosuppressive in inhibition of OVA-specific CD8(+) T cell responses and antitumor immunity after uptake of DC(OVA)-released exosomal pMHC I complexes. Taken together, the Ag-specificity acquisition of CD4(+) Tr cells via acquiring DC's pMHC I may be an important mean in augmenting CD4(+) Tr cell suppression.  相似文献   

5.
Dendritic cells (DCs) are capable of capturing exogenous Ag for the generation of MHC class I/peptide complexes. For efficient activation of memory CD8(+) T cells to occur via a cross-presentation pathway, DCs must receive helper signals from CD4(+) T cells. Using an in vitro system that reflects physiologic recall memory responses, we have evaluated signals that influence helper-dependent cross-priming, while focusing on the source and cellular target of such effector molecules. Concerning the interaction between CD4(+) T cells and DCs, we tested the hypothesis that CD40 engagement on DCs is critical for IL-12p70 (IL-12) production and subsequent stimulation of IFN-gamma release by CD8(+) T cells. Although CD40 engagement on DCs, or addition of exogenous IL-12 are both sufficient to overcome the lack of help, neither is essential. We next evaluated cytokines and chemokines produced during CD4(+) T cell/DC cross talk and observed high levels of IL-2 produced within the first 18-24 h of Ag-specific T cell engagement. Functional studies using blocking Abs to CD25 completely abrogated IFN-gamma production by the CD8(+) T cells. Although required, addition of exogenous IL-2 did not itself confer signals sufficient to overcome the lack of CD4(+) T cell help. Thus, these data support a combined role for Ag-specific, cognate interactions at the CD4(+) T cell/DC as well as the DC/CD8(+) T cell interface, with the helper effect mediated by soluble noncognate signals.  相似文献   

6.
The activation, proliferation, differentiation, and trafficking of CD4 T cells is central to the development of type I immune responses. MHC class II (MHCII)-bearing dendritic cells (DCs) initiate CD4(+) T cell priming, but the relative contributions of other MHCII(+) APCs to the complete Th1 immune response is less clear. To address this question, we examined Th1 immunity in a mouse model in which I-A(beta)(b) expression was targeted specifically to the DCs of I-A(beta)b-/- mice. MHCII expression is reconstituted in CD11b(+) and CD8alpha(+) DCs, but other DC subtypes, macrophages, B cells, and parenchymal cells lack of expression of the I-A(beta)(b) chain. Presentation of both peptide and protein Ags by these DC subsets is sufficient for Th1 differentiation of Ag-specific CD4(+) T cells in vivo. Thus, Ag-specific CD4(+) T cells are primed to produce Th1 cytokines IL-2 and IFN-gamma. Additionally, proliferation, migration out of lymphoid organs, and the number of effector CD4(+) T cells are appropriately regulated. However, class II-negative B cells cannot receive help and Ag-specific IgG is not produced, confirming the critical MHCII requirement at this stage. These findings indicate that DCs are not only key initiators of the primary response, but provide all of the necessary cognate interactions to control CD4(+) T cell fate during the primary immune response.  相似文献   

7.
Vaccine-induced protection against diseases like malaria, AIDS, and cancer may require induction of Ag-specific CD8(+) and CD4(+) T cell and Ab responses in the same individual. In humans, a recombinant Plasmodium falciparum circumsporozoite protein (PfCSP) candidate vaccine, RTS,S/adjuvant system number 2A (AS02A), induces T cells and Abs, but no measurable CD8(+) T cells by CTL or short-term (ex vivo) IFN-gamma ELISPOT assays, and partial short-term protection. P. falciparum DNA vaccines elicit CD8(+) T cells by these assays, but no protection. We report that sequential immunization with a PfCSP DNA vaccine and RTS,S/AS02A induced PfCSP-specific Abs and Th1 CD4(+) T cells, and CD8(+) cytotoxic and Tc1 T cells. Depending upon the immunization regime, CD4(+) T cells were involved in both the induction and production phases of PfCSP-specific IFN-gamma responses, whereas, CD8(+) T cells were involved only in the production phase. IFN-gamma mRNA up-regulation was detected in both CD45RA(-) (CD45RO(+)) and CD45RA(+)CD4(+) and CD8(+) T cell populations after stimulation with PfCSP peptides. This finding suggests CD45RA(+) cells function as effector T cells. The induction in humans of the three primary Ag-specific adaptive immune responses establishes a strategy for developing immunization regimens against diseases in desperate need of vaccines.  相似文献   

