首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
In dioecious plants, females typically invest more biomass in reproduction than males and consequently experience stronger life-history trade-offs. Sexual dimorphism in life history runs counter to this pattern in Silene latifolia: females acquire less carbon and invest more biomass in reproduction, but males pay a higher cost of reproduction. The species is sexually dimorphic for many traits, especially flower number, with males producing many, small flowers compared to females. We tested whether the cost of reproduction is higher in males because flower number, which we presume to be under sexual selection in males, is genetically correlated with traits that would affect life-history trade-offs. We performed artificial selection to reduce the sexual dimorphism in flower size and looked at correlated responses in ecophysiological traits. We found significant correlated responses in total vegetative mass, leaf mass, leaf thickness, and measures of CO(2) exchange. Individuals in the many-and-small-flowered selection lines did not grow as large or invest as much biomass in leaves, and their leaves exhibited an up-regulated physiology that shortened leaf life span. Our results are consistent with the hypothesis that genetic correlations between floral display and ecophysiological traits lead to a higher cost of reproduction for males.  相似文献   

2.
Life history evolution of many clonal plants takes place with long periods of exclusively clonal reproduction and under largely varying ramet densities resulting from clonal reproduction. We asked whether life history traits of the clonal herb Ranunculus reptans respond to density-dependent selection, and whether plasticity in these traits is adaptive. After four generations of exclusively clonal propagation of 16 low and 16 high ramet-density lines, we studied life history traits and their plasticities at two test ramet-densities. Plastic responses to higher test-density consisted of a shift from sexual to vegetative reproduction, and reduced flower production, plant size, branching frequency, and lengths of leaves and internodes. Plants of high-density lines tended to have longer leaves, and under high test-density branched less frequently than those of low-density lines. Directions of these selection responses indicate that the observed plastic branching response is adaptive, whereas the plastic leaf length response is not. The reverse branching frequency pattern at low test-density, where plants of high-density lines branched more frequently than those of low-density lines, indicates evolution of plasticity in branching. Moreover, when grown under less stressful low test-density, plants of high-density lines tended to grow larger than the ones of low-density lines. We conclude that ramet density affects clonal life-history evolution and that under exclusively clonal propagation clonal life-history traits and their plasticities evolve differently at different ramet densities.  相似文献   

3.
In this study we examined the direct and correlated responses for fast and slow preadult development time in three laboratory populations of the bean weevil (Acanthoscelides obtectus). The first population (“base,” B) has experienced laboratory conditions for more than 10 years; the second (“young,” Y) and the third (“old,” O) populations were selected for early and late reproduction, respectively, before the onset of the present experiments. All three populations are successfully selected for both fast and slow preadult development. The realized heritabilities are very similar in all populations, suggesting a similar level of the additive genetic variance for preadult development. We studied the correlated responses on the following life-history traits: egg-to-adult viability, wet body weight, early fecundity, late fecundity, total realized female fecundity, and adult longevity. All life-history traits examined here, except for the egg-to-adult viability, are affected by selection for preadult development in at least in one of the studied populations. In all three populations, beetles selected for slow preadult development are heavier and live longer than those from the fast-selected lines. The findings with respect to adult longevity are unexpected, because the control Y and O populations, selected for short- and long-lived beetles, respectively, do not show significant differences in preadult development. Thus, our results indicate that some kind of asymmetrical correlated responses occur for preadult development and adult longevity each time that direct selection has been imposed on one or the other of these two traits. In contrast to studies with Drosophila, it appears that for insect species that are aphagous as adults, selection for preadult development entails selection for alleles that also change the adult longevity, but that age-specific selection (applied in the Y and O populations) mostly affects the alleles that have no significant influence on the preadult development. Implications of these findings on the developmental and evolutionary theories of aging are also discussed.  相似文献   

