首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Abstract: β-Amyloid peptide (Aβ) is the main constituent in both senile plaques and diffuse deposits in Alzheimer's diseased brains. It was previously shown that synthetic Aβs were able to form free radical species in aqueous solution and cause both oxidative damage to cell proteins and inactivation of key metabolic enzymes. We also previously demonstrated that an interaction of Aβ(1–40) with the oxidatively sensitive enzyme glutamine synthetase (GS) resulted in both inactivation of GS and an increase of Aβ toxicity to hippocampal cell cultures. In the present study the enhancement of Aβ toxicity during interaction with GS was found to be accompanied by abrogation of fibril formation and partial fragmentation of Aβ(1–40). HPLC elution profiles demonstrated the production of several peptide fragments. Analysis of the amino acid sequence of the major fragments identified them as the first 15 and the last six amino acids of Aβ(1–40). The fragmentation of Aβ was inhibited by immunoprecipitation of GS.  相似文献   

2.
Amyloid β protein (Aβ) has been associated with Alzheimer's disease (AD) because it is a major component of the extracellular plaque found in AD brains. Increased Aβ levels correlate with the cognitive decline observed in AD. Sporadic AD cases are thought to be chiefly associated with lack of Aβ clearance from the brain, unlike familial AD which shows increased Aβ production. Aβ aggregation leading to deposition is an essential event in AD. However, the factors involved in Aβ aggregation and accumulation in sporadic AD have not been completely characterized. This review summarizes studies that have examined the factors that affect Aβ aggregation and toxicity. By necessity these are studies that are performed with recombinant-derived or chemically synthesized Aβ. The studies therefore are not done in animals but in cell culture, which includes neuronal cells, other mammalian cells and, in some cases, non-mammalian cells that also appear susceptible to Aβ toxicity. An understanding of Aβ oligomerization may lead to better strategies to prevent AD.  相似文献   

3.
Abstract: Alzheimer's disease (AD) is identified by the accumulation of amyloid plaques, neurofibrillary degeneration, and the accompanying neuronal loss. AD amyloid assembles into compact fibrous deposits from the amyloid β(Aβ) protein, which is a proteo-lytic fragment of the membrane-associated amyloid precursor protein. To examine the effects of amyloid on neuron growth, a hybrid mouse motoneuron cell line (NSC34) exhibiting spontaneous process formation was exposed to artificial "plaques" created from aggregated synthetic Aβ peptides. These correspond to full-length Aβ residues 1–40 (Aβ1–40), an internal β-sheet region comprising residues 11–28 (Aβ11–28), and a proposed toxic fragment comprising residues 25–35 (Aβ25–35). Fibers were immobilized onto culture dishes, and addition of cells to these in vitro plaques revealed that Aβ was not a permissive substrate for cell adhesion. Neurites in close contact with these deposits displayed abnormal swelling and a tendency to avoid contact with the Aβ fibers. In contrast, Aβ did not affect the adhesion or growth of rat astrocytes, implicating a specific Aβ-neuron relationship. The inhibitory effects were also unique to Aβ as no response was observed to deposits of pancreatic islet amyloid poly-peptide fibers. Considering the importance of cell adhesion in neurite elongation and axonal guidance, the antiadhesive properties of Aβ amyloid plaques found in vivo may contribute to the neuronal loss responsible for the clinical manifestations of AD.  相似文献   

4.
Abstract: The β-amyloid peptide (Aβ), a main constituent in both senile and diffuse plaques in Alzheimer's disease brains, was previously shown to be neurotoxic and to be able to interact with several macromolecular components of brain tissue. Previous investigations carried out in our laboratory demonstrated free radical species formation in aqueous solutions of Aβ(1–40) and its C-end fragment, Aβ(25–35). Toxic forms of Aβ rapidly inactivate the oxidation-sensitive cytosolic enzyme glutamine synthetase (GS). In this regard, we suggested and subsequently demonstrated that Aβ radicals can cause an oxidative damage of cell proteins and lipids resulting in disruption of membrane functions, enzyme inactivation, and cell death. Because GS can be a substrate for Aβ-derived oxidizing species, the present study was conducted to determine if GS could protect against Aβ neurotoxicity. In contrast to this initial hypothesis, we here report that GS significantly enhances the neurotoxic effects of Aβ(1–40). The Aβ-mediated inactivation of GS was found to be accompanied by the loss of immunoreactive GS and the significant increase of Aβ(1–40) neurotoxicity.  相似文献   