8.
IL-2 influences both survival and differentiation of CD4(+) T effector and regulatory T cells. We studied the effect of i.n. administration of Abs against the alpha- and the beta-chains of the IL-2R in a murine model of allergic asthma. Blockade of the beta- but not the alpha-chain of the IL-2R after allergen challenge led to a significant reduction of airway hyperresponsiveness. Although both treatments led to reduction of lung inflammation, IL-2 signaling, STAT-5 phosphorylation, and Th2-type cytokine production (IL-4 and IL-5) by lung T cells, IL-13 production and CD4(+) T cell survival were solely inhibited by the blockade of the IL-2R beta-chain. Moreover, local blockade of the common IL-2R/IL-15R beta-chain reduced NK cell number and IL-2 production by lung CD4(+)CD25(+) and CD4(+)CD25(-) T cells while inducing IL-10- and TGF-beta-producing CD4(+) T cells in the lung. This cytokine milieu was associated with reduced CD4(+) T cell proliferation in the draining lymph nodes. Thus, local blockade of the beta-chain of the IL-2R restored an immunosuppressive cytokine milieu in the lung that ameliorated both inflammation and airway hyperresponsiveness in experimental allergic asthma. These findings provide novel insights into the functional role of IL-2 signaling in experimental asthma and suggest that blockade of the IL-2R beta-chain might be useful for therapy of allergic asthma in humans.  相似文献   

9.
To understand the mechanism of T cell help for IgG production in systemic lupus erythematosus (SLE) we investigated the response of CD4- and CD8-negative (double-negative (DN)) T cells because 1) DN T cells are present at unusually high frequency in patients with SLE and can induce pathogenic autoantibodies; 2) the DN T cell repertoire includes cells restricted by CD1 Ag-presenting molecules; and 3) CD1c is expressed on a population of circulating B cells. We derived DN T cell lines from SLE patients and healthy individuals. In the presence of CD1(+) APCs, DN T cell lines from SLE patients produced both IL-4 and IFN-gamma, whereas DN T cells from healthy donors produced IFN-gamma, but no IL-4. In general, cells from patients with highly active disease produced high levels of IFN-gamma; cells from those with little activity produced high IL-4. Coculture of CD1c-directly reactive T cells from healthy donors with CD1c(+) B cells elicited IgM Abs, but little or no IgG. In contrast, CD1c-directly reactive T cells from SLE patients induced isotype switching, with a striking increase in IgG production. Neutralizing Abs to CD1c inhibited the ability of DN T cells to induce IgG production from CD1c(+) B cells, further indicating that CD1c mediated the T and B cell interaction. IgG production was also inhibited by neutralizing Abs to IL-4, correlating with the cytokine pattern of DN T cells derived from these patients. The data suggest that CD1c-restricted T cells from SLE patients can provide help to CD1c(+) B cells for IgG production and could therefore promote pathogenic autoantibody responses in SLE.  相似文献   

10.
Despite the unequivocal role of B lymphocytes as effecter cells in humoral immunity, studies have reported that B cells are tolerogenic. The impact of B cell-mediated tolerance and its underlying mechanisms are incompletely understood. Using primary B cells as APCs and allogeneic CD4 T cells as responder cells in mixed leukocyte reactions, we find that B cells preferentially expand FoxP3(+) over FoxP3(-) CD4 T cells in the absence of exogenous cytokines. The preferential expansion of Foxp3(+) T cells is further enhanced by a partial blockade of class II MHC-TCR interaction but diminished by stimulatory anti-CD28 Ab or at high B to T cell ratios. Gamma irradiation of B cells selectively abrogates their ability to expand isolated CD25(+) but not CD25(-) CD4 T cells; exogenous IL-2 supplement can partially restore this function. B cell-expanded CD25(+) T cells express high levels of FoxP3 and are highly inhibitory in an Ag-specific manner.  相似文献   

