首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we have analyzed and compared the diversities of the arbuscular mycorrhizal fungi (AMF) colonizing the roots of five annual herbaceous species (Hieracium vulgare, Stipa capensis, Anagallis arvensis, Carduus tenuiflorus, and Avena barbata) and a perennial herbaceous species (Brachypodium retusum). Our goal was to determine the differences in the communities of the AMF among these six plant species belonging to different families, using B. retusum as a reference. The AMF small-subunit rRNA genes (SSU) were subjected to nested PCR, cloning, sequencing, and phylogenetic analysis. Thirty-six AMF phylotypes, belonging to Glomus group A, Glomus group B, Diversispora, Paraglomus, and Ambispora, were identified. Five sequence groups identified in this study clustered to known glomalean species or isolates: group Glomus G27 to Glomus intraradices, group Glomus G19 to Glomus iranicum, group Glomus G10 to Glomus mosseae, group Glomus G1 to Glomus lamellosum/etunicatum/luteum, and group Ambispora 1 to Ambispora fennica. The six plant species studied hosted different AMF communities. A certain trend of AMF specificity was observed when grouping plant species by taxonomic families, highlighting the importance of protecting and even promoting the native annual vegetation in order to maintain the biodiversity and productivity of these extreme ecosystems.  相似文献   

2.
Abstract

Members of the Australian native perennial Fabaceae have been little explored with regard to their root biology and the role played by arbuscular mycorrhizal (AM) fungi in their establishment, nutrition and long-term health. The ultimate goal of our research is to determine the dependency of native perennial legumes on their co-evolved AM fungi and conversely, the impact of AM fungal species in agricultural fields on the productivity of sown native perennial legume pastures. In this paper we investigate the colonisation morphology in roots and the AMF, identified by spores extracted from rhizosphere soil, from three replicate plots of each of the native legumes, Cullen australasicum, C. tenax and Lotus australis and the exotic legumes L. pedunculatus and Medicago sativa. The plants were grown in an agricultural field. The level and density of colonisation by AM fungi, and the frequency of intraradical and extraradical hyphae, arbuscules, intraradical spores and hyphal coils all differed between host plants and did not consistently differ between native and exotic species. However, there were strong similarities between species in the same genus. The three dominant species of AM fungi in rhizosphere soil also differed with host plant, but one fungus (Glomus mosseae) was always the most dominant. Sub-dominant AM species were the same between species in the same genus. No consistent differences in dominant spores were observed between the exotic and native Fabaceae species. Our results suggest that plant host influences the mycorrhizal community in the rhizosphere soil and that structural and functional differences in the symbiosis may occur at the plant genus level, not the species level or due to provenance.  相似文献   

3.
1. Arbuscular mycorrhizal fungi (AMF) commonly colonise isoetid species inhabiting oxygenated sediments in oligotrophic lakes but are usually absent in other submerged plants. We hypothesised that organic enrichment of oligotrophic lake sediments reduces AMF colonisation and hyphal growth because of sediment O2 depletion and low carbon supply from stressed host plants. 2. We added organic matter to sediments inhabited by isoetids and measured pore‐water chemistry (dissolved O2, inorganic carbon, Fe2+ and ), colonisation intensity of roots and hyphal density after 135 days of exposure. 3. Addition of organic matter reduced AMF colonisation of roots of both Lobelia dortmanna and Littorella uniflora, and high additions stressed the plants. Even small additions of organic matter almost stopped AMF colonisation of initially un‐colonised L. uniflora, though without reducing plant growth. Mean hyphal density in sediments was high (6 and 15 m cm?3) and comparable with that in terrestrial soils (2–40 m cm?3). Hyphal density was low in the upper 1 cm of isoetid sediments, high in the main root zone between 1 and 8 cm and positively related to root density. Hyphal surface area exceeded root surface area by 1.7–3.2 times. 4. We conclude that AMF efficiently colonise isoetids in oligotrophic sediments and form extensive hyphal networks. Small additions of organic matter to sediments induce sediment anoxia and reduce AMF colonisation of roots but cause no apparent plant stress. High organic addition induces night‐time anoxia in both the sediment and the plant tissue. Tissue anoxia reduces root growth and AMF colonisation, probably because of restricted translocation of nutrient ions and organic solutes between roots and leaves. Isoetids should rely on AMF for P uptake on nutrient‐poor mineral sediments but are capable of growing without AMF on organic sediments.  相似文献   

