首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express ‘cooperative traits'', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation.  相似文献   

2.
The survival of bacteria in nature is greatly enhanced by their ability to grow within surface-associated communities called biofilms. Commonly, biofilms generate proliferations of bacterial cells, called microcolonies, which are highly recalcitrant, 3-dimensional foci of bacterial growth. Microcolony growth is initiated by only a subpopulation of bacteria within biofilms, but processes responsible for this differentiation remain poorly understood. Under conditions of crowding and intense competition between bacteria within biofilms, microevolutionary processes such as mutation selection may be important for growth; however their influence on microcolony-based biofilm growth and architecture have not previously been explored. To study mutation in-situ within biofilms, we transformed Pseudomonas aeruginosa cells with a green fluorescent protein gene containing a +1 frameshift mutation. Transformed P. aeruginosa cells were non-fluorescent until a mutation causing reversion to the wildtype sequence occurs. Fluorescence-inducing mutations were observed in microcolony structures, but not in other biofilm cells, or in planktonic cultures of P. aeruginosa cells. Thus microcolonies may represent important foci for mutation and evolution within biofilms. We calculated that microcolony-specific increases in mutation frequency were at least 100-fold compared with planktonically grown cultures. We also observed that mutator phenotypes can enhance microcolony-based growth of P. aeruginosa cells. For P. aeruginosa strains defective in DNA fidelity and error repair, we found that microcolony initiation and growth was enhanced with increased mutation frequency of the organism. We suggest that microcolony-based growth can involve mutation and subsequent selection of mutants better adapted to grow on surfaces within crowded-cell environments. This model for biofilm growth is analogous to mutation selection that occurs during neoplastic progression and tumor development, and may help to explain why structural and genetic heterogeneity are characteristic features of bacterial biofilm populations.  相似文献   

3.
Theoretical and empirical evidence indicates that competing species can coexist if dispersal, migration, and competitive interactions occur over relatively small spatial scales. In particular, spatial structure appears to be critical to certain communities with nontransitive competition. A typical nontransitive system involves three competing species that satisfy a relationship similar to the children's game of rock-paper-scissors. Although the ecological dynamics of nontransitive systems in spatially structured communities have received some attention, fewer studies have incorporated evolutionary change. Here we investigate evolution within toxic bacterial biofilms using an agent-based simulation that represents a nontransitive community containing three populations of Escherichia coli. In structured, nontransitive communities, strains evolve that do not maximize their competitive ability: They do not reduce their probability of death to a minimum or increase their toxicity to a maximum. That is, types evolve that exercise restraint. We show that nontransitivity and spatial structure (in the form of localized interactions) are both necessary for the evolution of restraint in these biofilms.  相似文献   

4.
The evolution of quorum sensing in bacterial biofilms   总被引:4,自引:0,他引:4  
Bacteria have fascinating and diverse social lives. They display coordinated group behaviors regulated by quorum-sensing systems that detect the density of other bacteria around them. A key example of such group behavior is biofilm formation, in which communities of cells attach to a surface and envelope themselves in secreted polymers. Curiously, after reaching high cell density, some bacterial species activate polymer secretion, whereas others terminate polymer secretion. Here, we investigate this striking variation in the first evolutionary model of quorum sensing in biofilms. We use detailed individual-based simulations to investigate evolutionary competitions between strains that differ in their polymer production and quorum-sensing phenotypes. The benefit of activating polymer secretion at high cell density is relatively straightforward: secretion starts upon biofilm formation, allowing strains to push their lineages into nutrient-rich areas and suffocate neighboring cells. But why use quorum sensing to terminate polymer secretion at high cell density? We find that deactivating polymer production in biofilms can yield an advantage by redirecting resources into growth, but that this advantage occurs only in a limited time window. We predict, therefore, that down-regulation of polymer secretion at high cell density will evolve when it can coincide with dispersal events, but it will be disfavored in long-lived (chronic) biofilms with sustained competition among strains. Our model suggests that the observed variation in quorum-sensing behavior can be linked to the differing requirements of bacteria in chronic versus acute biofilm infections. This is well illustrated by the case of Vibrio cholerae, which competes within biofilms by polymer secretion, terminates polymer secretion at high cell density, and induces an acute disease course that ends with mass dispersal from the host. More generally, this work shows that the balance of competition within and among biofilms can be pivotal in the evolution of quorum sensing.  相似文献   

