首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein of Mr = 32,000) and phosphatase inhibitor-1, two previously characterized inhibitors of protein phosphatase-1, were identified in both the neostriatum and the substantia nigra. Phosphatase inhibitor-1 was partially purified from bovine caudate nucleus and found to be distinct from DARPP-32 in some of its biochemical properties. The neuronal localization of DARPP-32 and phosphatase inhibitor-1 within the rat neostriatum and substantia nigra was investigated by studying the effects of kainic acid. Injection into the neostriatum of kainic acid, which destroys striatonigral neurons and striatonigral fibers, decreased the amounts of DARPP-32 and phosphatase inhibitor-1 to the same extent, both in the lesioned neostriatum and in the ipsilateral substantia nigra. The specific activity of protein phosphatase-1 in the neostriatum was unaffected by kainic acid. The results indicate that, in rat brain, DARPP-32 and phosphatase inhibitor-1 are both present in striatal neurons and in striatonigral fibers, and that they probably coexist in at least a subpopulation of striatonigral neurons. In contrast, protein phosphatase-1 does not appear to be enriched in any specific neuronal subpopulation in the neostriatum.  相似文献   

2.
Dancheck B  Nairn AC  Peti W 《Biochemistry》2008,47(47):12346-12356
Protein phosphatase 1 (PP1) is an essential and ubiquitous serine/threonine protein phosphatase that is regulated by more than 100 known inhibitor and targeting proteins. It is currently unclear how protein inhibitors distinctly and specifically regulate PP1 to enable rapid responses to cellular alterations. We demonstrate that two PP1 inhibitors, I-2 and DARPP-32, belong to the class of intrinsically unstructured proteins (IUPs). We show that both inhibitors have distinct preferences for transient local and long-range structure. These preferences are likely their structural signature for their interaction with PP1. Furthermore, we show that upon phosphorylation of Thr(34) in DARPP-32, which turns DARPP-32 into a potent inhibitor of PP1, neither local nor long-range structure of DARPP-32 is altered. Therefore, our data suggest a role for these transient three-dimensional topologies in binding mechanisms that enable extensive contacts with PP1's invariant surfaces. Together, these interactions enable potent and selective inhibition of PP1.  相似文献   

3.
KLHY is a short amino-acid sequence of inhibitor-2. This sequence is highly conserved with the protein phosphatase 1 (PP1)-binding consensus motif, RVXF. The role of this segment in binding with PP1 is ambiguous. By using surface plasmon resonance we have characterized its binding ability to PP1. Either site-directed mutagenesis or deletion of KLHY did not significantly affect the dissociation constant between PP1 and inhibitor-2. In comparison with DARPP-32, the deletion of KKIQF, a PP1-binding motif of DARPP-32, resulted in a remarkable reduction in its affinity with PP1. Our results suggested that, compared with the common RVXF motif, the KLHY sequence in intact inhibitor-2 binds weakly to PP1.  相似文献   