5.
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by numerous pathological features including the accumulation of neurotoxic amyloid-β (Aβ) peptide. There is currently no effective therapy for AD, but the development of therapeutic strategies that target the cell membrane is gaining increased interest. The amyloid precursor protein (APP) from which Aβ is formed is a membrane-bound protein, and Aβ production and toxicity are both membrane mediated events. This review describes the critical role of cell membranes in AD with particular emphasis on how the composition and structure of the membrane and its specialized regions may influence toxic or benign Aβ/APP pathways in AD. The putative role of copper (Cu) in AD is also discussed, and we highlight how targeting the cell membrane with Cu complexes has therapeutic potential in AD.  相似文献   

6.
In neurons, Presenilin 1(PS1)/γ-secretase is located at the synapses, bound to N-cadherin. We have previously reported that N-cadherin-mediated cell–cell contact promotes cell-surface expression of PS1/γ-secretase. We postulated that N-cadherin-mediated trafficking of PS1 might impact synaptic PS1-amyloid precursor protein interactions and Aβ generation. In the present report, we evaluate the effect of N-cadherin-based contacts on Aβ production. We demonstrate that stable expression of N-cadherin in Chinese hamster ovary cells, expressing the Swedish mutant of human amyloid precursor protein leads to enhanced secretion of Aβ in the medium. Moreover, N-cadherin expression decreased Aβ42/40 ratio. The effect of N-cadherin expression on Aβ production was accompanied by the enhanced accessibility of PS1/γ-secretase to amyloid precursor protein as well as a conformational change of PS1, as demonstrated by the fluorescence lifetime imaging technique. These results indicate that N-cadherin-mediated synaptic adhesion may modulate Aβ secretion as well as the Aβ42/40 ratio via PS1/N-cadherin interactions.  相似文献   

7.
8.
Cdk5 dysregulation is a major event in the neurodegenerative process of Alzheimer's disease (AD). In vitro studies using differentiated neurons exposed to Aβ exhibit Cdk5-mediated tau hyperphosphorylation, cell cycle re-entry and neuronal loss. In this study we aimed to determine the role of Cdk5 in neuronal injury occurring in an AD mouse model obtained through the intracerebroventricular (icv) injection of the Aβ1–40 synthetic peptide. In mice icv-injected with Aβ, Cdk5 activator p35 is cleaved by calpains, leading to p25 formation and Cdk5 overactivation. Subsequently, there was an increase in tau hyperphosphorylation, as well as decreased levels of synaptic markers. Cell cycle reactivation and a significant neuronal loss were also observed. These neurotoxic events in Aβ-injected mice were prevented by blocking calpain activation with MDL28170 , which was administered intraperitoneally (ip). As MDL prevents p35 cleavage and subsequent Cdk5 overactivation, it is likely that this kinase is involved in tau hyperphosphorylation, cell cycle re-entry, synaptic loss and neuronal death triggered by Aβ. Altogether, these data demonstrate that Cdk5 plays a pivotal role in tau phosphorylation, cell cycle induction, synaptotoxicity, and apoptotic death in postmitotic neurons exposed to Aβ peptides in vivo , acting as a link between diverse neurotoxic pathways of AD.  相似文献   