5.
Microbes can engage in social interactions ranging from cooperation to warfare. Biofilms are structured, cooperative microbial communities. Like all cooperative communities, they are susceptible to invasion by selfish individuals who benefit without contributing. However, biofilms are pervasive and ancient, representing the first fossilized life. One hypothesis for the stability of biofilms is spatial structure: Segregated patches of related cooperative cells are able to outcompete unrelated cells. These dynamics have been explored computationally and in bacteria; however, their relevance to eukaryotic microbes remains an open question. The complexity of eukaryotic cell signaling and communication suggests the possibility of different social dynamics. Using the tractable model yeast, Saccharomyces cerevisiae, which can form biofilms, we investigate the interactions of environmental isolates with different social phenotypes. We find that biofilm strains spatially exclude nonbiofilm strains and that biofilm spatial structure confers a consistent and robust fitness advantage in direct competition. Furthermore, biofilms may protect against killer toxin, a warfare phenotype. During biofilm formation, cells are susceptible to toxin from nearby competitors; however, increased spatial use may provide an escape from toxin producers. Our results suggest that yeast biofilms represent a competitive strategy and that principles elucidated for the evolution and stability of bacterial biofilms may apply to more complex eukaryotes.  相似文献   

6.
Bacteriocin production is a spiteful behavior of bacteria that is central to the competitive dynamics of many human pathogens. Social evolution predicts that bacteriocin production is favored when bacteriocin-producing cells are mixed at intermediate frequency with their competitors and when competitive neighborhoods are localized. Both predictions are supported by biofilm experiments. However, the means by which physical and biological processes interact to produce conditions that favor the evolution of bacteriocin production remain to be investigated. Here we fill this gap using analytical and computational approaches. We identify and collapse key parameters into a single number, the critical bacteriocin range, that measures the threshold distance from a focal bacteriocin-producing cell within which its fitness is higher than that of a sensitive cell. We develop an agent-based model to test our predictions and confirm that bacteriocin production is most favored when relatedness is intermediate and competition is local. We then use invasion analysis to determine evolutionarily stable strategies for bacteriocin production. Finally, we perform long-term evolutionary simulations to analyze how the critical bacteriocin range and genetic lineage segregation affect biodiversity in multistrain biofilms. We find that biodiversity is maintained in highly segregated biofilms for a wide array of critical bacteriocin ranges. However, under conditions of high nutrient penetration leading to well-mixed biofilms, biodiversity rapidly decreases and becomes sensitive to the critical bacteriocin range.  相似文献   

7.
Proteomes of acid mine drainage biofilms at different stages of ecological succession were examined to understand microbial responses to changing community membership. We evaluated the degree of reproducibility of the community proteomes between samples of the same growth stage and found stable and predictable protein abundance patterns across time and sampling space, allowing for a set of 50 classifier proteins to be identified for use in predicting growth stages of undefined communities. Additionally, physiological changes in the dominant species, Leptospirillum Group II, were analysed as biofilms mature. During early growth stages, this population responds to abiotic stresses related to growth on the acid mine drainage solution. Enzymes involved in protein synthesis, cell division and utilization of 1- and 2-carbon compounds were more abundant in early growth stages, suggesting rapid growth and a reorganization of metabolism during biofilm initiation. As biofilms thicken and diversify, external stresses arise from competition for dwindling resources, which may inhibit cell division of Leptospirillum Group II through the SOS response. This population also represses translation and synthesizes more complex carbohydrates and amino acids in mature biofilms. These findings provide unprecedented insight into the physiological changes that may result from competitive interactions within communities in natural environments.  相似文献   

8.
9.
AIMS: The objective of this study was to investigate the antagonistic interactions between bacteriocin-producing enteric bacteria in dual species biofilms and the interspecies interactions correlated with sensitivity to biocides. METHODS AND RESULTS: When compared with their single species counterparts, the dual species biofilms formed by bacteriocin-producing strains exhibited a decrease in biofilm size and an increase in sensitivity to the antimicrobial agents hypochlorite, triclosan and benzalkonium chloride. The five dual species biofilms studied all resulted in biofilms containing a mixture of the two strains. This was attributed to the spatial distribution of cells within the biofilm, with each strain forming its own microcolonies. The production of a bacteriocin also gave a strain a competitive advantage when interacting with a bacteriocin-sensitive strain within a biofilm, both in gaining a foothold in a new environment and in preventing the colonization of a potential competitor into a pre-established biofilm. CONCLUSIONS: It was concluded that bacteriocins might be used specifically for interacting with competing strains within a biofilm, as opposed to a planktonic, environment. SIGNIFICANCE AND IMPACT OF THE STUDY: Unlike planktonically grown bacteriocin-producing populations, where one strain will always be out-competed, bacteriocin-producing and bacteriocin-sensitive strains can coexist in biofilm communities, clearly demonstrating major differences between biofilm and planktonic competition. This paper highlights the importance of bacteriocin production in the development of biofilm communities.  相似文献   

