首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In many systems the interleukin-1 receptor antagonist opposes the effects of interleukin-1β. We considered that it might block interleukin-1β-stimulated prostaglandin production from human decidual cells. Very high levels of interleukin-1 receptor antagonist (>1000 pg/ml) had limited inhibitory effects on IL-1β-stimulated PGE2 synthesis, and lower levels of antagonist (<1000 pg/ml) increased the effects of IL-1β. Low concentrations of the antagonist alone (1–100 pg/ml) increased basal PGE2 production, whereas higher levels (10–100 ng/ml) had less effect. It seems, therefore, that in human decidua the “antagonist” is more accurately described as a partial agonist. It has been suggested that the IL-1 receptor antagonist could be used to inhibit decidual prostaglandin synthesis and thereby prevent preterm labor, but this report shows that caution should be exercised before using the receptor antagonist.  相似文献   

3.
We examined effects of protein kinase C (PKC) activation by phorbol dibutyrate (PDB) on prostaglandin production in astroglia. Astroglia were cultured from sheep fetal cortex and grown in Eagle's basal media supplemented with 10% fetal calf serum (BME-C). Prostaglandin F2a (PGF) levels in media were determined at 2–24 hours after exposure to PDB. PDB increased production of PGF at 10−8M and 10−6M. In addition, PDB increased the ratio of membrane to cytosolic PKC. Coapplication of H7 [1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine] (10−4M) with PDB (10−6M) inhibited PDB-induced PGF2a production. To investigate the role of protein synthesis in increased prostaglandin production by PDB, astroglia were coincubated with actinomycin D (1 mg/ml) or cycloheximide (10 mg/ml). At 4 hrs, both actinomycin D and cycloheximide inhibited increases in PGF2a in response to PDB application. In addition, COX-2 mRNA levels and COX activity levels were examined. PDB increased COX-2 mRNA levels by 2 hours, and COX activity tripled after 12 hr exposure to PDB. In addition, the increase in COX activity was blocked by cycloheximide. In summary, PKC activation promotes enhanced prostaglandin production via an increase in COX synthesis.  相似文献   

4.
Granulosa, theca and corpus luteum cells of the goat ovary were isolated and incubated separately for 6 hours, with or without various modulators. Arachidonic acid (AA, 10 ng to 100 μg/ml), the precursor for prostaglandin synthesis, produced a dose-dependent increase in progesterone (P4) and estradiol-17β (E2) productin by all the cell types. Prostaglandin synthetase inhibitors, aspirin (10−6−10−3M) and indomethacin (100 ng−1 mg/ml), produced a dose-dependent decrease in arachidonic acid-stimulated (100 μ/ml) steroid production. Prostacyclin synthetase stimulators, trapidil (1.6 μg− 1 mg/ml) and dipyridamole (10−6−10−3M), when added alone or along with AA, did not effect steroid production. Up to 100 μg/ml of U-51605 (9,11-azoprosta-5, 13-dienoic acid), a prostacyclin synthetase inhibitor, did not inhibit basal or AA-stimulated steroid production. Prostacyclin (PGl2) and its stable analog 6βPGl1(0.01–10μg/ml) produced a dose-dependent increase in P4 and E2 production in all three cell types. Increase at 1 and 10μg/ml was significant in all cases. 6-keto-PGE1 (an active metabolite of PGl2 in certain systems) produced an increase in steroid production which was significant in theca at 1μg/ml concentrations but had no significant effect on granulosa and corpus luteum cells at any dose level. 6-keto-PGf1 alpha (stable metabolite of PGl2) was without effect inthe present system. The lack of effect of PGl2 at lower concentrations was not altered by either differentiation of the cells with FSH and testosterone or addition of steroid precursors, testosterone and pregnenolene. The present results indicate that AA- stimualted steroid production in the goat ovarian cell type is mediated by prostaglandins other than PGl2 though PGl2 itself can positively modulate the steroid production.  相似文献   