9.
Alzheimer's disease (AD) is hypothesized to result from elevated brain levels of β-amyloid peptide (Aβ) which is the main component of plaques found in AD brains and which cause memory impairment in mice. Therefore, there has been a major focus on the development of inhibitors of the Aβ producing enzymes γ-secretase and β-site amyloid precursor protein-cleaving enzyme 1 (BACE1). In this study, we investigated the Aβ-lowering effects of the BACE1 inhibitor LY2434074 in vitro and in vivo , comparing it to the well characterized γ-secretase inhibitor LY450139. We sampled interstitial fluid Aβ from awake APPswe/PS1dE9 AD mice by in vivo Aβ microdialysis. In addition, we measured levels of endogenous brain Aβ extracted from wildtype C57BL/6 mice. In our in vitro assays both compounds showed similar Aβ-lowering effects. However, while systemic administration of LY450139 resulted in transient reduction of Aβ in both in vivo models, we were unable to show any Aβ-lowering effect by systemic administration of the BACE1 inhibitor LY2434074 despite brain exposure exceeding the in vitro IC50 value several fold. In contrast, significant reduction of 40–50% of interstitial fluid Aβ and wildtype cortical Aβ was observed when infusing LY2434074 directly into the brain by means of reverse microdialysis or by dosing the BACE1 inhibitor to p-glycoprotein (p-gp) mutant mice. The effects seen in p-gp mutant mice and subsequent data from our cell-based p-gp transport assay suggested that LY2434074 is a p-gp substrate. This may partly explain why BACE1 inhibition by LY2434074 has lower in vivo efficacy, with respect to decreased Aβ40 levels, compared with γ-secretase inhibition by LY450139.  相似文献   

10.
Abstract: The frequency of the ε4 allele of apolipoprotein E(apoE) is increased in late-onset and sporadic forms of Alzheimer's disease (AD). ApoE also binds to β-amyloid (Aβ) and both proteins are found in AD plaques. To further investigate the potential interaction of apoE and Aβ in the pathogenesis of AD, we have determined the binding, internalization, and degradation of human apoE isoforms in the presence and absence of Aβ peptides to rat primary hippocampal neurons. We demonstrate that the lipophilic Aβ peptides, in particular Aβ1–42, Aβ1–40, and Aβ25–35, increase significantly apoE-liposome binding to hippocampal neurons. For each Aβ peptide, the increase was significantly greater for the apoE4 isoform than for the apoE3 isoform. The most effective of the Aβ peptides to increase apoE binding, Aβ25–35, was further shown to increase significantly the internalization of both apoE3- and apoE4-liposomes, without affecting apoE degradation. Conversely, Aβ1–40 uptake by hippocampal neurons was shown to be increased in the presence of apoE-liposomes, more so in the presence of the apoE4 than the apoE3 isoform. These results provide evidence that Aβ peptides interact directly with apoE lipoproteins, which may then be transported together into neuronal cells through apoE receptors.  相似文献   

11.
Alzheimer's disease (AD) is characterized by the formation of extracellular senile plaques in the brain, whose major component is a small peptide called β-amyloid (Aβ). Long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) has been found beneficial for AD and several reports suggest that NSAIDs reduce the generation of Aβ, especially the more amyloidogenic form Aβ42. However, the exact mechanism underlying NSAIDs' effect on AD risk remains largely inconclusive and all clinical trials using NSAIDs for AD treatment show negative results so far. Recent studies have shown that some NSAIDs can bind to certain nuclear receptors, suggesting that nuclear receptors may be involved in NSAID's effect on AD risk. Here we find that ( R )-flurbiprofen, the R -enantiomer of the racemate NSAID flurbiprofen, can significantly reduce Aβ secretion, but at the same time, increases the level of intracellular Aβ. In addition, we find that a nuclear receptor, retinoid X receptor α (RXRα), can regulate Aβ generation and that down-regulation of RXRα significantly increases Aβ secretion. We also show that ( R )-flurbiprofen can interfere with the interaction between RXRα and 9- cis -retinoid acid, and that 9- cis -retinoid acid decreases ( R )-flurbiprofen's reduction of Aβ secretion. Moreover, the modulation effect of ( R )-flurbiprofen on Aβ is abolished upon RXRα down-regulation. Together, these results suggest that RXRα can regulate Aβ generation and is also required for ( R )-flurbiprofen-mediated Aβ generation.  相似文献   