10.
11.
12.
In the Drosophila literature, selection for faster development and selection for adapting to high density are often confounded, leading, for example, to the expectation that selection for faster development should also lead to higher competitive ability. At the same time, results from experimental studies on evolution at high density do not agree with many of the predictions from classical density-dependent selection theory. We put together a number of theoretical and empirical results from the literature, and some new experimental results on Drosophila populations successfully subjected to selection for faster development, to argue for a broader interpretation of density-dependent selection. We show that incorporating notions of alpha-selection, and the division of competitive ability into effectiveness and tolerance components, into the concept of density-dependent selection yields a formulation that allows for a better understanding of the empirical results. We also use this broader formulation to predict that selection for faster development in Drosophila should, in fact, lead to the correlated evolution of decreased competitive ability, even though it does lead to the evolution of greater efficiency and higher population growth rates at high density when in monotypic culture.  相似文献   

13.
In some Rhizobium-legume symbioses, compounds known as rhizopines are synthesized by bacteroids and subsequently catabolized by free-living cells of the producing strain. It has been suggested than rhizopines act as proprietary growth substrates and enhance the competitive ability of the producing strain in its interactions with the diverse microbial community found within the rhizosphere. Wild-type, rhizopine-producing Rhizobium meliloti L5-30 and mutant L5-30 strains deficient for either rhizopine synthesis or catabolism were inoculated onto lucerne host plants in competition experiments. These experiments demonstrated that no apparent advantage resulted from the ability to synthesize a rhizopine, whereas the ability to catabolize rhizopine provided a clear advantage when an organism was in competition with a strain without this ability. The results suggest that when an organism is in competition with a catabolism-deficient mutant, the ability to catabolize rhizopine results in enhanced rates of nodulation. The results of the experiments were not consistent with the hypothesis that the sole role of rhizopines is to act as proprietary growth substrates for the free-living population of the producing strain.  相似文献   

14.
In the ubiquitous marine bacterium Pseudoalteromonas tunicata, subpopulations of cells are killed by the production of an autocidal protein, AlpP, during biofilm development. Our data demonstrate an involvement of this process in two parameters, dispersal and phenotypic diversification, which are of importance for the ecology of this organism and for its survival within the environment. Cell death in P. tunicata wild-type biofilms led to a major reproducible dispersal event after 192 h of biofilm development. The dispersal was not observed with a DeltaAlpP mutant strain. Using flow cytometry and the fluorescent dye DiBAC4(3), we also show that P. tunicata wild-type cells that disperse from biofilms have enhanced metabolic activity compared to those cells that disperse from DeltaAlpP mutant biofilms, possibly due to nutrients released from dead cells. Furthermore, we report that there was considerable phenotypic variation among cells dispersing from wild-type biofilms but not from the DeltaAlpP mutant. Wild-type cells that dispersed from biofilms showed significantly increased variations in growth, motility, and biofilm formation, which may be important for successful colonization of new surfaces. These findings suggest for the first time that the autocidal events mediated by an antibacterial protein can confer ecological advantages to the species by generating a metabolically active and phenotypically diverse subpopulation of dispersal cells.  相似文献   

15.
The sociobiology of biofilms   总被引:1,自引:0,他引:1  
Biofilms are densely packed communities of microbial cells that grow on surfaces and surround themselves with secreted polymers. Many bacterial species form biofilms, and their study has revealed them to be complex and diverse. The structural and physiological complexity of biofilms has led to the idea that they are coordinated and cooperative groups, analogous to multicellular organisms. We evaluate this idea by addressing the findings of microbiologists from the perspective of sociobiology, including theories of collective behavior (self-organization) and social evolution. This yields two main conclusions. First, the appearance of organization in biofilms can emerge without active coordination. That is, biofilm properties such as phenotypic differentiation, species stratification and channel formation do not necessarily require that cells communicate with one another using specialized signaling molecules. Second, while local cooperation among bacteria may often occur, the evolution of cooperation among all cells is unlikely for most biofilms. Strong conflict can arise among multiple species and strains in a biofilm, and spontaneous mutation can generate conflict even within biofilms initiated by genetically identical cells. Biofilms will typically result from a balance between competition and cooperation, and we argue that understanding this balance is central to building a complete and predictive model of biofilm formation.  相似文献   

