首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Summary Visual census was used to sample young of the year of fish species recruited to each of two habitats on seven lagoonal platform reefs of the Capricorn-Bunker Group, Great Barrier Reef. The reefs sampled span an area 70 km in extent. In 1983, 62 species from 13 families were detected as recruits on reef slope sites. The total number of cruits, and the number of each of 6 of 16 species tested, differed significantly among reefs, despite the fact that differences among sites within reefs did not exist, and that sampled slopes were chosen to be hydrographically, and physiographically as similar as possible. Lagoonal patch reefs were sampled in two years. In 1982, 76 species of 11 families occurred as recruits. In 1983, 86 species of 12 families were recorded. All of 22 species common enough to test showed some significant variation in abundance among reefs, years, or both. For 9 species, significant year x reef interactions occurred, demonstrating that relative recruitment success among reefs varied between years. Reasons for the substantial levels of variability are discussed, and implications for the organisation of reef fish communities are considered.  相似文献   

2.
Coral communities of Biscayne National Park (BNP) on offshore linear bank-barrier reefs are depauperate of reef corals and have little topographic relief, while those on lagoonal patch reefs have greater coral cover and species richness despite presumably more stressful environmental regimes closer to shore. We hypothesized that differences in rates of coral recruitment and/or of coral survivorship were responsible for these differences in community structure. These processes were investigated by measuring: (1) juvenile and adult coral densities, and (2) size-frequency distributions of smaller coral size classes, at three pairs of bank- and patch-reefs distributed along the north-south range of coral reefs within the Park. In addition, small quadrats (0.25 m2) were censused for colonies <2 cm in size on three reefs (one offshore and one patch reef in the central park, and one intermediate reef at the southern end), and re-surveyed after 1 year. Density and size frequency data confirmed that large coral colonies were virtually absent from the offshore reefs, but showed that juvenile corals were common and had similar densities to those of adjacent bank and patch reefs. Large coral colonies were more common on inshore patch reefs, suggesting lower survivorship (higher mortality) of small and intermediate sized colonies on the offshore reefs. The more limited small-quadrat data showed similar survivorship rates and initial and final juvenile densities at all three sites, but a higher influx of new recruits to the patch reef site during the single annual study period. We consider the size-frequency data to be a better indicator of juvenile coral dynamics, since it is a more time-integrated measurement and was replicated at more sites. We conclude that lack of recruitment does not appear to explain the impoverished coral communities on offshore bank reefs in BNP. Instead, higher juvenile coral mortality appears to be a dominant factor structuring these communities. Accepted: 9 September 1999  相似文献   

3.
A 9-year study of the structure of assemblages of fish on 20 coral patch reefs, based on 20 non-manipulative censuses, revealed a total of 141 species from 34 families, although 40 species accounted for over 95% of sightings of fish. The average patch reef was 8.5 m2 in surface area, and supported 125 fish of 20 species at a census. All reefs showed at least a two-fold variation among censuses in total numbers of fish present, and 12 showed ten-fold variations. There was also substantial variation in the composition and relative abundances of species present on each patch reef, such that censuses of a single patch reef were on average about 50% different from each other in percent similarity of species composition (Czekanowski's index). Species differed substantially in the degree to which their numbers varied from census to census, and in the degree to which their dispersion among patch reefs was modified from census to census. We characterize the 40 most common species with respect to these attributes. The variations in assemblage structure cannot be attributed to responses of fish to a changing physical structure of patch reefs, nor to the comings and goings of numerous rare species. Our results support and extend earlier reports on this study, which have stressed the lack of persistant structure for assemblages on these patch reefs. While reef fishes clearly have microhabitat preferences which are expressed at settlement, the variations in microhabitat offered by the patch reefs are insufficient to segregate many species of fish by patch reef. Instead, at the scale of single patch reefs, and, to a degree, at the larger scale of the 20 patch reefs, most of the 141 species of fish are distributed without regard to differences in habitat structure among reefs, and patterns of distribution change over time. Implications for general understanding of assemblage dynamics for fish over more extensive patches of reef habitat are considered.  相似文献   