12.
Abstract: Studies of processing of the Alzheimer β-amyloid precursor protein (βAPP) have been performed to date mostly in continuous cell lines and indicate the existence of two principal metabolic pathways: the "β-secretase" pathway, which generates β-amyloid (Aβ1–40/42; ∼4 kDa), and the "α-secretase" pathway, which generates a smaller fragment, the "p3" peptide (Aβ17–40/42; ∼3 kDa). To determine whether similar processing events underlie βAPP metabolism in neurons, media were examined following conditioning by primary neuronal cultures derived from embryonic day 17 rats. Immunoprecipitates of conditioned media derived from [35S]methionine pulse-labeled primary neuronal cultures contained 4- and 3-kDa Aβ-related species. Radiosequencing analysis revealed that the 4-kDa band corresponded to conventional Aβ beginning at position Aβ(Asp1), whereas both radio-sequencing and immunoprecipitation-mass spectrometry analyses indicated that the 3-kDa species in these conditioned media began with Aβ(Glu11) at the N terminus, rather than Aβ(Leu17) as does the conventional p3 peptide. Either activation of protein kinase C or inhibition of protein phosphatase 1/2A increased soluble βAPPα release and decreased generation of both the 4-kDa Aβ and the 3-kDa N-truncated Aβ. Unlike results obtained with continuously cultured cells, protein phosphatase 1/2A inhibitors were more potent at reducing Aβ secretion by neurons than were protein kinase C activators. These data indicate that rodent neurons generate abundant Aβ variant peptides and emphasize the role of protein phosphatases in modulating neuronal Aβ generation.  相似文献   

13.
Small β-amyloid (Aβ) 1–42 aggregates are toxic to neurons and may be the primary toxic species in Alzheimer's disease (AD). Methods to reduce the level of Aβ, prevent Aβ aggregation, and eliminate existing Aβ aggregates have been proposed for treatment of AD. A tricyclic pyrone named CP2 is found to prevent cell death associated with Aβ oligomers. We studied the possible mechanisms of neuroprotection by CP2. Surface plasmon resonance spectroscopy shows a direct binding of CP2 with Aβ42 oligomer. Circular dichroism spectroscopy reveals monomeric Aβ42 peptide remains as a random coil/α-helix structure in the presence of CP2 over 48 h. Atomic force microscopy studies show CP2 exhibits similar ability to inhibit Aβ42 aggregation as that of Congo red and curcumin. Atomic force microscopy closed-fluid cell study demonstrates that CP2 disaggregates Aβ42 oligomers and protofibrils. CP2 also blocks Aβ fibrillations using a protein quantification method. Treatment of 5× familial Alzheimer's disease mice, a robust Aβ42-producing animal model of AD, with a 2-week course of CP2 resulted in 40% and 50% decreases in non-fibrillar and fibrillar Aβ species, respectively. Our results suggest that CP2 might be beneficial to AD patients by preventing Aβ aggregation and disaggregating existing Aβ oligomers and protofibrils.  相似文献   

14.
The mechanism of the effect of docosahexaenoic acid (DHA; C22:6, n -3), one of the essential brain nutrients, on in vitro fibrillation of amyloid β (Aβ1–42), Aβ1–42-oligomers and its toxicity imparted to SH-S5Y5 cells was studied with the use of thioflavin T fluorospectroscopy, laser confocal microfluorescence, and transmission electron microscopy. The results clearly indicated that DHA inhibited Aβ1–42-fibrill formation with a concomitant reduction in the levels of soluble Aβ1–42 oligomers. The polymerization (into fibrils) of preformed oligomers treated with DHA was inhibited, indicating that DHA not only obstructs their formation but also inhibits their transformation into fibrils. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (12.5%), Tris–Tricine gradient(4–20%) gel electrophoresis and western blot analyses revealed that DHA inhibited at least 2 species of Aβ1–42 oligomers of 15–20 kDa, indicating that it hinders these on-pathway tri/tetrameric intermediates during fibrillation. DHA also reduced the levels of dityrosine and tyrosine intrinsic fluorescence intensity, indicating DHA interrupts the microenvironment of tyrosine in the Aβ1–42 backbone. Furthermore, DHA protected the tyrosine from acrylamide collisional quenching, as indicated by decreases in Stern–Volmer constants. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide-reduction efficiency and immunohistochemical examination suggested that DHA inhibits Aβ1–42-induced toxicity in SH-S5Y5 cells. Taken together, these data suggest that by restraining Aβ1–42 toxic tri/tetrameric oligomers, DHA may limit amyloidogenic neurodegenerative diseases, Alzheimer's disease.  相似文献   