5.
Progesterone at concentrations of 10−7M and 10−8M inhibits release of [3H]-arachidonic acid from stimulated, perfused, endometrial cells. The effect is independent of the mechanism of stimulation. Cortisol (10−5M but not 10−7M) has a similar effect in this system but estradiol (10−7M) is without effect. There was a positive correlation (p<0.05) between the magnitude of inhibition by progesterone and the day of cycle. The inhibitory action of progesterone on the release of arachidonic acid was greater in endometrial cells than in decidual cells and was apparent after fifteen minutes. The activities of commercial and endometrial cell-free preparations of phospholipase A2 and phospholipase C were unaffected by the presence of progesterone. We conclude that progesterone modulates release of [3H]-arachidonic acid from endometrial cells by a rapid, indirect action on phospholipase activity.  相似文献   

6.
The objective of this study was to examine the expression and activity of cytosolic phospholipase A2 (cPLA2) in relation to prostaglandin E2 (PGE2) synthesis in human amnion-derived WISH cells in response to stimulation by interleukin-1β (IL-1β). cPLA2 activity was characterized by sensitivity to heat and acid treatment, stability to dithiothreitol, and inhibition by the specific inhibitor, arachidonyl trifluoromethyl ketone (AACOCF3). Treatment of WISH cells with IL-1β (0.01–1 ng/mL) for up to 24 h resulted in a significant increase in PGE2 release in a concentration- and time-dependent manner accompanied by increases both in total cellular cPLA2 activity and in cPLA2 protein levels detected by Western blot analysis. The parallel increase in total cellular cPLA2 activity and cPLA2 protein level indicates that IL-1β may induce the synthesis of CPLA2. Incubation of the cells with 10 μM AACOCF3 for 24 h significantly inhibited IL-1β-induced PGE2 production strongly suggesting that cPLA2 mediates IL-1β-induced PGE2 formation. In unstimulated cells, there is appreciable total cellular cPLA2 activity and protein, but these cells produce low amounts of PGE2 until stimulated by IL-1β, suggesting that cPLA2 translocation from cytosol to the membrane is necessary for its bioactivity. In contrast to IL-1β, treatment with phorbol ester (12-O-tetradecanoyl phorbol-13-acetate, TPA, 10−10−10−6 M) for 24 h significantly inhibited total cellular cPLA2 activity in a concentration-dependent manner. The amount of total cellular cPLA2 protein seen on Western blot remained unchanged following TPA treatment. These data suggest that in WISH cells, IL-1β induces both translocation to the membrane and de novo synthesis of cPLA2 protein to sustain prostaglandin (PG) synthesis. In contrast, TPA may only cause cPLA2 translocation but no increase in cPLA2 protein synthesis, resulting in limited PFG synthesis. Our results provide a mechanism for the effect of IL-1β on prostaglandin synthesis in human amnion cells and provide support for a role of cPLA2 in the mechanism initiating human parturition.  相似文献   

7.
It has been shown in vitro that the lamb ductus arteriosus forms prostaglandins PGE2, PGF2α, 6 keto PGF1α (and its unstable precursor PGI2). In this study the relative potencies of these endogenous prostaglandins were investigated on isolated lamb ductus arteriosus preparations contracted by exposure to elevated PO2 and indomethacin. All the prostaglandins (except PGF2α) relaxed the vessel. This is consistent with the hypothesis that endogenous prostaglandins inhibit the tendency of the vessel to contract in response to oxygen. Only PGE2, however, relaxed the vessel at concentrations below 10−8M. PGI2 and 6 keto PGF had approximately 0.001 and 0.0001 times the activity of PGE2. Although PGE2 has been observed to be a minor product of prostaglandin production in the lamb ductus arteriosus, the tissue's marked sensitivity to PGE2 might make it the most significant prostaglandin in regulating the patency of the vessel.  相似文献   