4.
There is limited knowledge of the orientation cues used by reef fish in their movement among different habitats, especially those cues used during darkness. Although acoustic cues have been found to be important for settlement-stage fish as they seek settlement habitats, only a small number of studies support the possible role of acoustic cues in the orientation of post-settled and adult reef fish. Therefore, the aim of this study was to determine whether habitat-specific acoustic cues were involved in the nocturnal movements of juvenile reef fish to small experimental patch reefs that were broadcasting sound previously recorded from different habitats (Fringing Reef, Lagoon, Silent). Juvenile fish arriving at each patch reef were caught the next morning by divers and were identified. There were a greater number of occasions when juvenile fish (from all species together) moved onto the patch reefs broadcasting Fringing Reef and Lagoon sound (43 and 38%, respectively) compared to Silent reefs (19%) (χ2 = 33.5; P < 0.05). There were significantly more occasions when juvenile fish from the family Nemipteridae were attracted to the patch reefs broadcasting Lagoon sound (63%) versus those reefs broadcasting either Fringing Reef sound (31%) or Silent (6%). In contrast, there were more occasions when juveniles from the family Pomacentridae were attracted to the patch reefs broadcasting Fringing Reef sound (56%) than either Lagoon (24%) or Silent patch reefs (20%) (χ2 = 19.5; P < 0.05). These results indicate that some juvenile fish use specific habitat sounds to guide their nocturnal movements. Therefore, the fish are able to not only use the directional information contained in acoustic cues, but can also interpret the content of the acoustic signals for relevant habitat information which is then used in their decision-making for orientation.  相似文献   

5.
Data on early survivorship of newly settled reef fish were collected by monitoring individuals which recruited to 30 small lagoonal patch reefs over three summers. Preliminary survivorship curves spanning the first 45 days after settlement were derived for 17 species. Most species showed greatest rates of mortality in the first 1–2 weeks in the reef environment however there were substantial differences among species in the extent and the temporal pattern of this. In six species, 75% of individuals survived the 45 days, while in 5 others, 20% or fewer survived that long. In eight species, mortality was negligible after the first 14 days. In the other 9, significant mortality occurred in subsequent weeks. Patterns of survivorship did not appear to differ substantially among years in five of the six species for which data were adequate. In particular, survivorship did not appear to be different among years even when levels of recruitment varied greatly.  相似文献   

6.
A number of tropical coral reef fish hold station and display restricted home ranges. If artificially displaced, they will return to their home site. We questioned if marine fish are using the same mechanisms for home site detection as many freshwater fish, that is, by olfactory sensing of chemical signals deposited on the substrate by conspecific fish. Behavioral experiments were conducted on Lizard Island Research Station, Queensland, Australia, in 2001 and 2002. Five-lined cardinalfish (Cheilodipterus quinquelineatus) were tested in groups with split-branded cardinalfish (Apogon compressus) as a reference species and individually against Apogon leptacanthus as well as conspecifics of another reef site. The group tests showed that both species preferred artificial reef sites that had previously been occupied by conspecifics. Individual C. quinquelineatus preferred scent of conspecifics from their own reef site to that from another site. They also preferred the scent released by artificial reefs previously occupied by conspecifics of their reef site to that of similar reefs previously occupied by conspecifics of another reef site. No discrimination between species from the same reef site was obtained in experiments with individual fish. Our data suggest that cardinalfish are keeping station and are homing by use of conspecific olfactory signals.  相似文献   

7.
Habitat use by the resident coral reef anemonefish, Amphiprion frenatus, was examined in the complex coral reef landscape of Shiraho Reef, Ishigaki Island, Okinawa, Japan, using an enlarged color aerial photograph processed using image analysis software as an accurate field map. The anemonefish inhabit assemblages of the host sea anemone, Entacmaea quadricolor (clonal type), which inhabit various patch reefs in the back reef moat. We located all patch reefs inhabited by the host in the map based on snorkel observations: 297 anemonefish were found in 93 host assemblages in the study site of 2.9 ha. These patch reefs could be recognized by the reef colors, including the shadows (blackish color) in the photograph. Using image analysis software, the colors of the patch reefs were chosen and pixels with the same color values were regarded as potential habitat patches for the fish (PHPs). PHPs were 3D patch reefs (>0.5 m in height). Total areas (TA) and total perimeters (TP) of PHPs were measured in nine quadrats in the digitized aerial photograph. Host abundance and anemonefish abundance in a quadrat showed stronger correlations with the product of TA and TP of PHPs than TA alone. A site with numerous large 3D patch reefs (≥0.75 m2 in situ) can be a better habitat for the fish than other sites consisting of several huge 3D patch reefs of the same total area. The methodology applied here may be useful for assessing the quality of habitats for small resident animals in shallow subtidal reefs.  相似文献   