15.
The cerebral accumulation of β-amyloid (Aβ) is a consistent feature of and likely contributor to the development of Alzheimer's disease. In addition to dysregulated production, increasing experimental evidence suggests reduced catabolism also plays an important role in Aβ accumulation. We have previously shown that neprilysin (NEP), the major protease which cleaves Aβ in vivo , is modified by 4-hydroxy-nonenal (HNE) adducts in the brain of Alzheimer's disease patients. To determine if these changes affected Aβ, SH-SY5Y cells were treated with HNE or Aβ, and then NEP mRNA, protein levels, HNE adducted NEP, NEP activity and secreted Aβ levels were determined. Intracellular NEP developed HNE adducts after 24 h of HNE treatment as determined by immunoprecipitation, immunoblotting, and double immunofluorescence staining. HNE-modified NEP showed decreased catalytic activity, which was associated with elevations in Aβ1–40 in SH-SY5Y and H4 APP695wt cells. Incubation of cells with Aβ1–42 also induced HNE adduction of NEP. In an apparent compensatory response, Aβ-treated cells showed increased NEP mRNA and protein expression. Despite elevations in NEP protein, the activity was significantly lower compared with the NEP protein level. This study demonstrates that NEP can be inactivated by HNE-adduction, which is associated with, at least partly, reduced Aβ cleavage and enhanced Aβ accumulation.  相似文献   

16.
Abstract: In Alzheimer's disease (AD), one of the cardinal neuropathological signs is deposition of amyloid, primarily consisting of the amyloid β-peptide (Aβ). Structural variants of AD-associated Aβ peptides have been difficult to purify by high-resolution chromatographic techniques. We therefore developed a novel chromatographic protocol, enabling high-resolution reverse-phase liquid chromatography (RPLC) purification of Aβ variants displaying very small structural differences. By using a combination of size-exclusion chromatography and the novel RPLC protocol, Aβ peptides extracted from AD amyloid were purified and subsequently characterized. Structural analysis by microsequencing and electrospray-ionization mass spectrometry revealed that the RPLC system resolved a complex mixture of Aβ variants terminating at either residue 40 or 42. Aβ variants differing by as little as one amino acid residue could be purified rapidly to apparent homogeneity. The resolution of the system was further illustrated by its ability to separate structural isomers of Aβ1–40. The present chromatography system might provide further insight into the role of N-terminally and posttranslationally modified Aβ variants, because each variant can now be studied individually.  相似文献   

17.
Abstract: Recent reports indicate that missense mutations on presenilin (PS) 1 are likely responsible for the main early-onset familial forms of Alzheimer's disease (FAD). Consensual data obtained through distinct histopathological, cell biology, and molecular biology approaches have led to the conclusion that these PS1 mutations clearly trigger an increased production of the 42-amino-acid-long species of β-amyloid peptide (Aβ). Here we show that overexpression of wild-type PS1 in HK293 cells increases Aβ40 secretion. By contrast, FAD-linked mutants of PS1 trigger increased secretion of both Aβ40 and Aβ42 but clearly favor the production of the latter species. We also demonstrate that overexpression of the wild-type PS1 augments the α-secretase-derived C-terminally truncated fragment of β-amyloid precursor protein (APPα) recovery, whereas transfectants expressing mutated PS1 secrete drastically lower amounts of APPα when compared with cells expressing wild-type PS1. This decrease was also observed when comparing double transfectants overexpressing wild-type β-amyloid precursor protein and either PS1 or its mutated congener M146V-PS1. Altogether, our data indicate that PS mutations linked to FAD not only trigger an increased ratio of Aβ42 over total Aβ secretion but concomitantly down-regulate the production of APPα.  相似文献   