4.
BACKGROUND: The ion pump Na+,K(+)-ATPase is responsible for the secretion of cerebrospinal fluid from the choroid plexus. In this tissue, the activity of Na+,K(+)-ATPase is inhibited by serotonin via stimulation of protein kinase C-catalyzed phosphorylation. The choroid plexus is highly enriched in two phosphoproteins which act as regulators of protein phosphatase-1 activity, DARPP-32 and inhibitor-1. Phosphorylation catalyzed by cAMP-dependent protein kinase on a single threonyl residue converts DARPP-32 and inhibitor-1 into potent inhibitors of protein phosphatase-1. Previous work has shown that in the choroid plexus, phosphorylation of DARPP-32 and I-1 is enhanced by isoproterenol and other agents that activate cAMP-PK. We have now examined the possible involvement of the cAMP-PK/protein phosphatase-1 pathway in the regulation of Na+,K(+)-ATPase. MATERIALS AND METHODS: The state of phosphorylation of Na+,K(+)-ATPase was measured by determining the amount of radioactivity incorporated into the ion pump following immunoprecipitation from 32P-prelabeled choroid plexuses incubated with various drugs (see below). Two-dimensional phosphopeptide mapping was employed to identify the protein kinase involved in the phosphorylation of Na+,K(+)-ATPase. RESULTS: The serotonin-mediated increase in Na+,K(+)-ATPase phosphorylation is potentiated by okadaic acid, an inhibitor of protein phosphatases-1 and -2A, as well as by forskolin or the beta-adrenergic agonist, isoproterenol, activators of cAMP-dependent protein kinase. Two-dimensional phosphopeptide maps suggest that this potentiating action occurs at the level of a protein kinase C phosphorylation site. Forskolin and isoproterenol also stimulate the phosphorylation of DARPP-32 and protein phosphatase inhibitor-1, which in their phosphorylated form are potent inhibitors of protein phosphatase-1. CONCLUSIONS: The results presented here support a model in which okadaic acid, forskolin, and isoproterenol achieve their synergistic effects with serotonin through phosphorylation of DARPP-32 and inhibitor-1, inhibition of protein phosphatase-1, and a reduction of dephosphorylation of Na+,K(+)-ATPase at a protein kinase C phosphorylation site.  相似文献   

5.
Glycogen synthase is an excellent in vitro substrate for protein phosphatase-1 (PP1), which is potently inhibited by the phosphorylated forms of DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, M(r) = 32,000) and Inhibitor-1. To test the hypothesis that the activation of glycogen synthase by insulin is due to a decrease in the inhibition of PP1 by the phosphatase inhibitors, we have investigated the effects of insulin on glycogen synthesis in skeletal muscles from wild-type mice and mice lacking Inhibitor-1 and DARPP-32 as a result of targeted disruption of the genes encoding the two proteins. Insulin increased glycogen synthase activity and the synthesis of glycogen to the same extent in wild-type and knockout mice, indicating that neither Inhibitor-1 nor DARPP-32 is required for the full stimulatory effects of insulin on glycogen synthase and glycogen synthesis in skeletal muscle.  相似文献   

6.
Phospho-DARPP-32 (where DARPP-32 is dopamine- and cAMP-regulated phosphoprotein, Mr 32,000), its homolog, phospho-inhibitor-1, and inhibitor-2 are potent inhibitors (IC50 approximately 1 nM) of the catalytic subunit of protein phosphatase-1 (PP1). Our previous studies have indicated that a region encompassing residues 6-11 (RKKIQF) and phospho-Thr-34, of phospho-DARPP-32, interacts with PP1. However, little is known about specific regions of inhibitor-2 that interact with PP1. We have now characterized in detail the interaction of phospho-DARPP-32 and inhibitor-2 with PP1. Mutagenesis studies indicate that within DARPP-32 Phe-11 and Ile-9 play critical roles, with Lys-7 playing a lesser role in inhibition of PP1. Pro-33 and Pro-35 are also important, as is the number of amino acids between residues 7 and 11 and phospho-Thr-34. For inhibitor-2, deletion of amino acids 1-8 (I2-(9-204)) or 100-204 (I2-(1-99)) had little effect on the ability of the mutant proteins to inhibit PP1. Further deletion of residues 9-13 (I2-(14-204)) resulted in a large decrease in inhibitory potency (IC50 approximately 800 nM), whereas further COOH-terminal deletion (I2-(1-84)) caused a moderate decrease in inhibitory potency (IC50 approximately 10 nM). Within residues 9-13 (PIKGI), mutagenesis indicated that Ile-10, Lys-11, and Ile-13 play critical roles. The peptide I2-(6-20) antagonized the inhibition of PP-1 by inhibitor-2 but had no effect on inhibition by phospho-DARPP-32. In contrast, the peptide D32-(6-38) antagonized the inhibition of PP1 by phospho-DARPP-32, inhibitor-2, and I2-(1-120) but not I2-(85-204). These results indicate that distinct amino acid motifs contained within the NH2 termini of phospho-DARPP-32 (KKIQF, where italics indicate important residues) and inhibitor-2 (IKGI) are critical for inhibition of PP1. Moreover, residues 14-84 of inhibitor-2 and residues 6-38 of phospho-DARPP-32 share elements that are important for interaction with PP1.  相似文献   