11.
RANTES potentiates antigen-specific mucosal immune responses   总被引:8,自引:0,他引:8  
RANTES is produced by lymphoid and epithelial cells of the mucosa in response to various external stimuli and is chemotactic for lymphocytes. The role of RANTES in adaptive mucosal immunity has not been studied. To better elucidate the role of this chemokine, we have characterized the effects of RANTES on mucosal and systemic immune responses to nasally coadministered OVA. RANTES enhanced Ag-specific serum Ab responses, inducing predominately anti-OVA IgG2a and IgG3 followed by IgG1 and IgG2b subclass Ab responses. RANTES also increased Ag-specific Ab titers in mucosal secretions and these Ab responses were associated with increased numbers of Ab-forming cells, derived from mucosal and systemic compartments. Splenic and mucosally derived CD4(+) T cells of RANTES-treated mice displayed higher Ag-specific proliferative responses and IFN-gamma, IL-2, IL-5, and IL-6 production than control groups receiving OVA alone. In vitro, RANTES up-regulated the expression of CD28, CD40 ligand, and IL-12R by Ag-activated primary T cells from DO11.10 (OVA-specific TCR-transgenic) mice and by resting T cells in a dose-dependent fashion. These studies suggest that RANTES can enhance mucosal and systemic humoral Ab responses through help provided by Th1- and select Th2-type cytokines as well as through the induction of costimulatory molecule and cytokine receptor expression on T lymphocytes. These effects could serve as a link between the initial innate signals of the host and the adaptive immune system.  相似文献   

12.
The upper respiratory tract mucosa is the location for commensal Streptococcus (S.) pneumoniae colonization and therefore represents a major site of contact between host and bacteria. The CD4(+) T cell response to pneumococcus is increasingly recognised as an important mediator of immunity that protects against invasive disease, with data suggesting a critical role for Th17 cells in mucosal clearance. By assessing CD4 T cell proliferative responses we demonstrate age-related sequestration of Th1 and Th17 CD4(+) T cells reactive to pneumococcal protein antigens within mucosal lymphoid tissue. CD25(hi) T cell depletion and utilisation of pneumococcal specific MHCII tetramers revealed the presence of antigen specific Tregs that utilised CTLA-4 and PDL-1 surface molecules to suppress these responses. The balance between mucosal effector and regulatory CD4(+) T cell immunity is likely to be critical to pneumococcal commensalism and the prevention of unwanted pathology associated with carriage. However, if dysregulated, such responses may render the host more susceptible to invasive pneumococcal infection and adversely affect the successful implementation of both polysaccharide-conjugate and novel protein-based pneumococcal vaccines.  相似文献   

13.
Despite high viral loads, T cells from sooty mangabey (SM) monkeys that are naturally infected with SIV but remain clinically asymptomatic, proliferate and demonstrate normal Ag-specific memory recall CD4(+) T cell responses. In contrast, CD4(+) T cells from rhesus macaques (RM) experimentally infected with SIV lose Ag-specific memory recall responses and develop immunological anergy. To elucidate the mechanisms for these distinct outcomes of lentiviral infection, highly enriched alloreactive CD4(+) T cells from humans, RM, and SM were anergized by TCR-only stimulation (signal 1 alone) and subsequently challenged with anti-CD3/anti-CD28 Abs (signals 1 + 2). Whereas alloreactive CD4(+)T cells from humans and RM became anergized, surprisingly, CD4(+) T cells from SM showed marked proliferation and IL-2 synthesis after restimulation. This resistance to undergo anergy was not secondary to a global deficiency in anergy induction of CD4(+) T cells from SM since incubation of CD4(+) T cells with anti-CD3 alone in the presence of rapamycin readily induced anergy in these cells. The resistance to undergo anergy was reasoned to be due to the ability of CD4(+) T cells from SM to synthesize IL-2 when incubated with anti-CD3 alone. Analysis of phosphorylated kinases involved in T cell activation showed that the activation of CD4(+) T cells by signal 1 in SM elicited a pattern of response that required both signals 1 + 2 in humans and RM. This function of CD4(+) T cells from SM may contribute to the resistance of this species to SIV-induced disease.  相似文献   