8.
The ω-6 and ω-9 hydroperoxides of arachidonic acid caused dose-dependent constriction of cat coronary arteries in concentrations of 10−8 to 10−5M. Their potency was comparable to that of prostaglandin (PG) E2, and PGF and 100 times greater than that of arachidonic acid. The cyclooxygenase inhibitor, meclofenamate markedly reduced constriction caused by the hydroperoxides but potentiated constriction caused by the prostaglandins. The effects of the hydroperoxides were also reduced by indomethacin and dexamethasone but were unaffected by the thromboxane synthetase inhibitor imidazole. Since the hydroperoxides are not substrates for cyclooxygenase, it is suggested that they have a direct effect on the arteries which can be antagonized by anti-inflammatory drugs.  相似文献   

9.
The effects on the beating behavior of cultured rat heart cells of fourteen prostaglandins of the A, B, D, E, and F series were investigated, together with adrenaline and ouabain, at dose levels of 10−7 and 10−5M. Single heart cell beating activity was monitored photo-electrically and five parameters of beating behavior measured. Only PGF2a markedly increased rate while PGF2B reduced it. Maintenance of a stable rate (rate range) was minimally affected by prostaglandins with PGF possibly reducing, and PGF and 2-decarboxy E1 possibly increasing, rate range. PGF and F both statistically reduced the percentage of cells beating while the other prostaglandins had no effect. Most of the prostaglandins either produced no change, or reduced, indices of contractile force (optical density changes with contractions and its first derivative (dOD/dt)). Only the negative chronotropic agent PGF positive density effect. In conclusion, except for PGF, prostaglandins generally have limited actions on the beating activity of cultured heart cells.  相似文献   

10.
Mouse calvaria were maintained in organ culture without serum additives. Basal active resorption, as measured by 45Ca and hydroxyproline release, was significantly inhibited to 74% control levels by indomethacin (1.4 × 10−7 M). Prostaglandin F and prostaglandin E2 production, determined by radioimmunoassay, were both significantly lowered by this concentration of indomethacin. DNA, protein and hydroxyproline synthesis, as indices of cell toxicity, were unaffected by low concentrations of indomethacin, while concentrations of 1.4 × 10−6M inhibited protein synthesis (p<0.005). In the presence of indomethacin (1.4 × 10−7M) both PGE2 and PGF stimulated resorption in a dose-dependent manner, with PGE2 being the more potent. Neither prostaglandin affected hydroxyproline synthesis at low concentrations, but PGE2 had a marked inhibitory action at a higher concentration (10−6M). In combination, the effects of PGE2 and PGF showed no evidence of synergism or any antagonistic action. The study shows that in vitro calcium and hydroxyproline resorption in the unstimulated mouse calvaria are inhibited by indomethacin at concentrations measured in serum during human therapy. The decreased PGF and PGE2 production associated with this decreased bone resorption in the presence of non-toxic concentrations of indomethacin would suggest a role for these prostaglandins in maintaining the basal resorption of cultured bone.  相似文献   

11.
The ability of human chorionic gonadotropin (HCG) to reduce the luteolytic effect of prostaglandin (PGF2α) was demonstrated in cycling ewes. As expected, treatment with 10 mg of PGF2α alone on Day 10 of the estrous cycle exerted a potent negative effect on the function and structure of corpus luteum (CL) as indicated by reduced plasma progesterone, CL progesterone, and CL weight. However, the identical PGF2α treatment failed to significantly reduce either luteal function or luteal weight when administered to ewes that were also treated with HCG on Days 9 and 10 of the estrous cycle. Treatment with HCG alone had a positive effect on CL as indicated by increased plasma progesterone, CL progesterone, and CL weight. Treatment with HCG did not render the CL totally insensitive to the negative effects of PGF2α because plasma progesterone was reduced when the dose of PGF2α was doubled. Whether CL regressed or continued to function after treatment with both HCG and PGF2α appeared to depend upon a balance between the positive and negative effects of the two hormones.  相似文献   