4.
Wang Q  Gu H  Dorn S 《Heredity》2004,92(6):579-584
The flight response of the parasitic wasp Cotesia glomerata (L.) to semiochemicals from a plant-host complex is subject to genetic variation. The significance of additive genetic variance for the odour-guided behaviour has been demonstrated by bidirectional selection. In order to understand the potential and constraints for phenotypic evolution in olfactory response under the pressure of natural selection, this study was to investigate genetic covariation between the odour-guided behaviour and life-history traits and its genetic correlation with the efficiency of parasitism. A paternal half-sib analysis revealed that there was no significant genetic correlation between this behavioural character and any of three life-history traits examined (the development time of immature stages, the body size of female wasps, the number of female wasps per brood). Comparisons between the selected high and low olfactory-response strains showed the lack of correlated responses in these life-history traits to bidirectional selection on the odour-guided behaviour. On the other hand, genotypic differences in the ability of olfactory response significantly affected the efficiency of parasitism. In comparison with the low olfactory-response strain, female wasps from the high olfactory-response strain were able to parasitize more host larvae in a wider area of habitats. This study provides the first evidence of links between olfactory response and population success in parasitoids from a genetic perspective.  相似文献   

5.
A common dimorphism in life-history tactic in salmonids is the presence of an anadromous pathway involving a migration to sea followed by a freshwater reproduction, along with an entirely freshwater resident tactic. Although common, the genetic and environmental influence on the adoption of a particular life-history tactic has rarely been studied under natural conditions. Here, we used sibship-reconstruction based on microsatellite data and an 'animal model' approach to estimate the additive genetic basis of the life-history tactic adopted (anadromy vs. residency) in a natural population of brook charr, Salvelinus fontinalis. We also assess its genetic correlation with phenotypic correlated traits, body size and body shape. Significant heritability was observed for life-history tactic (varying from 0.52 to 0.56 depending on the pedigree scenario adopted) as well as for body size (from 0.44 to 0.50). There was also a significant genetic correlation between these two traits, whereby anadromous fish were genetically associated with bigger size at age 1 (r(G) = -0.52 and -0.61). Our findings thus indicate that life-history tactics in this population have the potential to evolve in response to selection acting on the tactic itself or indirectly via selection on body size. This study is one of the very few to have successfully used sibship-reconstruction to estimate quantitative genetic parameters under wild conditions.  相似文献   

6.
Genetic parameters were assessed in the nonmigratory Puerto Rico population of the milkweed bug, Oncopeltus fasciatus, and compared with parameters estimated in a migratory population from Iowa (Palmer and Dingle, 1986). Offspring-parent regression analysis provided initial estimates of heritabilities and phenotypic and genetic correlations among wing length, head-capsule width, female age at first reproduction, fecundity for the first and second five days of reproduction by females, and clutch size for the first and second five days of reproduction by females. Replicated bidirectional selection for wing length was then imposed, with a direct response to selection revealing substantial additive genetic variance for this trait, as was also the case with the Iowa population. Assays for correlated response to selection yielded two further similarities to Iowa: a positive response in head-capsule width and no consistent response in age at first reproduction. In contrast to the results with Iowa bugs, neither regression analysis nor selection revealed statistically significant genetic correlations between fecundity measures and those of other traits. In both populations the potential exists for body-size characters to evolve together independently of age at first reproduction; but in the nonmigratory Puerto Rico bugs, fecundity does not contribute to a life-history syndrome involving genetic correlations among these traits.  相似文献   

7.
Fundamental, long-term genetic trade-offs constrain life-history evolution in wild crucifer populations. I studied patterns of genetic constraint in Brassica rapa by estimating genetic correlations among life-history components by quantitative genetic analyses among ten wild populations, and within four populations. Genetic correlations between age and size at first reproduction were always greater than +0.8 within and among all populations studied. Although quantitative genetics might provide insight about genetic constraints if genetic parameters remain approximately constant, little evidence has been available to determine the constancy of genetic correlations. I found strong and consistent estimates of genetic correlations between life-history components, which were very similar within four natural populations. Population differentiation also showed these same trade-offs, resulting from long-term genetic constraint. For some traits, evolutionary changes among populations were incompatible with a model of genetic drift. Historical patterns of natural selection were inferred from population differentiation, suggesting that correlated response to selection has caused some traits to evolve opposite to the direct forces of natural selection. Comparison with Arabidopsis suggests that these life-history trade-offs are caused by genes that regulate patterns of resource allocation to different components of fitness. Ecological and energetic models may correctly predict these trade-offs because there is little additive genetic variation for rates of resource acquisition, but resource allocation is genetically variable.  相似文献   