7.
Protein phosphatase inhibitor-1 was purified from bovine adipose tissue. The protein had an apparent molecular mass of 32 kDa by SDS/PAGE and a Stokes' radius of 3.4 nm. It was phosphorylated by cAMP-dependent protein kinase on a threonyl residue; this phosphorylation was necessary for inhibition of protein phosphatase-1. Bovine adipose tissue inhibitor-1 was compared directly with rabbit skeletal muscle inhibitor-1 and with a 32000-Mr, dopamine- and cAMP-regulated phosphoprotein from bovine brain (DARPP-32), also an inhibitor of protein phosphatase-1. By the following biochemical and immunochemical criteria, bovine adipose tissue inhibitor-1 was found to be very similar and possibly identical to DARPP-32 and was clearly distinct from skeletal muscle inhibitor-1: molecular mass by SDS/PAGE; Stokes' radii; phosphorylation on threonine residues; Staphylococcus-aureus-V8-protease-generated peptide patterns analyzed by SDS/PAGE; tryptic phosphopeptide maps analysed by two-dimensional thin-layer electrophoresis/chromatography; elution on reverse-phase HPLC; chymotryptic peptide maps as analysed by reverse-phase HPLC; amino acid composition; antibody recognition by immunoprecipitation and immunoblotting; effect of cyanogen bromide cleavage on protein phosphatase inhibitor activity. Based on these results we conclude that bovine brain and adipose tissue contain an identical phosphoprotein inhibitor of protein phosphatase-1 (DARPP-32), which is distinct from that of skeletal muscle (inhibitor-1).  相似文献   

8.
Protein phosphatase-1 (PP1) plays an important role in a variety of cellular processes, including muscle contraction, cell-cycle progression, and neurotransmission. The localization and substrate specificity of PP1 are determined by a class of proteins known as targeting subunits. In the present study, the interaction between PP1 and spinophilin, a neuronal protein that targets PP1 to dendritic spines, has been characterized. Deletion analysis revealed that a high-affinity binding domain is located within residues 417-494 of spinophilin. This domain contains a pentapeptide motif (R/K-R/K-V/I-X-F) between amino acids 447 and 451 (R-K-I-H-F) that is conserved in other PP1 regulatory subunits. Mutation of phenylalanine-451 (F451A) or deletion of the conserved motif abolished the ability of spinophilin to bind PP1, as observed by coprecipitation, overlay, and competition binding assays. In addition, deletion of regions 417-442 or 474-494, either singly or in combination, impaired the ability of spinophilin to coprecipitate PP1. A comparison of the binding and inhibitory properties of spinophilin peptides suggested that distinct subdomains of spinophilin are responsible for binding and modulating PP1 activity. Mutational analysis of the modulatory subdomain revealed that spinophilin interacts with PP1 via a mechanism unlike those used by the cytosolic inhibitors DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, Mr 32 000) and inhibitor-1. Finally, characterization of the interactions between spinophilin and PP1 has facilitated the design of peptide antagonists capable of disrupting spinophilin-PP1 interactions. These studies support the notion that spinophilin functions in vivo as a neuronal PP1 targeting subunit by directing the enzyme to postsynaptic densities and regulating its activity toward physiological substrates.  相似文献   

