首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian–Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record.  相似文献   

2.
During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects. In contrast, the terrestrial record of extinction and recovery is less clear; the effects and magnitude of the end-Permian extinction on non-marine vertebrates are particularly controversial. We use specimen-level data from southern Africa and Russia to investigate the palaeodiversity dynamics of non-marine tetrapods across the Permo-Triassic boundary by analysing sample-standardized generic richness, evenness and relative abundance. In addition, we investigate the potential effects of sampling, geological and taxonomic biases on these data. Our analyses demonstrate that non-marine tetrapods were severely affected by the end-Permian mass extinction, and that these assemblages did not begin to recover until the Middle Triassic. These data are congruent with those from land plants and marine invertebrates. Furthermore, they are consistent with the idea that unstable low-diversity post-extinction ecosystems were subject to boom-bust cycles, reflected in multiple Early Triassic perturbations of the carbon cycle.  相似文献   

3.
A new genus, Meishanorhynchia , is proposed based on new material from the Lower Triassic of the Meishan section, South China. It is of a late Griesbachian age based on both associated biozones (ammonoids and bivalves) and radiometric dates of the intercalated volcanic ash beds. Comparison with both Palaeozoic and Mesozoic–Cenozoic-related genera suggests that it may represent the first radiation of progenitor brachiopods in the aftermath of the end-Permian extinction. The lowest brachiopod horizon that contains the genus is estimated to be about 250.1 ± 0.3 Ma. This implies that the initial stage of recovery of Brachiopoda in the Early Triassic was probably about 1.3 ± 0.3 myr after the major pulse of the end-Permian mass extinction (dated as 251.4 ± 0.3 Ma). This is in agreement with Hallam's expectancy that biotic recovery typically begins within one million years or so of major mass extinctions, in contrast to current views on the end-Permian extinction event which propose that the recovery of most if not all biotic groups in the Early Triassic was severely delayed and only began about five million years after the end-Permian extinction.  相似文献   

4.
Extant amniotes show remarkable postural diversity. Broadly speaking, limbs with erect (strongly adducted, more vertically oriented) posture are found in mammals that are particularly heavy (graviportal) or show good running skills (cursorial), while crouched (highly flexed) limbs are found in taxa with more generalized locomotion. In Reptilia, crocodylians have a “semi-erect” (somewhat adducted) posture, birds have more crouched limbs and lepidosaurs have sprawling (well-abducted) limbs. Both synapsids and reptiles underwent a postural transition from sprawling to more erect limbs during the Mesozoic Era. In Reptilia, this postural change is prominent among archosauriforms in the Triassic Period. However, limb posture in many key Triassic taxa remains poorly known. In Synapsida, the chronology of this transition is less clear, and competing hypotheses exist. On land, the limb bones are subject to various stresses related to body support that partly shape their external and internal morphology. Indeed, bone trabeculae (lattice-like bony struts that form the spongy bone tissue) tend to orient themselves along lines of force. Here, we study the link between femoral posture and the femoral trabecular architecture using phylogenetic generalized least squares. We show that microanatomical parameters measured on bone cubes extracted from the femoral head of a sample of amniote femora depend strongly on body mass, but not on femoral posture or lifestyle. We reconstruct ancestral states of femoral posture and various microanatomical parameters to study the “sprawling-to-erect” transition in reptiles and synapsids, and obtain conflicting results. We tentatively infer femoral posture in several hypothetical ancestors using phylogenetic flexible discriminant analysis from maximum likelihood estimates of the microanatomical parameters. In general, the trabecular network of the femoral head is not a good indicator of femoral posture. However, ancestral state reconstruction methods hold great promise for advancing our understanding of the evolution of posture in amniotes.  相似文献   

5.
Large perturbations to the global carbon cycle occurred during the Permian–Triassic boundary mass extinction, the largest extinction event of the Phanerozoic Eon (542 Ma to present). Controversy concerning the pattern and mechanism of variations in the marine carbonate carbon isotope record of the Permian–Triassic crisis interval (PTCI) and their relationship to the marine mass extinction has not been resolved to date. Herein, high-resolution carbonate carbon isotope profiles (δ13Ccarb), accompanied by lithofacies, were generated for four sections with microbialite (Taiping, Zuodeng, Cili, and Chongyang) in South China to better constrain patterns and controls on δ13Ccarb variation in the PTCI and to test hypotheses about the temporal relationship between perturbations to the global carbon cycle and the marine mass extinction event. All four study sections exhibit a stepwise negative shift in δ13Ccarb during the Late Permian–Early Triassic, with the shift preceding the end-Permian crisis being larger (> 3‰) than that following it (1–2‰). The pre-crisis shifts in δ13Ccarb are widely correlatable and, hence, represent perturbations to the global carbon cycle. The comparatively smaller shifts following the crisis demonstrate that the marine mass extinction event itself had at most limited influence on the global carbon cycle, and that both Late Permian δ13Ccarb shifts and the mass extinction must be attributed to some other cause. Their origin cannot be uniquely determined from C-isotopic data alone but appears to be most compatible with a mechanism based on episodic volcanism in combination with collapse of terrestrial ecosystems and soil erosion.  相似文献   