8.
There is a growing awareness of the influence of mitochondrial genetic variation on life-history phenotypes, particularly via epistatic interactions with nuclear genes. Owing to their direct effect on traits such as metabolic and growth rates, mitonuclear interactions may also affect variation in behavioural types or personalities (i.e. behavioural variation that is consistent within individuals, but differs among individuals). However, this possibility is largely unexplored. We used mitonuclear introgression lines, where three mitochondrial genomes were introgressed into three nuclear genetic backgrounds, to disentangle genetic effects on behavioural variation in a seed beetle. We found within-individual consistency in a suite of activity-related behaviours, providing evidence for variation in personality. Composite measures of overall activity of individuals in behavioural assays were influenced by both nuclear genetic variation and by the interaction between nuclear and mitochondrial genomes. More importantly, the degree of expression of behavioural and life-history phenotypes was correlated and mitonuclear genetic variation affected expression of these concerted phenotypes. These results show that mitonuclear genetic variation affects both behavioural and life-history traits, and they provide novel insights into the maintenance of genetic variation in behaviour and personality.  相似文献   

9.
Whether contemporary human populations are still evolving as a result of natural selection has been hotly debated. For natural selection to cause evolutionary change in a trait, variation in the trait must be correlated with fitness and be genetically heritable and there must be no genetic constraints to evolution. These conditions have rarely been tested in human populations. In this study, data from a large twin cohort were used to assess whether selection will cause a change among women in a contemporary Western population for three life-history traits: age at menarche, age at first reproduction, and age at menopause. We control for temporal variation in fecundity (the "baby boom" phenomenon) and differences between women in educational background and religious affiliation. University-educated women have 35% lower fitness than those with less than seven years education, and Roman Catholic women have about 20% higher fitness than those of other religions. Although these differences were significant, education and religion only accounted for 2% and 1% of variance in fitness, respectively. Using structural equation modeling, we reveal significant genetic influences for all three life-history traits, with heritability estimates of 0.50, 0.23, and 0.45, respectively. However, strong genetic covariation with reproductive fitness could only be demonstrated for age at first reproduction, with much weaker covariation for age at menopause and no significant covariation for age at menarche. Selection may, therefore, lead to the evolution of earlier age at first reproduction in this population. We also estimate substantial heritable variation in fitness itself, with approximately 39% of the variance attributable to additive genetic effects, the remainder consisting of unique environmental effects and small effects from education and religion. We discuss mechanisms that could be maintaining such a high heritability for fitness. Most likely is that selection is now acting on different traits from which it did in pre-industrial human populations.  相似文献   

10.
Usually, several traits in organisms are genetically linked with each other; thus, correlated responses to selection are generally observed. Anti-predator behaviors may be genetically correlated with other traits such as life-history. We compared the life-history traits of individuals derived from two regimes artificially selected for the duration of death feigning in the adzuki bean beetle, Callosobruchus chinensis. The two-way selected regimes include the L-lines with stronger intensity (longer duration and higher frequency) and the S-lines with weaker intensity (shorter duration and lower frequency) of death feigning. L-lines exhibited greater longevity, higher rates of emergence, laid bigger eggs and greater reproductive effort, and also had a tendency of faster development. Fecundity was not significantly different between L- and S-lines. These results provide the novel possibility that death feigning is a potentially advantageous anti-predator behavior that, through a positive genetic correlation with some life-history traits, can bring a higher fitness to an individual adopting this behavior. This novel aspect might explain why death-feigning behavior is prevalent in various taxonomic animal groups.  相似文献   