4.
The colonisation and diversity of arbuscular mycorrhizal fungi (AMF) on roots of grapevines were investigated in production vineyards located along a 500-km-long stretch of karst along the coast of the Adriatic Sea. AMF communities on roots of grapevines were analysed using temporal temperature gel electrophoresis and sequencing of the 18S and internal transcribed spacer segments of the rDNA operon. The AMF colonisation of these grapevines roots was consistent along the whole of this east Adriatic karst region, at 64 to 82 % of fine roots. The comparison of the AMF communities on the roots of these grapevines showed that the fungal community associated with grapevine roots seems to be relatively stable, with inter-vineyard variability comparable to intra-vineyard variability. Some of the changes in the fungal communities were attributed to environmental factors (plant-available P) and location of the vineyard, although the latter could also have been influenced by an unmeasured environmental factor. A total of 27 taxa of fungi were identified, including taxa from Glomus group B, based on the sequencing of 18S rDNA. Sequencing of the internal transcribed spacer rDNA yielded 30 different fungal taxa, which comprised eight different Glomeromycota taxa, including Glomus sinuosum and Glomus indicum. To our knowledge, this is the first report of grapevine colonisation by G. indicum.  相似文献   

5.
Previous studies have described that arbuscular mycorrhizal fungi (AMF) can reduce the deleterious effect of Verticillium dahliae Kleb. on pepper growth and yield. In mycorrhizal plants, the bioprotection against soil-borne pathogens can result from the preactivation of defence responses that include some structural modifications and the accumulation of Pathogenesis-Related (PR) proteins. Our first objective was to study if V. dahliae induced defence mechanisms in roots before infected pepper developed visible symptoms of disease. The second aim was to determine if AMF induced defence-related enzymatic activities in pepper roots before or after pathogen’s attack. Results showed that the colonization of pepper roots by Glomus deserticola (Trappe, Bloss and Menge) induced the appearance of new isoforms of acidic chitinases, superoxide dismutase (SOD) and, at early stages, peroxidases. In contrast, V. dahliae neither stimulated the phenylpropanoid pathway nor elicited hydrolytic activities in infected pepper roots. Only in mycorrhizal plants, the inoculation with V. dahliae slightly increased both phenylalanine ammonia-lyase (PAL) and peroxidase activities two weeks later. Mycorrhizal-specific induction of new isoforms of acidic chitinases and SOD together with enhanced peroxidase and PAL activities 2 weeks after pathogen inoculation could be involved in the biocontrol of Verticillium-induced wilt in pepper by AMF.  相似文献   

6.
Individuals of Inula ensifolia L. (Asteraceae), a valuable xerothermic plant species with potential therapeutic value, were inoculated under laboratory conditions with different strains of arbuscular mycorrhizal fungi (AMF): (1) Glomus intraradices UNIJAG PL-Bot, (2) G. intraradices UNIJAG PL-Kap, (3) Glomus clarum UNIJAG PL13-2, and (4) AMF crude inoculum from natural stands of I. ensifolia. We found AMF species specificity in the stimulation of thymol derivative production in the roots of I. ensifolia. There was an increase in thymol derivative contents in roots after G. clarum inoculation and at the same time the decreased production of these metabolites in the G. intraradices treatments. Moreover, no correlation between the extent of AMF colonization and the effects of the fungal symbionts on the plant was observed. A multilevel analysis of chlorophyll a fluorescence transients (JIP test) permitted an evaluation of plant vitality, expressed in photosynthetic performance index, influenced by the applied AMF strains, which was found to be in good agreement with the results concerning thymol derivative production. The mechanisms by which AMF trigger changes in phytochemical concentration in plant tissues and their consequences for practice are discussed.  相似文献   

7.
Roots of Phragmites australis from three polluted soils and sediments (a periodically flooded stream bank containing organic pollutants, a high-pH drying sedimentation pond and an acidic, periodically flooded sand polluted by industrial effluents) were sampled over a 1-year cycle of plant growth to assess the degree of colonisation by arbuscular mycorrhizal fungi (AMF). At the dry sedimentation pond, root samples of Juncus effusus and Salix atrocinerea were also taken to assess the presence of AMF throughout the year. Root colonisation was low (<5% root length colonised) but arbuscule presence peaked in P. australis during the spring and autumn prior to flowering. These changes in arbuscule abundance were also seen in a parallel greenhouse trial using seed taken from one of the sites. Roots of J. effusus contained mainly vesicular colonisation but arbuscule activity peaked during the winter months (December–March). S. atrocinerea roots were found to be ectomycorrhizal throughout the year but the fine feeder roots were colonised by AMF. The results confirm that semi-aquatics, like P. australis, can become arbuscular mycorrhizal but that this status changes during the year depending on soil moisture content and plant phenology. The influence of AMF in these polluted soils is uncertain but the potential exists to establish a more diverse plant ecosystem during the landscaping of these areas (phytostabilisation) by management of adapted plant and AMF ecotypes. Accepted: 6 November 2000  相似文献   