12.
The effect of prostaglandin PGF on the hCG stimulated and basal progesterone production by human corpora lutea was examined . hCG (40 i.u./ml) stimulated progesterone formation in corpora lutea of early (days 16–19 of a normal 28 day cycle), mid (days 20–22) and late (days 23–27) luteal phases. This stimulation was inhibited by PGF (10 μg/ml) in corpora lutea of mid and late luteal phases. PGF alone did not show a consistent effect on basal progesterone production. The inhibition of hCG stimulated progesterone production by PGF at times corresponding to luteolysis indicates a role for that prostaglandin in the process of luteolysis in the human corpus luteum.  相似文献   

13.
7β-hydroxy-epiandrosterone (7β-OH-EPIA) has been shown to be cytoprotective in various organs including the brain. It has also been shown that prostaglandin D2 (PGD2) and its spontaneous metabolite 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) are also cytoprotective. It is possible that these prostaglandins derived from circulating mononuclear cells may mediate the actions of 7β-OH-EPIA. The aim of this study, therefore, was to ascertain the effect of 7β-OH-EPIA (in the absence or presence of tumour necrosis factor-α (TNF-α)), a pro-inflammatory stimulus, on the biosynthesis of PGD2, PGE2 and 15d-PGJ2 from human mononuclear cells. Prostaglandins were measured by enzyme immunoassay (EIA). 7β-OH-EPIA alone induced a concentration-dependant increase in the production of PGD2. TNF-α increased PGD2 levels which were enhanced by 7β-OH-EPIA. 7β-OH-EPIA increased 15d-PGJ2 levels both in the absence and presence of TNF-α. 7β-OH-EPIA alone had no effect on PGE2 biosynthesis but suppressed TNF-α-induced PGE2 circa 50%. 7β-OH-EPIA also increased the level of free arachidonic acid and radiolabelled prostaglandins in cells pre-incubated with radiolabelled arachidonic acid, indicating that the increase may occur via the enhanced release of substrate arachidonic acid. 7β-OH-EPIA did not affect levels of the anti-inflammatory cytokine IL-10 indicating that this is an unlikely mechanism by which 7β-OH-EPIA induces its actions but more likely exerts its effects via the production of cytoprotective prostaglandins.  相似文献   

14.
The effect of various anti-inflammatory drugs on the production of prostaglandins E2 and F2α, 6 keto PGF1α and thromboxane B2 by bovine articular chondrocytes was measured by radioimmunoassay. While indomethacin and meclofenamic acid caused a dose-dependent inhibition of all prostanoids measured, the effects of hydrocortisone and colchicine varied with respect to different prostanoids. Hydrocortisone (10−7M – 10−3M) both in the presence and absence of added arachidonic acid, resulted in an inhibition of prostaglandins E2 and F2, and to a lesser extent, 6 keto PGF1α, but T×B2 production was only slightly inhibited by the drug in the absenced of arachidonic acid and markedly increased in its presence. Colchicine (10−7M – 10−3M) had the opposite effect, causing an inhibition of T×B2 and stimulating PGE2 and 6 keto PGF1α production. These findings suggest that certain anti-inflammatory drugs may, in addition to their action on phospholipase A2 and cyclo-oxygenase, exert potent effects at the level of the different synthetases. In order to see whether these alterations in relative prostanoid levels affected proteoglycan metabolism, the effect of anti-inflammatory drugs on proteoglycan synthesis by cultured chondrocytes was tested using 35SO4 labeling methodology. The results showed that the concentrations tested (10−5M to 10−7M), indomethacin, dexamethasone, hydrocortisone and colchicine inhibited 35SO4 incorporation into newly synthesized proteoglycan molecules both in the presence (10−6M) and absence of exogenous arachidonic acid. In the same concentration range choroquine had no effect.These results do not support the hypothesis of direct prostanoid involvement in the modulation of proteoglycan synthesis in articular cartilage.  相似文献   