11.
Life-history theory predicts that resource scarcity constrains individual optimal reproductive strategies and shapes the evolution of life-history traits. In species where the inherited structure of social class may lead to consistent resource differences among family lines, between-class variation in resource availability should select for divergence in optimal reproductive strategies. Evaluating this prediction requires information on the phenotypic selection and quantitative genetics of life-history trait variation in relation to individual lifetime access to resources. Here, we show using path analysis how resource availability, measured as the wealth class of the family, affected the opportunity and intensity of phenotypic selection on the key life-history traits of women living in pre-industrial Finland during the 1800s and 1900s. We found the highest opportunity for total selection and the strongest selection on earlier age at first reproduction in women of the poorest wealth class, whereas selection favoured older age at reproductive cessation in mothers of the wealthier classes. We also found clear differences in female life-history traits across wealth classes: the poorest women had the lowest age-specific survival throughout their lives, they started reproduction later, delivered fewer offspring during their lifetime, ceased reproduction younger, had poorer offspring survival to adulthood and, hence, had lower fitness compared to the wealthier women. Our results show that the amount of wealth affected the selection pressure on female life-history in a pre-industrial human population.  相似文献   

12.
Although the trade-off between reproductive effort and longevity is central to both sexual selection and evolutionary theories of aging, there has been little synthesis between these fields. Here, we selected directly on adult longevity of male field crickets Teleogryllus commodus and measured the correlated responses of age-dependent male reproductive effort, female lifetime fecundity, and several other life-history traits. Male longevity responded significantly to five generations of divergent selection. Males from downward-selected lines commenced calling sooner and reached their peak calling effort at a younger age. They called more per night and, despite living less than half as long, called more overall than males selected for increased longevity. Females from the downward-selected lines lived significantly shorter lives than females from the upward-selected lines but still produced the same number of offspring. Nymph survival, development time, and body size and weight at eclosion did not show significant correlated response to selection on male longevity, despite evidence for substantial genetic variation in each of these traits. Collectively, our findings directly support the antagonistic pleiotropy model of aging and suggest an important role for sexual selection in the aging process.  相似文献   

13.
 The mechanism by which a clock gene pleiotropically controlling life history and behavioral traits causes reproductive isolation is explained using a model species, the melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Melon flies mate once a day, at dusk. The population selected for life history traits exhibits correlated responses in the time of mating during the day. For example, the fly populations selected for faster (slower) development have an earlier (later) time of mating. A circadian rhythm controls the time of mating. The circadian periods in constant darkness were about 22 h in lines selected for a short developmental period and about 31 h in lines selected for a long developmental period. The data on crosses between the selected lines indicated that the developmental period is controlled by a polygene, whereas the circadian period may be controlled by a single clock gene. These results suggest a clock gene pleiotropically controls developmental and circadian periods in the melon fly. Reproductive isolation may often evolve as an indirect (pleiotropic) consequence of adaptation to different environments or habitats. For example, niches that are temporally or seasonally offset can select organisms with different developmental characteristics. These developmental differences can inadvertently cause reproductive isolation by a variety of means including shifts in mating activity patterns. The difference in time of mating between populations selected for developmental period translated into significant prezygotic isolation, as measured by mate choice tests. If the mating time between populations differed more than 1 h, the isolation index was significantly higher than zero. These findings indicate that premating isolation can be established by a pleiotropic effect of a clock gene. There are many examples in which the difference in timing of reproduction prevents gene flow between populations, such as the egg spawning time in marine organisms, the flowering time in angiosperms, and the time of mating in insects. In such organisms, if genetic correlations between circadian rhythm and reproductive traits exist, multifarious divergent selection for life history traits would often accelerate the evolution of reproductive isolation through clock genes. Natural populations may diverge in reproduction time through drift, direct natural selection for time of reproduction, or as a by-product effect of genetic correlations. In any case, clock genes are keys in reproductive isolation. Received: January 31, 2002 / Accepted: July 29, 2002 Acknowledgments I am grateful to Tetsuo Arai, Akira Matsumoto, Takashi Matsuyama, Toru Shimizu, Aya Takahashi, Teiichi Tanimura, Tetsuya Toyosato, and Yasuhiko Watari for useful discussion, and to the responsible editor and two anonymous reviewers for helpful suggestions. I also thank Yoshihiko Chiba, Norio Ishida, Emi Koyama, Kazuhiko Sakai, and Takaomi Sakai for useful information. My work on speciation has been supported by a Grant-in-Aid for Scientific Research (KAKENHI 14340244) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.  相似文献   