9.
Cyclic AMP–dependent protein kinase A (PKA) and protein phosphatase 1 (PP1) are proteins involved in numerous essential signalling pathways that modulate physiological and pathological functions. Both PP1 and PKA can be inhibited by dopamine- and cAMP-regulated phosphoprotein 32 kD (DARPP-32). Using immunohistochemistry, PKA and PP1 expression was determined in a large primary breast tumour cohort to evaluate associations between clinical outcome and clinicopathological criteria (n > 1100). In addition, mRNA expression of PKA and PP1 subunits was assessed in the METABRIC data set (n = 1980). Low protein expression of PKA was significantly associated with adverse survival of breast cancer patients; interestingly, this relationship was stronger in ER-positive breast cancer patients. PP1 protein expression was not associated with patient survival. PKA and PP1 subunit mRNA was also assessed; PPP1CA, PRKACG and PRKAR1B were associated with breast cancer–specific survival. In patients with high expression of DARPP-32, low expression of PP1 was associated with adverse survival when compared to high expression in the same group. PKA expression and PP1 expression are of significant interest in cancer as they are involved in a wide array of cellular processes, and these data indicate PKA and PP1 may play an important role in patient outcome.  相似文献   

10.
Two inositol phosphoglycans (IPG) isolated from beef liver and designated as putative insulin mediators were demonstrated to reciprocally enhance the dephosphorylation of inhibitor-1 (INH-1) and DARPP-32, thus directly activating phosphatase 2C and disinhibiting phosphatase 1 in a potential protein phosphatase 2C --> phosphatase 1 cascade mechanism. One IPG termed pH 2.0, containing Dchiro-inositol and galactosamine, stimulated the dephosphorylation of INH-1 and DARPP-32 in a dose-dependent manner in the low micromolar range. A second, termed pH 1.3, containing myo-inositol glucosamine and mannose acted reciprocally to inhibit the cAMP-dependent protein kinase phosphorylation of INH-1 and DARPP-32 in a dose-dependent manner in the low micromolar range. These model experiments are discussed in terms of the observed dephosphorylation of INH-1 with insulin action documented in the literature and the activation of both phosphatase 1 and 2C described in intact cells and in vivo with insulin action.  相似文献   

11.
The complete amino acid sequence of bovine brain DARPP-32, a dopamine- and cyclic AMP-regulated neuronal phosphoprotein, which is a potent and specific inhibitor of the catalytic subunit of protein phosphatase-1, has been determined. The S-14C-carboxymethylated protein was subjected to enzymatic cleavage by endoproteinase Lys-C, endoproteinase Arg-C, trypsin, chymotrypsin, and Staphylococcus aureus V8 protease, and to chemical cleavage by cyanogen bromide. The overlapping sets of peptides were purified by high performance liquid chromatography and subjected to amino acid sequencing by automated Edman degradation to deduce the complete sequence. The protein consists of a single NH2-terminal blocked polypeptide chain of 202 residues, with a calculated molecular mass of 22,591 daltons, excluding the unidentified NH2-terminal blocking group. This molecular mass is significantly lower than earlier estimates based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis or hydrodynamic measurements. The threonine residue that is phosphorylated by cyclic AMP-dependent protein kinase (Hemmings, H. C., Jr., Williams, K. R., Konigsberg, W. H., and Greengard, P. (1984) J. Biol. Chem. 259, 14486-14490), and that must be phosphorylated for the expression of inhibitory activity, is located at position 34. The molecule contains only 1 cysteine residue and 1 tryptophan residue, at positions 72 and 161, respectively. DARPP-32 is very hydrophilic, and contains a stretch of 16 consecutive acidic residues from position 119 to 134. The predicted secondary structure suggests the presence of 47% alpha-helix, 7% beta-sheet, and 46% random coil, with 11 beta-turns. Comparison of the complete amino acid sequence of bovine DARPP-32 with that of rabbit skeletal muscle protein phosphatase inhibitor-1 revealed a significant amount of sequence identity in the NH2-terminal regions of these two proteins. The active region of inhibitor-1 has been localized to an NH2-terminal fragment (Aitken, A., and Cohen, P. (1982) FEBS Lett. 147, 54-58), the part of the molecule that is most similar to DARPP-32. These data suggest that these two protein phosphatase inhibitors may share a common structural basis for their inhibitory activity and may be related by a common ancestral gene.  相似文献   