14.
To investigate the potential role of endogenous IL-15 in mycobacterial infection, we examined protective immunity in IL-15-deficient (IL-15(-/-)) mice after infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG) or recombinant OVA-expressing BCG (rBCG-OVA). IL-15(-/-) mice exhibited an impaired protection in the lung on day 120 after BCG infection as assessed by bacterial growth. CD4(+) Th1 response capable of producing IFN-gamma was normally detected in spleen and lung of IL-15(-/-) mice on day 120 after infection. Although Ag-specific CD8 responses capable of producing IFN-gamma and exhibiting cytotoxic activity were detected in the lung on day 21 after infection with rBCG-OVA, the responses were severely impaired on days 70 and 120 in IL-15(-/-) mice. The degree of proliferation of Ag-specific CD8(+) T cells in IL-15(-/-) mice was similar to that in wild-type mice during the course of infection with rBCG-OVA, whereas sensitivity to apoptosis of Ag-specific CD8(+) T cells significantly increased in IL-15(-/-) mice. These results suggest that IL-15 plays an important role in the development of long-lasting protective immunity to BCG infection via sustaining CD8 responses in the lung.  相似文献   

15.
Distinct IFN-gamma and IL-2 profiles of Ag-specific CD4(+) T cells have recently been associated with different clinical disease states and Ag loads in viral infections. We assessed the kinetics and functional profile of Mycobacterium tuberculosis Ag-specific T cells secreting IFN-gamma and IL-2 in 23 patients with untreated active tuberculosis when bacterial and Ag loads are high and after curative treatment, when Ag load is reduced. The frequencies of M. tuberculosis Ag-specific IFN-gamma-secreting T cells declined during 28 mo of follow-up with an average percentage decline of 5.8% per year (p = 0.005), while the frequencies of Ag-specific IL-2-secreting T cells increased during treatment (p = 0.02). These contrasting dynamics for the two cytokines led to a progressive convergence of the frequencies of IFN-gamma- and IL-2-secreting cells over 28 mo. Simultaneous measurement of IFN-gamma and IL-2 secretion at the single-cell level revealed a codominance of IFN-gamma-only secreting and IFN-gamma/IL-2 dual secreting CD4(+) T cells in active disease that shifted to dominance of IFN-gamma/IL-2-secreting CD4(+) T cells and newly detectable IL-2-only secreting CD4(+) T cells during and after treatment. These distinct T cell functional signatures before and after treatment suggest a novel immunological marker of mycobacterial load and clinical status in tuberculosis that now requires validation in larger prospective studies.  相似文献   

16.
Chemokine-chemokine receptor interaction plays an essential role in leukocyte/dendritic cell (DC) trafficking in inflammation and immune responses. We investigated the pathophysiological roles of secondary lymphoid tissue chemokine (SLC; CCL21) and macrophage inflammatory protein-2 (MIP-2) in the development of acute pulmonary inflammation induced by an intratracheal injection of Propionibacterium acnes in mice. Immunohistochemical studies revealed that SLC was constitutively expressed in the peribronchial areas and perivascular lymphatics in normal mice. MIP-2-positive cells were observed in alveolar spaces in mice challenged with P. acnes. Both neutralization Abs against MIP-2 and CXC chemokine receptor 2 alleviated the P. acnes-induced pulmonary inflammation when injected before P. acnes Ag challenge. On the other hand, polyclonal anti-SLC Abs (pAbs) exacerbated the pulmonary inflammation. The numbers of mature DCs (MHC class II +, CD11c+, and CD86+) as well as macrophages and neutrophils in the P. acnes Ag-challenged lungs were increased, whereas the number of CD4+ T cells, including memory T cells, was decreased. The numbers of mature and proliferating CD4+ T cells (bromodeoxyuridine(+)CD4+) in regional lymph nodes were decreased in mice injected with anti-SLC pAbs compared with those in mice treated with control Abs. An in vitro proliferation assay confirmed the impairment of the Ag-specific T cell response in regional lymph nodes of mice treated with anti-SLC pAbs. These results indicate for the first time a regulatory role for SLC-recruited mature DCs in bridging an acute inflammatory response (innate immunity) and acquired immunity in the lung.  相似文献   

17.
CD4(+)CD25(+) regulatory T cells inhibit organ-specific autoimmune diseases induced by CD4(+)CD25(-) T cells and are potent suppressors of CD4(+)CD25(-) T cell activation in vitro. We demonstrate that CD4(+)CD25(+) T cells also suppress both proliferation and IFN-gamma production by CD8(+) T cells induced either by polyclonal or Ag-specific stimuli. CD4(+)CD25(+) T cells inhibit the activation of CD8(+) responders by inhibiting both IL-2 production and up-regulation of IL-2Ralpha-chain (CD25) expression. Suppression is mediated via a T-T interaction as activated CD4(+)CD25(+) T cells suppress the responses of TCR-transgenic CD8(+) T cells stimulated with soluble peptide-MHC class I tetramers in the complete absence of APC. These results broaden the immunoregulatory role played by CD4(+)CD25(+) T cells in the prevention of autoimmune diseases, but also raise the possibility that they may hinder the induction of effector CD8(+) T cells to tumor or foreign Ags.  相似文献   