8.
Using French Grunts (Haemulon flavolineatum) held captive within mangrove and reef sites, we determined (a) whether otolith microchemical differences existed between mangroves and reefs separated at a biologically relevant spatial scale (0.25-7.1 km), (b) whether patterns in elemental concentrations were consistent across years, and (c) whether it was possible to identify whether a given fish occupied a mangrove as a juvenile.Three sites were established at Great Exuma, Bahamas (two reefs and one mangrove, May 2001) and at Turneffe Atoll, Belize (one reef and two mangroves, August 2001 and 2002). Using concentrations of Sr and Ba, discriminant function analysis (DFA) indicated unique spatial microchemical signatures of fish from each of the three Bahamas sites allowing an average correct classification of 77%. Using concentrations of Sr, Ba, Sn and Pb (2001), and in addition Li, Mg, Cu and Rb (2002), DFA of the three Belize sites indicated an average correct classification of 68% and 85% in 2001 and 2002, respectively. To assess temporal variability in otolith microchemistry, we compared microchemical signatures of Belize fish from 2001 to those from 2002. On average, 42% of fish from 2002 were correctly classified to their captive sites using chemical information from 2001, thus suggesting considerable temporal variability in otolith microchemistry. Finally, to identify whether a given fish occupied a mangrove during its juvenile stage, we ablated the juvenile portion of the otolith taken from reefs in Belize 2002. Results of this analysis indicated that 36% of 39 individuals taken from the reef had a signature more representative of one of the mangrove sites. Although otolith microchemistry varied temporally and our analysis was restricted to the grouping of individuals to only one of three sites, mangroves appeared to contribute to reef populations.  相似文献   

9.
Two widely‐recognized hypotheses propose that increases in fish abundance at artificial reefs are caused by (a) the attraction and redistribution of existing individuals, with no net increase in overall abundance and (b) the addition of new individuals by production, leading to a net increase in overall abundance. Inappropriate experimental designs have prevented many studies from discriminating between the two processes. Eight of 11 experiments comparing fish abundances on artificial reefs with those on adjacent soft bottom habitats were compromised by a lack of replication or spatial interspersion in the design itself. Only three studies featured proper controls and replicated designs with the interspersion of reef and control sites. Goodness of fit tests of abundance data for 67 species from these studies indicated that more fishes occur on reefs than on controls, particularly for species that typically occur over hard substrata. Conversely, seagrass specialists favour controls over reefs. Changes in the appearance of fish abundance trajectories driven by manipulation of sampling intervals highlight the need for adequate temporal sampling to encompass key life history events, particularly juvenile settlement. To ultimately determine whether attraction and production is responsible for increased abundances on reefs, requires two experimental features: 1) control sites, both interspersed among artificial reefs and at reef and non‐reef locations outside the test area and 2) incorporation of fish age and length data over time. Techniques such as otolith microchemistry, telemetry and stable isotope analysis can be used to help resolve feeding and movement mechanisms driving attraction and production.  相似文献   

10.
The cleaner fish Labroides dimidiatus affects the abundance of many fishes, including their juveniles, yet how they affect the post-settlement processes of conspecifics remains poorly known. Using a long-term experiment, where L. dimidiatus were regularly removed from seven patch reefs (removals) for 10 years or left undisturbed (controls) on nine, the effect of conspecifics’ presence on recently settled L. dimidiatus juveniles and the relationship between juvenile and adult abundance on control reefs were examined. Repeated sampling 4–40 months after manipulating L. dimidiatus revealed that the abundance of juveniles on removals, compared with controls reefs, was 72 % (95 % CI = 65–79 %) lower; this effect did not vary over time. Thus, decreased colonization was associated with resident conspecific absence and this effect was present after 4 months. Since other studies found 4 months of cleaner absence was too short to affect client abundance—a factor also known to enhance L. dimidiatus colonization—it was likely not involved here. Over 10 years, individual control reefs were almost always occupied by at least one adult (89–100 % of times sampled); but in summer, when L. dimidiatus colonization was highest, juvenile abundance was negatively related with adult abundance at one of two sites, with the expected number of juveniles decreasing by 67 % (95 % CI = 51–83 %) with each additional adult. This suggests a deleterious effect of adults on juveniles at one site, such as competition. Enhanced colonization of juveniles associated with adult presence may partly explain the relative permanence of fish cleaning stations.  相似文献   