14.
This paper reports the results of an investigation into whether selection on genetically based differences in the timing or rate of development (heterochrony) can give rise to nonadaptive morphological differences among individual frogs. We used a quantitative-genetics approach to examine the relationships among the life-history characters time to metamorphosis and larval-growth rate and a functionally significant morphological features, relative hind-limb length, in the spring peeper, Hyla crucifer. Time to metamorphosis and growth rate had low heritabilities in our population. Morphological traits had moderate heritabilities. There were positive genetic correlations between the life-history traits and the components of relative hind-limb length but no significant correlations with the shape variable itself. We used field observations of pond-drying time and experimental results of selection on growth rate to simulate the correlated responses of hind-limb shape to four reasonable selection regimes on the life-history traits. We found little evidence to suggest that relative hind-limb length would display much of a correlated response to such selection. The differences in relative hind-limb length seen among closely related species or among populations of a single species that appear to be unrelated to performance differences are not obviously explicable as neutral correlated responses to selection on larval traits.  相似文献   

15.
Germination responses to seasonal conditions determine the environment experienced by postgermination life stages, and this ability has potential consequences for the evolution of plant life histories. Using recombinant inbred lines of Arabidopsis thaliana, we tested whether life-history characters exhibited plasticity to germination timing, whether germination timing influenced the strength and mode of natural selection on life-history traits, and whether germination timing influenced the expression of genetic variation for life-history traits. Adult life-history traits exhibited strong plasticity to season of germination, and season of germination significantly altered the strength, mode, and even direction of selection on life-history traits under some conditions. None of the average plastic responses to season of germination or season of dispersal were adaptive, although some genotypes within our sample did exhibit adaptive responses. Thus, recombination between inbred lineages created some novel adaptive genotypes with improved responses to the seasonal timing of germination under some, but not all, conditions. Genetically based variation in germination time tended to augment genetic variances of adult life-history traits, but it did not increase the heritabilities because it also increased environmentally induced variance. Under some conditions, plasticity of life-history traits in response to genetically variable germination timing actually obscured genetic variation for those traits. Therefore, the evolution of germination responses can influence the evolution of life histories in a general manner by altering natural selection on life-history traits and the genetic variation of these traits.  相似文献   

16.
Phenotypic plasticity is the ability of a genotype to produce more than one phenotype in order to match the environment. Recent theory proposes that the major axis of genetic variation in a phenotypically plastic population can align with the direction of selection. Therefore, theory predicts that plasticity directly aids adaptation by increasing genetic variation in the direction favoured by selection and reflected in plasticity. We evaluated this theory in the freshwater crustacean Daphnia pulex, facing predation risk from two contrasting size-selective predators. We estimated plasticity in several life-history traits, the G matrix of these traits, the selection gradients on reproduction and survival, and the predicted responses to selection. Using these data, we tested whether the genetic lines of least resistance and the predicted response to selection aligned with plasticity. We found predator environment-specific G matrices, but shared genetic architecture across environments resulted in more constraint in the G matrix than in the plasticity of the traits, sometimes preventing alignment of the two. However, as the importance of survival selection increased, the difference between environments in their predicted response to selection increased and resulted in closer alignment between the plasticity and the predicted selection response. Therefore, plasticity may indeed aid adaptation to new environments.  相似文献   