6.
After the end-Permian crisis and the extinction of their four Paleozoic subclasses, crinoids rapidly recovered. This group is classically believed to have radiated from a small surviving clade and to have diversified during the Middle and Upper Triassic from two lineages. Nevertheless, recent findings suggested that several lineages of crinoids had already diversified during the Early Triassic, and that their diversity has been overlooked. Here we describe a new form of holocrinid, Holocrinus nov. sp., from the earliest Spathian (Early Triassic) of southeastern Idaho (USA). So far, the exceptional completeness of sampled specimens, with skeletal elements of arms and stem in connection, is unique for the Early Triassic. They show that derived morphological features had already evolved ∼1.3 million years after the Permian–Triassic boundary, supporting the scenario of a rapid Early Triassic diversification of crinoids.  相似文献   

7.
Abstract:  During the Triassic, some 250–200 million years ago, the basal archosaurs showed a transition from sprawling to erect posture. Past studies focused on changes in bone morphology, especially on the joints, as they reorientated from a sprawling to an erect posture. Here we introduce a biomechanical model to estimate the magnitude of femur stress in different postures, in order to determine the most reasonable postures for five basal archosaurs along the line to crocodiliforms (the rhynchosaur Stenaulorhynchus , the basal archosaur Erythrosuchus , the 'rauisuchian' Batrachotomus , the aetosaurs Desmatosuchus and Typothorax ). The results confirm a sprawling posture in basal taxa and an erect posture in derived taxa. Erect posture may have evolved as a strategy to reduce large bending stresses on the limb bone caused by heavy body weights in larger forms.  相似文献   

8.
Mass extinctions among tetrapods and the quality of the fossil record   总被引:2,自引:0,他引:2  
The fossil record of tetrapods is very patchy because of the problems of preservation, in terrestrial sediments in particular, and because vertebrates are rarely very abundant. However, the fossil record of tetrapods has the advantages that it is easier to establish a phylogenetic taxonomy than for many invertebrate groups, and there is the potential for more detailed ecological analyses. The relative incompleteness of a fossil record may be assessed readily, and this can be used to test whether drops in overall diversity are related to mass extinctions or to gaps in our knowledge. Absolute incompleteness cannot be assessed directly, but a historical approach may offer clues to future improvements in our knowledge. One of the key problems facing palaeobiologists is paraphyly, the fact that many higher taxa in common use do not contain all of the descendants of the common ancestor. This may be overcome by cladistic analysis and the identification of monophyletic groups. The diversity of tetrapods increased from the Devonian to the Permian, remained roughly constant during the Mesozoic, and then began to increase in the late Cretaceous, and continued to do so during the Tertiary. The rapid radiation of 'modern' tetrapod groups--frogs, salamanders, lizards, snakes, turtles, crocodilians, birds and mammals--was hardly affected by the celebrated end-Cretaceous extinction event. Major mass extinctions among tetrapods took place in the early Permian, late Permian, early Triassic, late Triassic, late Cretaceous, early Oligocene and late Miocene. Many of these events appear to coincide with the major mass extinctions among marine invertebrates, but the tetrapod record is largely equivocal with regard to the theory of periodicity of mass extinctions.  相似文献   