15.
A study was conducted to determine the effect of suprabasal plasma concentrations of progesterone on the release of prostaglandin F (PGF) at luteolysis and oestrus. Heifers received silicone implants containing 2.5 (n = 4), 5 (n = 4), 6 (n = 3), 7.5 (n = 3), 10 (n = 4), or 15 (n = 3) g of progesterone, or an empty implant (controls, n = 4) between Days 8 and 25 post ovulation. Blood was collected frequently between Days 14 and 28 and assayed for progesterone and 15-ketodihydroprostaglandin F. Basal progesterone concentrations in control heifers did not differ from those in heifers with 2.5- or 5-g implants and remained around 0.4−0.5 nmol l−1 until ovulation in all three groups. In the heifers treated with 6–15 g of progesterone, basal concentrations were maintained at higher (P < 0.05) levels compared with those in the controls, ranging from 0.8 to 1.6 nmol 1−1. The effect of these elevated progesterone levels was to delay ovulation by prolonging the growth of the ovulatory follicle, which continued growing until the implant was removed. In all experimental groups, the first significant increase of the PGF metabolite occurred between Days 15.3 and 16.3 (P > 0.05) and was associated with the onset of a decrease in progesterone concentrations, which had reached levels below 3 nmol 1−1 by Days 17.4−19.1. PGF metabolite peaks associated with luteolysis were frequent until Day 20. In the period from Day 20 until implant removal, sporadic peaks were observed, ranging in number from 1.0 ± 1.2 (mean ± SEM) in the control group to 3.0 ± 1.4 peaks in the heifers treated with 7.5 g of progesterone (P > 0.05). The number of PGF metabolite peaks during that period was higher (P < 0.05) in heifers treated with 10 and 15 g than in controls. A positive correlation was found between the basal concentration of progesterone and the number of PGF peaks after luteolysis (r = 0.54; P < 0.01). Plasma progesterone concentrations above approximately 1.4 nmol l−1 were able to maintain the release of PGF until the progesterone implants were removed and plasma levels decreased to basal values. These heifers had a preovulatory PGF release pattern resembling that found in repeat breeder heifers.  相似文献   

16.
Prostaglandins have been shown to be involved in the mechanism of renin secretion in a variety of situations. Both arachidonic acid and prostaglandin endoperoxide have been shown to release renin from cortical slices and to be converted to PGI2 by cortical microsomes. In the present studies PGI2 was found to cause a time dependent increase in renin release from rabbit renal cortical slices, a system isolated from any indirect effects that result from the administration of prostaglandins . The stimulation was linear up to 30 minutes and effective over a range of concentrations from 10−7 M to 10−5 M. At similar concentrations 6-keto-prostaglandin F was not active on these slices. Thus, it is proposed that PGI2 exerts a direct effect on the release of renin from cortical cells and may be the mediator of arachidonate or prostaglandin endoperoxide stimulated renin secretion.  相似文献   

17.
Recently we have found that chemotactic factors stimulate neutrophils in suspension to aggregate. Because of an obvious analogy to platelet aggregation, we examined the influence of three prostaglandins on this process. Prostaglandins E1, E2 and F alone did not cause aggregation of the neutrophils but were able to partially inhibit the aggregation response induced by the synthetic chemotactic tripeptide, formly-methionyl-leucyl-phenylalanine. The minimal inhibitory concentrations for prostaglandins E1, E2 and F were 10−7, 10−6 and 10−5M, respectively. These results are similar to those found for the prostaglandin-induced inhibition of platelet aggregation. It may be, therefore, that neutrophil aggregation, like platelet aggregation, is modulated by intracellular prostaglandins and other products of arachidonic acid metabolism.  相似文献   