11.
With many coral reef areas being degraded whether by anthropogenic or natural causes, a search is on for resilient species of corals that can restore coral cover where needed, if coral reefs are to continue to provide adequate ecosystem services. A series of experiments were undertaken in two sites with different environmental attributes and substrates in a lagoonal area in the northwestern Philippines to test the potentials of a local species, Porites cylindrica, for reef rehabilitation. With the use of asexual fragmentation of donor colonies, different treatments were tested, particularly to determine if the species would survive on different substrates, that is, solid, massive versus digitate/anastomosing, dead colonies. The results after nearly 2 years of the experiment were extraordinarily successful, with survival of transplants ranging from a high of 98% to a low of 80% of colonies, resulting in extensive coral cover on both original and new or different substrate from the original. A subsequent observation after another 16 months showed the coral cover to have been complete or nearly complete in the experimental plots, with the transplanted colonies fusing, and with evident reef fish communities where there were none before. Had there been no intervention, it is highly likely that the reefs would have remained in a degraded state .  相似文献   

12.
Artificial reefs continue to be added as habitat throughout the world, yet questions remain about how reef design affects fish diversity and abundance. In the present study, the effects of reef density were assessed for fish communities and sizes of economically valuable Lutjanus campechanus 13 km off Port Mansfield, Texas, at a reef composed of more than 4000 concrete culverts. The study spanned from May to June in 2013 and 2014, and sites sampled included natural reefs, bare areas, and varying culvert patch density categories, ranging from 1–190 culverts. Abundances of adults and species evenness of juvenile populations differed between the years. Fish communities did not significantly differ among density categories; however, highest species richness and total abundances were observed at intermediate culvert densities and at natural reefs. Whereas the abundance of L. campechanus did not differ among density categories, mean total lengths of L. campechanus were greatest at the lower density. Our findings suggest that reefs should be deployed with intermediate patch density of 71–120 culverts in a 30-m radius to yield the highest fish abundances.  相似文献   

13.
Ecological theory suggests that the behaviour, growth and abundance of predators will be strongly influenced by the abundance of prey. Predators may in turn play an important role in structuring prey populations and communities. Responses of predators to variation in prey abundance have most commonly been demonstrated in low-diversity communities where food webs are relatively simple. How predators respond in highly diverse assemblages such as in coral reef habitats is largely unknown. This study describes an experiment that examined how the movement, diet and growth of the coral reef piscivore, Cephalopholis boenak (Serranidae) responded to variation in the abundance of its prey. Predator densities were standardised on small patch reefs made from the lagoonal reef-building coral, Porites cylindrica. These patch reefs exhibited natural variation in the abundance and community structure of multiple species of prey. However, our experiment generated a relatively simple predator–prey relationship, with C. boenak primarily responding to the most abundant species of prey. Three responses of predators were observed: aggregative, functional and developmental. Thirty-one per cent of individuals moved between patch reefs during the experiment, all from areas of relatively low to high prey density. Feeding rates were higher on patch reefs of high prey density, while growth rates of fish that remained on low prey density reefs throughout the experiment were lower. Growth rates of C. boenak on the experimental reefs were also much higher than for those living on natural patch reefs over the same time period, corresponding with overall differences in prey abundance. These results suggest that local abundance, feeding rate and growth of C. boenak were closely linked to the abundance of their main prey. This combination of predatory responses is a potential mechanism behind recent observations of density-dependent mortality and population regulation of prey in coral reef fish communities.  相似文献   

14.
Small concrete artificial reef modules (hemisphere-shaped, approximately 1.3 m diameter, 1 m high) were placed at two sites, eight modules per site. The sites were in 7 m and 21 m of water, 1.6 km apart, off the coast of southeast Florida, USA. The reefs were censused monthly for fish over a 19-month period. Species, number of fish, and estimated total length of each individual were recorded by divers using SCUBA. After the monthly census, all fish were removed from the reefs with a piscicide. A total of 88 species were recorded in the study, with significantly greater diversity on the deep reefs (monthly mean of 7.6 versus 3.0 shallow, P < 0.001, anova ). There were also significantly more biomass (calculated from length), and more large fish (>5 cm) on the reefs at 21 m than at 7 m (P < 0.001). There were more small fish at the shallow site (P < 0.05). Although it is not clear what variable(s) associated with the two depths is responsible for the differences, these results highlight the potential differences in artificial reef and ambient environment interactions within a localized area.  相似文献   