18.
Recombinant hemagglutinin B (rHagB), a virulence factor of the periodontal pathogen Porphyromonas gingivalis, has been shown to induce protective immunity against bacterial infection. Furthermore, we have demonstrated that rHagB is a TLR4 agonist for dendritic cells. However, it is not known how rHagB dendritic cell stimulation affects the activation and differentiation of T cells. Therefore, we undertook the present study to examine the role of TLR4 signaling in shaping the CD4(+) T cell response following immunization of mice with rHagB. Immunization with this Ag resulted in the induction of specific CD4(+) T cells and Ab responses. In TLR4(-/-) and MyD88(-/-) but not Toll/IL-1R domain-containing adapter inducing IFN-β-deficient (TRIF(Lps2)) mice, there was an increase in the Th2 CD4(+) T cell subset, a decrease in the Th1 subset, and higher serum IgG(1)/IgG(2) levels of HagB-specific Abs compared with those in wild-type mice. These finding were accompanied by increased GATA-3 and Foxp3 expression and a decrease in the activation of CD4(+) T cells isolated from TLR4(-/-) and MyD88(-/-) mice. Interestingly, TLR4(-/-) CD4(+) T cells showed an increase in IL-2/STAT5 signaling. Whereas TRIF deficiency had minimal effects on the CD4(+) T cell response, it resulted in increased IFN-γ and IL-17 production by memory CD4(+) T cells. To our knowledge, these results demonstrate for the first time that TLR4 signaling, via the downstream MyD88 and TRIF molecules, exerts a differential regulation on the CD4(+) T cell response to HagB Ag. The gained insight from the present work will aid in designing better therapeutic strategies against P. gingivalis infection.  相似文献   

19.
Infection with Mycobacterium tuberculosis induces Abs against a vast array of mycobacterial lipids and glycolipids. One of the most prominent lipid Ags recognized is cardiolipin (CL). The kinetics of the generation of anti-CL Abs during infection reveals that IgM titers to CL increase over time. Interestingly, at day 30 postinfection CL-specific IgG1 appears, an isotype usually dependent on T cell help. Using an immunization schedule with CL/anti-CL Ab complexes, which induces antiphospholipid syndrome in mice, we show that the generation of IgG1 to CL requires IL-4 and that optimal production is T cell dependent. IgG1 production to CL was impaired in nude (nu/nu) mice devoid in conventional T cells, but was not affected in mice deficient for either alphabeta TCR(+), gammadelta TCR(+), CD4(+), CD8(+), or NK1.1(+) T cells. We conclude that IgG1 production to CL depends on T cell help and IL-4, which can be provided by different T cell populations. This is the first report that IL-4 is indispensable for the induction of IgG1 Abs to lipid Ags.  相似文献   

20.
Human filarial parasites cause chronic infection associated with long-term down-regulation of the host's immune response. We show here that CD4+ T cell regulation is the main determinant of parasite survival. In a laboratory model of infection, using Litomosoides sigmodontis in BALB/c mice, parasites establish for >60 days in the thoracic cavity. During infection, CD4+ T cells at this site express increasing levels of CD25, CTLA-4, and glucocorticoid-induced TNF receptor family-related gene (GITR), and by day 60, up to 70% are CTLA-4(+)GITR(high), with a lesser fraction coexpressing CD25. Upon Ag stimulation, CD4(+)CTLA-4(+)GITR(high) cells are hyporesponsive for proliferation and cytokine production. To test the hypothesis that regulatory T cell activity maintains hyporesponsiveness and prolongs infection, we treated mice with Abs to CD25 and GITR. Combined Ab treatment was able to overcome an established infection, resulting in a 73% reduction in parasite numbers (p < 0.01). Parasite killing was accompanied by increased Ag-specific immune responses and markedly reduced levels of CTLA-4 expression. The action of the CD25(+)GITR+ cells was IL-10 independent as in vivo neutralization of IL-10R did not restore the ability of the immune system to kill parasites. These data suggest that regulatory T cells act, in an IL-10-independent manner, to suppress host immunity to filariasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号