12.
13.
Abstract: Autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Thr286 generates Ca2+-independent activity. As an initial step toward understanding CaMKII inactivation, protein phosphatase classes (PP1, PP2A, PP2B, or PP2C) responsible for dephosphorylation of Thr286 in rat forebrain subcellular fractions were identified using phosphatase inhibitors/activators, by fractionation using ion exchange chromatography and by immunoblotting. PP2A-like enzymes account for >70% of activity toward exogenous soluble Thr286-autophosphorylated CaMKII in crude cytosol, membrane, and cytoskeletal extracts; PP1 and PP2C account for the remaining activity. CaMKII is present in particulate fractions, specifically associated with postsynaptic densities (PSDs); each protein phosphatase is also present in isolated PSDs, but only PP1 is enriched during PSD isolation. When isolated PSDs dephosphorylated exogenous soluble Thr286-autophosphorylated CaMKII, PP2A again made the major contribution. However, CaMKII endogenous to PSDs (32P autophosphorylated in the presence of Ca2+/calmodulin) was predominantly dephosphorylated by PP1. In addition, dephosphorylation of soluble and PSD-associated CaMKII in whole forebrain extracts was catalyzed predominantly by PP2A and PP1, respectively. Thus, soluble and PSD-associated forms of CaMKII appear to be dephosphorylated by distinct enzymes, suggesting that Ca2+-independent activity of CaMKII is differentially regulated by protein phosphatases in distinct subcellular compartments.  相似文献   

14.
Cellular functions of protein phosphatase-1 (PP1), a major eukaryotic serine/threonine phosphatase, are defined by the association of PP1 catalytic subunits with endogenous protein inhibitors and regulatory subunits. Many PP1 regulators share a consensus RVXF motif, which docks within a hydrophobic pocket on the surface of the PP1 catalytic subunit. Although these regulatory proteins also possess additional PP1-binding sites, mutations of the RVXF sequence established a key role of this PP1-binding sequence in the function of PP1 regulators. WT PP1alpha, the C-terminal truncated PP1alpha-(1-306), a chimeric PP1alpha containing C-terminal sequences from PP2A, another phosphatase, PP1alpha-(1-306) with the RVXF-binding pocket substitutions L289R, M290K, and C291R, and PP2A were analyzed for their regulation by several mammalian proteins. These studies established that modifications of the RVXF-binding pocket had modest effects on the catalytic activity of PP1, as judged by recognition of substrates and sensitivity to toxins. However, the selected modifications impaired the sensitivity of PP1 to the inhibitor proteins, inhibitor-1 and inhibitor-2. In addition, they impaired the ability of PP1 to bind neurabin-I, the neuronal regulatory subunit, and G(M), the skeletal muscle glycogen-targeting subunit. These data suggested that differences in RVXF interactions with the hydrophobic pocket dictate the affinity of PP1 for cellular regulators. Substitution of a distinct RVXF sequence in inhibitor-1 that enhanced its binding and potency as a PP1 inhibitor emphasized the importance of the RVXF sequence in defining the function of this and other PP1 regulators. Our studies suggest that the diversity of RVXF sequences provides for dynamic physiological regulation of PP1 functions in eukaryotic cells.  相似文献   

15.
The catalytic subunit of protein phosphatase 1 (PP1), a key enzyme in the regulation of many cellular functions, has been expressed in insect cells using a baculovirus vector containing PP1 alpha cDNA. The expressed protein had the same apparent molecular mass as PP1 from rabbit skeletal muscle and comprised up to 25% of the total cellular protein. About 5% of expressed PP1 alpha was present as a soluble active species, representing a 15-fold increase over the endogenous activity. Insoluble protein, comprising about 95% of the expressed PP1 was dissolved in 6 M guanidinium chloride and could be fully reactivated by extensive and rapid dilution with buffers containing Mn2+. By a number of criteria (specific activity towards phosphorylase, interaction with inhibitor-1, inhibitor-2 and okadaic acid), this reactivated species was indistinguishable from authentic PP1, and could be concentrated and purified to homogeneity by a single chromatography on DEAE-Sepharose. This procedure yielded about 10 mg active PP1/1 culture, which will facilitate future structural analyses of native and mutant protein phosphatases.  相似文献   