15.
Understanding the dynamics of open marine populations is inherently complex, and this complexity has led to decades of debate regarding the relative importance of pre- versus post-settlement processes in structuring these populations. Movement between patches may be an important modifier of patterns established at settlement, yet local immigration and emigration have received less attention than other demographic rates. I examined loss rates from tagged populations of juvenile wrasses (yellowhead wrasse Halichoeres garnoti and bluehead wrasse Thalassoma bifasciatum) at two sites in the Bahamas. Assuming that all losses were due solely to mortality would have significantly underestimated survivorship of yellowhead wrasse by 29% and bluehead wrasse by 14%. On average, per capita mortality and emigration rates were higher for yellowhead than bluehead wrasse, but neither demographic rate differed between sites for either species. With respect to within-species density, bluehead wrasse mortality was density-dependent at the patch reef site, but mortality rates of yellowhead wrasse were consistently density-independent. Evaluating the effects of between-species density, yellowhead wrasse mortality increased with a decrease in bluehead wrasse density, but this effect was limited to the patch reef site. Emigration rates were not a function of either within-species or between-species density, but instead varied inversely with isolation distance. Numerous previous studies of coral-reef fish, conducted on patch reefs separated by only a few meters of sand and often using untagged fish, may have confounded losses due to emigration with those due to mortality. A better understanding of the factors affecting emigration in marine fishes is important to their effective management using spatial tools such as marine protected areas.  相似文献   

16.
In 1994 and 1995, 131 visual censuses of reef fishes were made using the stationary sampling method in Courtown, Albuquerque, Serrana and Roncador, four atolls of the Archipelago of San Andrés and Old Providence in the Southwestern Caribbean. Fish species and their abundances were recorded in four geomorphologic zones: lagoon, windward barrier reef, windward terrace and forereef terrace. A total of 98 species were censused; the most abundant were Chromis cyanea (14%), Clepticus parra (14%) and Stegastes partitus (10%). The most abundant families were Pomacentridae (37%), Labridae (28%) and Scaridae (10%). Analysis of similarities showed that differences between zones were greater than differences between atolls, but lagoon and forereef terrace were not significantly different. Cluster and ordination analysis confirmed these results; in addition, the ordination analysis placed the groups according to depth and wave-exposure gradients, suggesting that these two physical variables were responsibles for the clustering. Differences in equitability and species richness appear also due to these variables. Inverse analysis showed in each group few characteristic species, then the differences between zones were due specially to dominance of some species. The dominant trophic categories were planktivorous and herbivorous that were significantly different between zones. In shallow zones (shallow lagoonal patch reefs) and high wave-exposed zones (winward barrier reef) dominated herbivorous fishes, while in deeper zones (terraces and deep lagoonal patch reefs) planktivorous were more abundant.  相似文献   

17.
The realization that coral reef ecosystem management must occur across multiple spatial scales and habitat types has led scientists and resource managers to seek variables that are easily measured over large areas and correlate well with reef resources. Here we investigate the utility of new technology in airborne laser surveying (NASA Experimental Advanced Airborne Research Lidar (EAARL)) in assessing topographical complexity (rugosity) to predict reef fish community structure on shallow (<10 m deep) patch reefs. Marine portions of Biscayne National Park, Florida, USA, were surveyed remotely using the EAARL, and reef fish populations were visually surveyed on 10 patch reefs at independent, randomly selected stations (n = 10–13 per reef). Rugosity at each station was assessed in situ by divers using the traditional chain-transect method (10-m scale), and remotely using the EAARL submarine topography data at multiple spatial scales (2, 5, and 10 m). The rugosity and biological datasets were analyzed together to elucidate the predictive power of EAARL rugosity in describing the variance in reef fish community variables and to assess the correlation between chain-transect and EAARL rugosity. EAARL rugosity was not well correlated with chain-transect rugosity, or with species richness of fishes (although statistically significant, the amount of variance explained by the model was very low). Variance in reef fish community attributes was better explained in reef-by-reef variability than by physical variables. However, once the reef-by-reef variability was taken into account in a two-way analysis of variance, the importance of rugosity could be seen on individual reefs. Fish species richness and abundance were statistically higher at high rugosity stations compared to medium and low rugosity stations, as predicted by prior ecological research. The EAARL shows promise as an important mapping tool for reef resource managers as they strive to inventory and protect coral reef resources.  相似文献   