9.
The end-Permian biotic crisis (∼252.5 Ma) represents the most severe extinction event in Earth''s history. This paper investigates diversity patterns in Anomodontia, an extinct group of therapsid synapsids (‘mammal-like reptiles’), through time and in particular across this event. As herbivores and the dominant terrestrial tetrapods of their time, anomodonts play a central role in assessing the impact of the end-Permian extinction on terrestrial ecosystems. Taxonomic diversity analysis reveals that anomodonts experienced three distinct phases of diversification interrupted by the same number of extinctions, i.e. an end-Guadalupian, an end-Permian, and a mid-Triassic extinction. A positive correlation between the number of taxa and the number of formations per time interval shows that anomodont diversity is biased by the Permian-Triassic terrestrial rock record. Normalized diversity curves indicate that anomodont richness continuously declines from the Middle Permian to the Late Triassic, but also reveals all three extinction events. Taxonomic rates (origination and extinction) indicate that the end-Guadalupian and end-Permian extinctions were driven by increased rates of extinction as well as low origination rates. However, this pattern is not evident at the final decline of anomodont diversity during the Middle Triassic. Therefore, it remains unclear whether the Middle Triassic extinction represents a gradual or abrupt event that is unique to anomodonts or more common among terrestrial tetrapods. The end-Permian extinction represents the most distinct event in terms of decline in anomodont richness and turnover rates.  相似文献   

10.
Early tetrapods faced an auditory challenge from the impedance mismatch between air and tissue in the transition from aquatic to terrestrial lifestyles during the Early Carboniferous (350 Ma). Consequently, tetrapods may have been deaf to airborne sounds for up to 100 Myr until tympanic middle ears evolved during the Triassic. The middle ear morphology of recent urodeles is similar to that of early ‘lepospondyl’ microsaur tetrapods, and experimental studies on their hearing capabilities are therefore useful to understand the evolutionary and functional drivers behind the shift from aquatic to aerial hearing in early tetrapods. Here, we combine imaging techniques with neurophysiological measurements to resolve how the change from aquatic larvae to terrestrial adult affects the ear morphology and sensory capabilities of salamanders. We show that air-induced pressure detection enhances underwater hearing sensitivity of salamanders at frequencies above 120 Hz, and that both terrestrial adults and fully aquatic juvenile salamanders can detect airborne sound. Collectively, these findings suggest that early atympanic tetrapods may have been pre-equipped to aerial hearing and are able to hear airborne sound better than fish on land. When selected for, this rudimentary hearing could have led to the evolution of tympanic middle ears.  相似文献   

11.
Abstract: The quality of the Triassic–Jurassic bivalve fossil record in northwest Europe has been measured using the Simple Completeness Metric (SCM). The SCM has been applied to the fossil record of total bivalve diversity and to the records of different ecological guilds. The Westbury and Lilstock Formations record high SCM values for most ecological groups. The ‘Pre‐Planorbis Beds’ of the lower Lias Group, however, witness a precipitous decline in the completeness of most guilds and emigration of taxa due to localized marine anoxia is a likely cause. Neither variation in lithofacies, shell mineralogy, sedimentary rock outcrop area, nor sequence architecture can convincingly explain the observed patterns of completeness. Our SCM data reveal that the Early Jurassic fossil record of infaunal suspension‐feeding bivalves is significantly poorer than that of epifaunal bivalves. Any differences in the apparent Rhaetian extinction rates between these two guilds should therefore be viewed with caution. Analyses of selectivity during the Late Triassic mass extinction based on studies of global databases appear robust in light of our SCM data. Nevertheless, future investigations of the Triassic–Jurassic benthic marine ecosystem undertaken at a finer‐resolution, may need to account for the poor quality of the Early Jurassic fossil records of certain ecological guilds, such as the infaunal suspension‐feeding taxa.  相似文献   

12.
AMMONOIDS ACROSS THE PERMIAN/TRIASSIC BOUNDARY: A CLADISTIC PERSPECTIVE   总被引:1,自引:0,他引:1  
Abstract:  The rapid diversification of ceratitid ammonoids during the earliest Mesozoic has been taken at face value as an example of explosive radiation following the Permian/Triassic mass extinction. However, the validity of this interpretation has never been tested within a phylogenetic framework. A total evidence cladistic analysis of Mid–Late Permian and Induan (earliest Triassic) ammonoids confirms the monophyly of the Ceratitida. Partitioned phylogenetic analysis of suture line characters vs. shell shape and ornament characters confirms the importance of suture-line characters for resolving the higher taxonomy of ammonoids. When the cladogram is compared with the observed fossil record, the resultant tree implies that the divergence of a number of early Triassic lineages actually occurred during the latest Permian. If these range extensions are taken into account the ammonoid per-genus extinction rate across the Permian/Triassic boundary drops from c. 85 per cent to c. 60 per cent.  相似文献   