16.
Integration of neurotransmitter and neuromodulator signals in the striatum plays a central role in the functions and dysfunctions of the basal ganglia. DARPP-32 is a key actor of this integration in the GABAergic medium-size spiny neurons, in particular in response to dopamine and glutamate. When phosphorylated by cAMP-dependent protein kinase (PKA), DARPP-32 inhibits protein phosphatase-1 (PP1), whereas when phosphorylated by cyclin-dependent kinase 5 (CDK5) it inhibits PKA. DARPP-32 is also regulated by casein kinases and by several protein phosphatases. These complex and intricate regulations make simple predictions of DARPP-32 dynamic behaviour virtually impossible. We used detailed quantitative modelling of the regulation of DARPP-32 phosphorylation to improve our understanding of its function. The models included all the combinations of the three best-characterized phosphorylation sites of DARPP-32, their regulation by kinases and phosphatases, and the regulation of those enzymes by cAMP and Ca2+ signals. Dynamic simulations allowed us to observe the temporal relationships between cAMP and Ca2+ signals. We confirmed that the proposed regulation of protein phosphatase-2A (PP2A) by calcium can account for the observed decrease of Threonine 75 phosphorylation upon glutamate receptor activation. DARPP-32 is not simply a switch between PP1-inhibiting and PKA-inhibiting states. Sensitivity analysis showed that CDK5 activity is a major regulator of the response, as previously suggested. Conversely, the strength of the regulation of PP2A by PKA or by calcium had little effect on the PP1-inhibiting function of DARPP-32 in these conditions. The simulations showed that DARPP-32 is not only a robust signal integrator, but that its response also depends on the delay between cAMP and calcium signals affecting the response to the latter. This integration did not depend on the concentration of DARPP-32, while the absolute effect on PP1 varied linearly. In silico mutants showed that Ser137 phosphorylation affects the influence of the delay between dopamine and glutamate, and that constitutive phosphorylation in Ser137 transforms DARPP-32 in a quasi-irreversible switch. This work is a first attempt to better understand the complex interactions between cAMP and Ca2+ regulation of DARPP-32. Progressive inclusion of additional components should lead to a realistic model of signalling networks underlying the function of striatal neurons.  相似文献   

17.
Two heat-stable and trypsin-labile inhibitors of phosphorylase phosphatase, designated inhibitor-1 and inhibitor-2, were partially purified from extracts of rabbit skeletal muscle by heating and coloumn chromatography using DEAE-dellulose and Bio-gel P-60. Inhibitor-1 exists in an active phosphorylated form and an inactive dephosphorylated form. The interconversion of phosphorylated inhibitor-1 and dephosphorylated inhibitor-1 is mediated by protein kinase dependent on adenosine 3':5'-monophosphate (cyclic AMP) and a Mn2+-stimulated phosphoprotein phosphatase. Inhibitory activity of inhibitor-2 is not influenced by treatment with either the kinase or the Mn2+-stimulated phosphatase. The molecular weights of inhibitor-1 and inhibitor-2 estimated by sodium dodecylsulfate-polyacrylamide gel electrophoresis are 26000 and 33000 respectively. Both inhibitor-1 and inhibitor-2 inhibit phosphorylase phosphatase by a mechanism which appears to be non-competitive with respect to the substrate phosphorylase a. Inhibitor fractions at early stages of purification also inhibit cyclic-AMP-dependent histone phosphorylation, but this kinase inhibitory activity resides with a protein moiety which is separable from inhibitor-1 and inhibitor-2.  相似文献   