18.
Population density, number of species, diversity, and species-area relationships of fish species in eight common coral reef-associated families were studied in three marine parks receiving total protection from fishing, four sites with unregulated fishing, and one reef which recently received protection from fishing (referred to as a transition reef). Data on coral cover, reef topographic complexity, and sea urchin abundance were collected and correlated with fish abundance and species richness. The most striking result of this survey is a consistent and large reduction in the population density and species richness of 5 families (surgeonfish, triggerfish, butterflyfish, angelfish, and parrotfish). Poor recovery of parrotfish in the transition reef, relative to other fish families, is interpreted as evidence for competitive exclusion of parrotfish by sea urchins. Reef substrate complexity is significantly associated with fish abundance and diversity, but data suggest different responses for protected versus fished reefs, protected reefs having higher species richness and numbers of individuals than unprotected reefs for the same reef complexity. Sea urchin abundance is negatively associated with numbers of fish and fish species but the interrelationship between sea urchins, substrate complexity, coral cover, and management make it difficult to attribute a set percent of variance to each factor-although fishing versus no fishing appears to be the strongest variable in predicting numbers of individuals and species of fish, and their community similarity. Localized species extirpation is evident for many species on fished reefs (for the sampled area of 1.0 ha). Fifty-two of 110 species found on protected reefs were not found on unprotected reefs.  相似文献   

19.
N. Tolimieri 《Oecologia》1995,102(1):52-63
Populations of fishes on coral reefs are replenished by the settlement of pelagic larvae to demersal populations. Recruitment varies spatially and temporally and can exert strong effects on the dynamics of reef fish populations. This study examined the effect of microhabitat characteristics on small-scale and large-scale recruitment variation in the three-spot damselfish, Stegastes planifrons (Cuvier). Comparison of 0.25-m2 quadrats occupied by three-spots with randomly sampled null quadrats showed that three-spots quadrats contained a higher percent cover of the coral Montastrea annularis than would be expected at random. Manipulative experiments on three types of 1.0-m2 patch reefs (living M. annularis, dead Porites Porites and dead Acropora palmata) patch reefs on showed that this non-random distribution was established by microhabitat choice during settlement and not by differential post-settlement survival. The presence of conspecific juveniles did not affect settlement. Recruitment was monitored at nine sites on three islands over 3 years. Recruitment showed no consistent pattern in the relative levels of recruitment among sites. Similarly, no consistent relationship emerged between recruitment levels and microhabitat characteristics at the nine sites. For example, at this large scale, the percent cover of M. annularis explained variation in recruitment in only 1 out of 3 years. These results suggest that small-scale recruitment patterns are influenced by microhabitat choice during settlement, but that these habitat effects do not scale up to influence large-scale variation in recruitment.  相似文献   

20.
Hoey AS  McCormick MI 《Oecologia》2004,139(1):23-29
Mortality is known to be high during the transition from larval to juvenile life stages in organisms that have complex life histories. We are only just beginning to understand the processes that influence which individuals survive this period of high mortality, and which traits may be beneficial. Here we document a field experiment that examines the selectivity of predation immediately following settlement to the juvenile population in a common tropical fish, Pomacentrus amboinensis (Pomacentridae). Newly metamorphosed fish were tagged and randomly placed onto replicated patches of natural habitat cleared of resident fishes. After exposure to transient predators for 3 days, fish were recollected and the attributes of survivors from patch reefs that sustained high mortality were compared to individuals from patch reefs that experienced low mortality. Seven characteristics of individuals, which were indicative of previous and present body condition, were compared between groups. Predation was found to be selective for fish that grew slowly in the latter third of their larval phase, were low in total lipids, and had a high standardized weight (Fultons K). Traits developed in the larval phase can strongly influence the survival of individuals over this critical transition period for organisms with complex life cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号