13.
A palaeontological record of the Northern Caucasus provides new data to evaluate the influence of the Permian/Triassic mass extinction on brachiopod communities. The study region is currently located in the southwest of Russia; it laid on the northern margin of the Palaeo-Tethys Ocean during the late Paleozoic-early Mesozoic. A total of 168 genera and 36 superfamilies are known from the Changhsingian-Bajocian deposits of this region. The total diversity of brachiopods was very high in the Changhsingian (57 genera and 19 superfamilies), but these organisms disappeared entirely at the Permian/Triassic boundary. Three genera and three superfamilies existed in the Induan, but brachiopods perished again in the Olenekian. A recovery began in the Anisian, but the Changhsingian diversity was never reached again. No genera crossed the Permian/Triassic boundary, whereas 4 superfamilies became able to do this. Ambocoelioidea was a “dead clade walking” and went extinct in the Induan, whereas three other superfamilies (Dialasmatoidea, Rhynchonelloidea, and Wellerelloidea) were more successful. Survivors included no less than 20% of genera during the entire Induan-Bajocian time interval. The Changhsingian-Anisian interval is dominated by just one type of facies in the studied region, which may explain differences in the post-extinction diversity patterns between the Northern Caucasus, South China, and other parts of the World. Use of the alternative Triassic time scale does not change the absolute duration of the post-extinction stress (5.1 myr), whereas it highlights higher rates for the Anisian recovery (appearance of 0.9 superfamilies and 2.8 genera per myr).  相似文献   

14.
Mass extinctions have profoundly influenced the history of life, not only through the death of species but also through changes in ecosystem function and structure. Importantly, these events allow us the opportunity to study ecological dynamics under levels of environmental stress for which there are no recent analogues. Here, we examine the impact and selectivity of the Late Triassic mass extinction event on the functional diversity and functional composition of the global marine ecosystem, and test whether post‐extinction communities in the Early Jurassic represent a regime shift away from pre‐extinction communities in the Late Triassic. Our analyses show that, despite severe taxonomic losses, there is no unequivocal loss of global functional diversity associated with the extinction. Even though no functional groups were lost, the extinction event was, however, highly selective against some modes of life, in particular sessile suspension feeders. Although taxa with heavily calcified skeletons suffered higher extinction than other taxa, lightly calcified taxa also appear to have been selected against. The extinction appears to have invigorated the already ongoing faunal turnover associated with the Mesozoic Marine Revolution. The ecological effects of the Late Triassic mass extinction were preferentially felt in the tropical latitudes, especially amongst reefs, and it took until the Middle Jurassic for reef ecosystems to fully recover to pre‐extinction levels.  相似文献   

15.
The negative shift in δ13C values of carbonate carbon at the Permian/Triassic boundary is one of the better documented geochemical signatures of a mass extinction event. The similar negative shift in δ13C values in organic carbon from Permian/Triassic boundary marine sediments in Austria and Canada is shown to occur also in marine and non‐marine sediments from Australian sedimentary basins. This negative shift in δ13C values is used to calibrate Australian sections lacking diagnostic faunal elements identifying the Permian/Triassic boundary. The minimum in the carbonate 87Sr/86Sr seawater curve from carbonates across the Guadalupian/Ochoan Stage boundary, mainly from North America, is shown to occur also in brachiopod calcite mainly from the Bowen Basin of eastern Australia, hence providing a second calibration point in the Australian sedimentary record. These two geochemical events support a model of a runaway greenhouse developing about the Permian/Triassic boundary; this is inferred to have contributed to the end‐Permian mass extinction.  相似文献   

16.
Parahupehsuchus longus is a new species of marine reptile from the Lower Triassic of Yuan’an County, Hubei Province, China. It is unique among vertebrates for having a body wall that is completely surrounded by a bony tube, about 50 cm long and 6.5 cm deep, comprising overlapping ribs and gastralia. This tube and bony ossicles on the back are best interpreted as anti-predatory features, suggesting that there was predation pressure upon marine tetrapods in the Early Triassic. There is at least one sauropterygian that is sufficiently large to feed on Parahupehsuchus in the Nanzhang-Yuan’an fauna, together with six more species of potential prey marine reptiles with various degrees of body protection. Modern predators of marine tetrapods belong to the highest trophic levels in the marine ecosystem but such predators did not always exist through geologic time. The indication of marine-tetrapod feeding in the Nanzhang-Yuan’an fauna suggests that such a trophic level emerged for the first time in the Early Triassic. The recovery from the end-Permian extinction probably proceeded faster than traditionally thought for marine predators. Parahupehsuchus has superficially turtle-like features, namely expanded ribs without intercostal space, very short transverse processes, and a dorsal outgrowth from the neural spine. However, these features are structurally different from their turtle counterparts. Phylogeny suggests that they are convergent with the condition in turtles, which has a fundamentally different body plan that involves the folding of the body wall. Expanded ribs without intercostal space evolved at least twice and probably even more among reptiles.  相似文献   