17.
The evolutionary forces that underlie polyandry, including extra-pair reproduction (EPR) by socially monogamous females, remain unclear. Selection on EPR and resulting evolution have rarely been explicitly estimated or predicted in wild populations, and evolutionary predictions are vulnerable to bias due to environmental covariances and correlated selection through unmeasured traits. However, evolutionary responses to (correlated) selection on any trait can be directly predicted as additive genetic covariances (covA) with appropriate components of relative fitness. I used comprehensive life-history, paternity and pedigree data from song sparrows (Melospiza melodia) to estimate covA between a female''s liability to produce extra-pair offspring and two specific fitness components: relative annual reproductive success (ARS) and survival to recruitment. All three traits showed non-zero additive genetic variance. Estimates of covA were positive, predicting evolution towards increased EPR, but 95% credible intervals overlapped zero. There was therefore no conclusive prediction of evolutionary change in EPR due to (correlated) selection through female ARS or recruitment. Negative environmental covariance between EPR and ARS would have impeded evolutionary prediction from phenotypic selection differentials. These analyses demonstrate an explicit quantitative genetic approach to predicting evolutionary responses to components of (correlated) selection on EPR that should be unbiased by environmental covariances and unmeasured traits.  相似文献   

18.
The sexes often have different phenotypic optima for important life-history traits, and because of a largely shared genome this can lead to a conflict over trait expression. In mammals, the obligate costs of reproduction are higher for females, making reproductive timing and rate especially liable to conflict between the sexes. While studies from wild vertebrates support such sexual conflict, it remains unexplored in humans. We used a pedigreed human population from preindustrial Finland to estimate sexual conflict over age at first and last reproduction, reproductive lifespan and reproductive rate. We found that the phenotypic selection gradients differed between the sexes. We next established significant heritabilities in both sexes for all traits. All traits, except reproductive rate, showed strongly positive intersexual genetic correlations and were strongly genetically correlated with fitness in both sexes. Moreover, the genetic correlations with fitness were almost identical in men and women. For reproductive rate, the intersexual correlation and the correlation with fitness were weaker but again similar between the sexes. Thus, in this population, an apparent sexual conflict at the phenotypic level did not reflect an underlying genetic conflict over the studied reproductive traits. These findings emphasize the need for incorporating genetic perspectives into studies of human life-history evolution.  相似文献   

19.
Coevolution between male and female traits can result from correlatedresponses to selection or correlated selection on geneticallyindependent traits. This study examines the possibility thattraits involved in precopulatory sexual selection may influencethe evolution of traits involved in postcopulatory sexual selectiondue to the existence of correlated selection or correlated responsesto selection. Artificial selection on male eye span in Cyrtodiopsisdalmanni, a sexually dimorphic stalk-eyed fly, is used to testfor correlated changes in reproductive traits of male and femaleflies. Flies from replicate lines that had been under selectionfor 57 generations were matched for age and genotyped at fourX-linked microsatellite loci. Egg number and testis size increasedwith age, but did not differ among lines. Spermathecal areasand duct lengths differed among replicates, but not among selectiontreatments. Female relative eye span, size of the ventral receptacleand egg size exhibited significant correlated responses to selectionon male relative eye span. The absence of any change in spermlength or testis size between lines indicates that changes infemale traits are unlikely due to correlated selection mediatedby sperm competition. Significant effects of X-linked microsatellitegenotypes indicate instead that the correlated responses toselection were due, in part, to X-linked genes in linkage disequilibriumor that exhibit pleiotropy. The presence of nonadditive alleliceffects on genetically correlated female traits combined withadditive allelic effects on a male ornament provides a previouslyunrecognized mechanism by which genetic variation could be maintaineddespite strong sexual selection.  相似文献   

20.
Detecting adaptation involves comparing the performance of populations evolving in different environments. This detection may be confounded by effects due to the environment experienced by organisms prior to the test. We tested whether such confounding effects occur, using spider-mite selection lines on two novel hosts and one ancestral host, after 15 generations of selection. Mites were either sampled directly from the selection lines or subjected to a common juvenile or to a common maternal environment, mimicking the most frequent environmental manipulations. These environments strongly affected all life-history traits. Moreover, the detection of adaptation and correlated responses on the ancestral host was inconsistent among environments in almost 20% of the cases. Indeed, we did not detect responses unambiguously for any life-history trait. This inconsistency was due to differential environmental effects on lines from different selection regimes. Therefore, the detection of adaptation requires a careful control of these environmental effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号