18.
The deposition of amyloid β (Aβ) protein is a consistent pathological hallmark of Alzheimer's disease (AD) brains; therefore, inhibition of Aβ fibril formation and destabilization of pre-formed Aβ fibrils is an attractive therapeutic and preventive strategy in the development of disease-modifying drugs for AD. This study demonstrated that Paeonia suffruticosa , a traditional medicinal herb, not only inhibited fibril formation of both Aβ1–40 and Aβ1–42 but it also destabilized pre-formed Aβ fibrils in a concentration-dependent manner. Memory function was examined using the passive-avoidance task followed by measurement of Aβ burden in the brains of Tg2576 transgenic mice. The herb improved long-term memory impairment in the transgenic mice and inhibited the accumulation of Aβ in the brain. Three-dimensional HPLC analysis revealed that a water extract of the herb contained several different chemical compounds including 1,2,3,4,6-penta- O -galloyl-β- d -glucopyranose (PGG). No obvious adverse/toxic were found following treatment with PGG. As was observed with Paeonia suffruticosa , PGG alone inhibited Aβ fibril formation and destabilized pre-formed Aβ fibrils in vitro and in vivo . Our results suggest that both Paeonia suffruticosa and its active constituent PGG have strong inhibitory effects on formation of Aβ fibrils in vitro and in vivo . PGG is likely to be a safe and promising lead compound in the development of disease-modifying drugs to prevent and/or cure AD.  相似文献   

19.
Accumulating evidence points to an important role of intraneuronal Aβ as a trigger of the pathological cascade of events leading to neurodegeneration and eventually to Alzheimer's disease (AD) with its typical clinical symptoms, like memory impairment and change in personality. As a new concept, intraneuronal accumulation of Aβ instead of extracellular Aβ deposition has been introduced to be the disease-triggering event in AD. The present review compiles current knowledge on the amyloid precursor protein (APP)/PS1KI mouse model with early and massive intraneuronal Aβ42 accumulation: (1) The APP/PS1KI mouse model exhibits early robust brain and spinal cord axonal degeneration and hippocampal CA1 neuron loss. (2) At the same time-point, a dramatic, age-dependent reduced ability to perform working memory and motor tasks is observed. (3) The APP/PS1KI mice are smaller and show development of a thoracolumbar kyphosis, together with an incremental loss of body weight. (4) Onset of the observed behavioral alterations correlates well with robust axonal degeneration in brain and spinal cord and with abundant hippocampal CA1 neuron loss.  相似文献   

20.
Abstract: Clusterin is a secreted glycoprotein that is markedly induced in many disease states and after tissue injury. In the CNS, clusterin expression is elevated in neuropathological conditions such as Alzheimer's disease (AD), where it is found associated with amyloid-β (Aβ) plaques. Clusterin also coprecipitates with Aβ from CSF, suggesting a physiological interaction with Aβ. Given this interaction with Aβ, the goal of this study was to determine whether clusterin could modulate Aβ neurotoxicity. A mammalian recombinant source of human clusterin was obtained by stable transfection of hamster kidney fibroblasts with pADHC-9, a full-length human cDNA clone for clusterin. Recombinant clusterin obtained from this cell line, as well as a commercial source of native clusterin purified from serum, afforded dose-dependent neuroprotection against Aβ(1–40) when tested in primary rat mixed hippocampal cultures. Clusterin afforded substoichiometric neuroprotection against several lots of Aβ(1–40) but not against H2O2 or kainic acid excitotoxicity. These results suggest that the elevated expression of clusterin found in AD brain may have effects on subsequent amyloid-β plaque pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号