17.
Abstract:  For some decades, a major focus of research has been on how locomotor modes changed in some archosaurian reptiles from a more or less 'sprawling' to an 'erect' posture, whether there were discrete intermediate stages, and how many times 'erect' posture evolved. The classic paradigm for the evolution of stance and gait in archosaurs, a three-stage transition from sprawling to 'semi-erect' to erect posture, has been replaced by a subtler understanding of a continuum of changing limb joint angles. We suggest a further separation of terminology related to stance vs. gait so as not to entail different processes: 'sprawling' and 'erect' should refer to continua of stance; 'rotatory' and 'parasagittal' are more appropriate ends of a continuum that describes the motions of gait. We show that the Triassic trackway Apatopus best fits the anatomy and proportions of phytosaurs, based on a new reconstruction of their foot skeleton; it is less likely to have been made by another pseudosuchian or non-archosaurian archosauromorph. Moreover, the trackmaker was performing the high walk. A phytosaurian trackmaker would imply that the common ancestor of pseudosuchians, and therefore archosaurs could approximate the high walk (depending on phylogeny), and if so, erect stance and parasagittal gait did not evolve independently in pseudosuchians and ornithosuchians, although the kinematic mechanisms differed in the two groups. It remains to be seen how far outside Archosauria, if at all, more or less erect posture and parasagittal gait may have evolved.  相似文献   

18.
Abstract:  Large footprints of terrestrial tetrapods have been found in the Cis-Urals region of European Russia. The footprint horizon is in Late Permian (Changhsingian) deposits of the Vyatkian Gorizont (uppermost Tatarian) approximately 50 m below the local Permian/Triassic boundary. Seventeen randomly orientated footprints were excavated and are referred to the ichnospecies Brontopus giganteus . The footprints were emplaced in a reddish-brown mudstone that was deposited from suspension beneath shallow ponded water in a floodplain environment. They were subsequently cast by the base of the overlying fine-grained sandstone, which was deposited from a sheet-flood event. The footprints were produced by a large therapsid, possibly a dinocephalian, but more probably a dicynodont, and represent the first ichnological record of the Therapsida from the Upper Permian of Russia.  相似文献   

19.
A new, diverse and complex Early Triassic assemblage was recently discovered west of the town of Paris, Idaho (Bear Lake County), USA. This assemblage has been coined the Paris Biota. Dated earliest Spathian (i.e., early late Olenekian), the Paris Biota provides further evidence that the biotic recovery from the end-Permian mass extinction was well underway ca. 1.3 million years after the event. This assemblage includes mainly invertebrates, but also vertebrate remains such as ichthyoliths (isolated skeletal remains of fishes). Here we describe first fossils of Chondrichthyes (cartilaginous fishes) from the Paris Biota. The material is composed of isolated teeth (mostly grinding teeth) preserved on two slabs and representing two distinct taxa. Due to incomplete preservation and morphological differences to known taxa, the chondrichthyans from the Paris Biota are provisionally kept in open nomenclature, as Hybodontiformes gen. et sp. indet. A and Hybodontiformes gen. et sp. indet. B, respectively. The present study adds a new occurrence to the chondrichthyan fossil record of the marine Early Triassic western USA Basin, from where other isolated teeth (Omanoselache, other Hybodontiformes) as well as fin spines of Nemacanthus (Neoselachii) and Pyknotylacanthus (Ctenachanthoidea) and denticles have been described previously.  相似文献   

20.
《Comptes Rendus Palevol》2003,2(1):103-117
Until 1960, the record of dinosaurs was rather poor in Switzerland. Between 1960 and 1980, several new localities with plateosaurid remains as well as prosauropod and theropod tracks were found in Late Triassic sabkha and floodplain environments. The discovery of large surfaces with sauropod tracks in the Late Jurassic of the Jura Mountains in 1987 triggered a stream of new data. More than 20 new localities with tracks from both sauropod and theropod dinosaurs in different stratigraphic levels have been found since then. The latest discoveries include trackways of iguanodontids from the Early Cretaceous of the central Swiss Alps and a large Late Jurassic surface with trackways of small sauropods in the northernmost part of the Jura Mountains. The best skeletal record comes from the Late Triassic, with scattered data from the Late Jurassic. The track and trackway record appears to be best in the Late Jurassic. To cite this article: C.A. Meyer, B. Thüring, C. R. Palevol 2 (2003) 103–117.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号