18.
DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein, Mr = 32,000) is a major endogenous cytosolic substrate for dopamine- and cyclic AMP-stimulated protein phosphorylation in neurons of the basal ganglia of mammalian brain. It shares many properties with phosphatase inhibitor 1, a substrate for cyclic AMP-dependent protein kinase, and with G-substrate, a substrate for cyclic GMP-dependent protein kinase. We have, therefore, undertaken an analysis of the amino acid sequence around the site at which purified DARPP-32 is phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase. The results indicate that DARPP-32 is phosphorylated at a single threonine residue contained in the sequence Arg-Arg-Arg-Pro-Thr(P)-Pro-Ala-Met-Leu-Phe-Arg. This sequence was obtained by automated solid phase sequencing of two overlapping tryptic phosphopeptides and one overlapping chymotryptic phosphopeptide which were purified by reverse-phase high-performance liquid chromatography. A 9-amino acid sequence containing the phosphorylatable threonine residue in DARPP-32 shares 8 identical residues with a sequence containing the phosphorylatable threonine residue in phosphatase inhibitor 1, and shares 5 identical residues with the two identical sequences surrounding the 2 phosphorylatable threonine residues in G-substrate. These observations support the view that DARPP-32, inhibitor 1, and G-substrate are members of a family of regulatory proteins which are involved in the control of protein phosphatase activity by both cyclic AMP and cyclic GMP, but which differ in their cellular and tissue distributions.  相似文献   

19.
The distribution of inhibitor-1, a cyclic AMP-regulated inhibitor of protein phosphatase-1, was analyzed in various brain regions and peripheral tissues of various species by immunolabeling of sodium dodecyl sulfate-poly-acrylamide gel transfers using specific antibodies. The distribution of inhibitor-1 was directly compared to that of DARPP-32, a structurally related cyclic AMP-regulated inhibitor of protein phosphatase-1. In rat CNS, a single immunoreactive protein of M(r) 30,000, identified as inhibitor-1, was widely distributed. In contrast, DARPP-32 was highly concentrated in the basal ganglia. Inhibitor-1 was detected in brain tissue from frog (M(r) 27,000), turtle (M(r) 29,000/33,000), canary (M(r) 26,000), pigeon (M(r) 28,000), mouse (M(r) 30,500), rabbit (M(r) 26,500), cow (M(r) 27,000), and monkey (M(r) 27,500), but not from goldfish. Inhibitor-1 was detected at various levels in most peripheral tissues of the species studied; however, it was not detectable in certain tissues of particular species (e.g., rat and cow liver). DARPP-32 was detected in brain tissue of all the species tested except frog and goldfish, but was not detectable in most peripheral tissues. Both inhibitor-1 and DARPP-32 were concentrated in the cytosol and synaptosomal cytosol of rat striatum. The developmental expressions of inhibitor-1 and DARPP-32 in rat striatum differed: the level of inhibitor-1 peaked in the first postnatal week and then declined by the third postnatal week, whereas the level of DARPP-32 increased to a peak level by the third postnatal week and remained elevated thereafter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
DARPP-32 (dopamine and adenosine 3′,5′-monophosphate-regulated phosphoprotein of 32 kDa), which belongs to PPP1R1 gene family, is known to act as an important integrator in dopamine-mediated neurotransmission via the inhibition of protein phosphatase-1 (PP1). Besides its neuronal roles, this protein also behaves as a key player in pathological and pharmacological aspects. Use of bioinformatics and phylogenetics approaches to further characterize the molecular features of DARPP-32 can guide future works. Predicted phosphorylation sites on DARPP-32 show conservation across vertebrates. Phylogenetics analysis indicates evolutionary strata of phosphorylation site acquisition at the C-terminus, suggesting functional expansion of DARPP-32, where more diverse signalling cues may involve in regulating DARPP-32 in inhibiting PP1 activity. Moreover, both phylogenetics and synteny analyses suggest de novo origination of PPP1R1 gene family via chromosomal rearrangement and exonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号