16.
Saccharomyces cerevisiae was grown in a rich medium under the conditions of "quasi-continuous" cultivation and, after 200-300 generations, its diploid cells almost completely displaced haploid cells from the original mixed "haploid-diploid" population where the ratio between diploid and haploid strains was either 1:1 or 1:100. The cultivation at 40 degrees C did not change the relative competitive ability of haploids and diploids. When cells were cultivated in a rich medium at 6 degrees C or in a minimal medium at 30 degrees C, none of the strains showed an advantage over others for about 200 generations. Haploid cells had an advantage over diploid cells during "quasi-continuous" growth in the minimal medium at 30 degrees C. When the temperature was elevated to 40 degrees C, diploid cells displaced haploid cells from the mixed population. No advantage was found for diploid or haploid cells grown in a medium with an elevated KCl content (1.5 M). Haploid cells had an advantage over diploid cells when Pichia pinus was cultivated in a minimal medium. The results are discussed using the hypothesis about the diploid phase being fixed in the course of biological evolution.  相似文献   

17.
Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF) patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.  相似文献   

18.
The green microalga Apatococcus lobatus is widely distributed in terrestrial habitats throughout many climatic zones. It dominates green biofilms on natural and artificial substrata in temperate latitudes and is regarded as a key genus of obligate terrestrial consortia. Until now, its isolation, cultivation and application as a terrestrial model organism has been hampered by slow growth rates and low growth capacities. A mixotrophic culturing approach clearly enhanced the accumulation of biomass, thereby permitting the future application of A. lobatus in different types of bio‐assays necessary for material and biofilm research. The ability of A. lobatus to grow mixotrophically is assumed as a competitive advantage in terrestrial habitats.  相似文献   

19.
Clonally derived bacterial populations exhibit significant genotypic and phenotypic diversity that contribute to fitness in rapidly changing environments. Here, we show that serial passage of Salmonella enterica serovar Typhimurium LT2 (StLT2) in broth, or within a mouse host, results in selection of an evolved population that inhibits the growth of ancestral cells by direct contact. Cells within each evolved population gain the ability to express and deploy a cryptic “orphan” toxin encoded within the rearrangement hotspot (rhs) locus. The Rhs orphan toxin is encoded by a gene fragment located downstream of the “main” rhs gene in the ancestral strain StLT2. The Rhs orphan coding sequence is linked to an immunity gene, which encodes an immunity protein that specifically blocks Rhs orphan toxin activity. Expression of the Rhs orphan immunity protein protects ancestral cells from the evolved lineages, indicating that orphan toxin activity is responsible for the observed growth inhibition. Because the Rhs orphan toxin is encoded by a fragmented reading frame, it lacks translation initiation and protein export signals. We provide evidence that evolved cells undergo recombination between the main rhs gene and the rhs orphan toxin gene fragment, yielding a fusion that enables expression and delivery of the orphan toxin. In this manner, rhs locus rearrangement provides a selective advantage to a subpopulation of cells. These observations suggest that rhs genes play important roles in intra-species competition and bacterial evolution.  相似文献   

20.
In the ubiquitous marine bacterium Pseudoalteromonas tunicata, subpopulations of cells are killed by the production of an autocidal protein, AlpP, during biofilm development. Our data demonstrate an involvement of this process in two parameters, dispersal and phenotypic diversification, which are of importance for the ecology of this organism and for its survival within the environment. Cell death in P. tunicata wild-type biofilms led to a major reproducible dispersal event after 192 h of biofilm development. The dispersal was not observed with a ΔAlpP mutant strain. Using flow cytometry and the fluorescent dye DiBAC4(3), we also show that P. tunicata wild-type cells that disperse from biofilms have enhanced metabolic activity compared to those cells that disperse from ΔAlpP mutant biofilms, possibly due to nutrients released from dead cells. Furthermore, we report that there was considerable phenotypic variation among cells dispersing from wild-type biofilms but not from the ΔAlpP mutant. Wild-type cells that dispersed from biofilms showed significantly increased variations in growth, motility, and biofilm formation, which may be important for successful colonization of new surfaces. These findings suggest for the first time that the autocidal events mediated by an antibacterial protein can confer ecological advantages to the species by generating a metabolically active and phenotypically diverse subpopulation of dispersal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号