18.
Preliminary characterization indicated the presence of separate prostaglandin (PG)E1 and (PG)F binding sites in membrane fractions prepared from bovine corpora lutea. These differ in the rate and temperature dependence of the specific binding. Equilibrium binding data indicate the apparent dissociation constants as 1.32 × 10−9M and 2.1 × 10−8M for PGE1 and PGF, respectively. Competition of several natural prostaglandins for the PGE1 and PGF bovine luteal specific binding sites indicates specificity for the 9-keto or 9α-hydroxyl moiety, respectively. Differences in relative ability to inhibit 3H-PG binding were found due to sensitivity to the absence or presence of the 5,6-cis-double bond as well.Bovine luteal function was affected following treatment of heifers with 25 mg PGF as measured by reduced estrous cycle length, decreased corpus luteum size and significantly decreased plasma progesterone levels. In contrast, treatment with 25 mg PGE1 resulted in cycle lengths comparable to those of non-treated herdmates with no apparent modification in corpus luteum size. However, plasma progesterone levels were increased significantly following PGE1 treatment compared to pretreatment values. In so far as data obtained on PGF relative binding affinity to the bovine CL can be compared to data obtained independently on PGF induced luteolysis in the bovine, PGF relative binding to the CL and luteolysis appeared to be associated. By similar reasoning, there was no apparent relationship between PGE1 relative binding affinity in the luteal fractions and luteolysis in estrous cyclic cattle.  相似文献   

19.
The effects of prostaglandin (PG) E1, E2, A1, F, F or D2 on the rat renal cortical, outer medullary and inner medullary adenylate cyclase-cyclic AM systems were examined. While high concentrations (8X10−4M) of each prostaglandin stimulated adenylate cyclase activity in each area of the kidney, PGE1 was the only prostaglandin to stimulate at 10−7M. PGA's were the only prostaglandins tested besides PGE's which stimulated adenylate cyclase at less than 10−4M. This effect of PGA's was limited to the outer medulla. PGD2 was the least stimulatory. Observations with renal slices yielded qualitatively results. The PGE's were the most potent in each area with PGA's only stimulatory in the outer medulla. O2 deprivation (5% O2) lowered the slice cyclic AMP content in each area of the kidney. In the cortex and outer medulla, prostaglandin mediated increases in cyclic AMP content were either lower or absent at 5% O2 compared to 95% O2. However, in the inner medulla PGE stimulation was observed only at 5% O2 and not 95% O2. No other prostaglandins were found to increase inner medullary cyclic AMP content at 95% or 5% O2. These results illustrate that the adenylate cyclase-cyclic AMP system responds uniquely to prostaglandins in each area of the kidney. Consideration of these results along with correlative observations suggests that inner medullary produced PGE's may act as local modulators of inner medullary adenylate cyclase.  相似文献   

20.
Rhinovirus (RV) infections account for approximately two thirds of all virus-induced asthma exacerbations and often result in an impaired response to β2 agonist therapy. Using an in vitro model of RV infection, we investigated the mechanisms underlying RV-induced β2 adrenoceptor desensitization in primary human airway smooth muscle cells (ASMC). RV infection of primary human bronchial epithelial cells (HBEC) for 24 hours produced conditioned medium that caused β2 adrenoceptor desensitization on ASMCs without an effect on ASMCs viability. Less than 3 kDa size fractionation together with trypsin digestion of RV-induced conditioned medium did not prevent β2 adrenoceptor desensitization, suggesting it could potentially be mediated by a small peptide or lipid. RV infection of BECs, ASMCs and fibroblasts produced prostaglandins, of which PGE2, PGF and PGI2 had the ability to cause β2 adrenoceptor desensitization on ASMCs. RV-induced conditioned medium from HBECs depleted of PGE2 did not prevent ASMC β2 adrenoceptor desensitization; however this medium induced PGE2 from ASMCs, suggesting that autocrine prostaglandin production may be responsible. Using inhibitors of cyclooxygenase and prostaglandin receptor antagonists, we found that β2 adrenoceptor desensitization was mediated through ASMC derived COX-2 induced prostaglandins. Since ASMC prostaglandin production is unlikely to be caused by RV-induced epithelial derived proteins or lipids we next investigated activation of toll-like receptors (TLR) by viral RNA. The combination of TLR agonists poly I:C and imiquimod induced PGE2 and β2 adrenoceptor desensitization on ASMC as did the RNA extracted from RV-induced conditioned medium. Viral RNA but not epithelial RNA caused β2 adrenoceptor desensitization confirming that viral RNA and not endogenous human RNA was responsible. It was deduced that the mechanism by which β2 adrenoceptor desensitization occurs was by pattern recognition receptor activation of COX-2 induced prostaglandins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号