8.
Salt stress limits crop yield and sustainable agriculture in most arid and semiarid regions of the world. Arbuscular mycorrhizal fungi (AMF) are considered bio-ameliorators of soil salinity tolerance in plants. In evaluating AMF as significant predictors of mycorrhizal ecology, precise quantifiable changes in plant biomass and nutrient uptake under salt stress are crucial factors. Therefore, the objective of the present study was to analyze the magnitude of the effects of AMF inoculation on growth and nutrient uptake of plants under salt stress through meta-analyses. For this, data were compared in the context of mycorrhizal host plant species, plant family and functional group, herbaceous vs. woody plants, annual vs. perennial plants, and the level of salinity across 43 studies. Results indicate that, under saline conditions, AMF inoculation significantly increased total, shoot, and root biomass as well as phosphorous (P), nitrogen (N), and potassium (K) uptake. Activities of the antioxidant enzymes superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase also increased significantly in mycorrhizal compared to nonmycorrhizal plants growing under salt stress. In addition, sodium (Na) uptake decreased significantly in mycorrhizal plants, while changes in proline accumulation were not significant. Across most subsets of the data analysis, identities of AMF (Glomus fasciculatum) and host plants (Acacia nilotica, herbs, woody and perennial) were found to be essential in understanding plant responses to salinity stress. For the analyzed dataset, it is concluded that under salt stress, mycorrhizal plants have extensive root traits and mycorrhizal morphological traits which help the uptake of more P and K, together with the enhanced production of antioxidant enzymes resulting in salt stress alleviation and increased plant biomass.  相似文献   

9.

Background and Aims

Morphological and biomechanical alterations occurring in woody roots of many plant species in response to mechanical stresses are well documented; however, little is known about the molecular mechanisms regulating these important alterations. The first forest tree genome to be decoded is that of Populus, thereby providing a tool with which to investigate the mechanisms controlling adaptation of woody roots to changing environments. The aim of this study was to use a proteomic approach to investigate the response of Populus nigra woody taproot to mechanical stress.

Methods

To simulate mechanical perturbations, the taproots of 30 one-year-old seedlings were bent to an angle of 90 ° using a steel net. A spatial and temporal two-dimensional proteome map of the taproot axis was obtained. We compared the events occurring in the above-bending, central bending and below-bending sectors of the taproot.

Key Results

The first poplar woody taproot proteome map is reported here; a total of 207 proteins were identified. Spatial and temporal proteomic analysis revealed that factors involved in plant defence, metabolism, reaction wood formation and lateral root development were differentially expressed in the various sectors of bent vs. control roots, seemingly in relation to the distribution of mechanical forces along the stressed woody taproots. A complex interplay among different signal transduction pathways involving reactive oxygen species appears to modulate these responses.

Conclusions

Poplar woody root uses different temporal and spatial mechanisms to respond to mechanical stress. Long-term bending treatment seem to reinforce the defence machinery, thereby enabling the taproot to better overcome winter and to be ready to resume growth earlier than controls.  相似文献   

10.
Escudero V  Mendoza R 《Mycorrhiza》2005,15(4):291-299
We studied seasonal variation in population attributes of arbuscular mycorrhizal (AM) fungi over 2 years in four sites of temperate grasslands of the Argentinean Flooding Pampas. The sites represent a wide range of soil conditions, hydrologic gradients, and floristic composition. Lotus glaber, a perennial herbaceous legume naturalised in the Flooding Pampas, was dominant at the four plant community sites. Its roots were highly colonised by AM fungi. Temporal variations in spore density, spore type, AM root colonisation, floristic composition and soil chemical characteristics occurred in each site and were different among sites. The duration of flooding had no effect on spore density but depressed AM root colonisation. Eleven different types of spores were recognized and four were identified. Two species dominated at the four sites: Glomus fasciculatum and Glomus intraradices. Spore density was highest in summer (dry season) and lowest in winter (wet season) with intermediate values in autumn and spring. Colonisation of L. glaber roots was highest in summer or spring and lowest in winter or autumn. The relative density of G. fasciculatum and G. intraradices versus Glomus sp. and Acaulospora sp. had distinctive seasonal peaks. These seasonal peaks occurred at all four sites, suggesting differences among AM fungus species with respect to the seasonality of sporulation. Spore density and AM root colonisation when measured at any one time were poorly related to each other. However, spore density was significantly correlated with root colonisation 3 months before, suggesting that high colonisation in one season precedes high sporulation in the next season.  相似文献   

11.
Arbuscular mycorrhizal fungal (AMF) symbiosis was thought to be rare in wetland plant roots, although several recent studies suggested that this association might be important in wetland ecosystems. In this research work we have studied the distribution of AMF in the marshy and shoreline vegetation of Deepar Beel Ramsar site of Assam, India. The study reveals the percentage of mycorrhizal colonization in the roots of different plant species which were observed from 20.89 to 86.47% and particularly found larger among the members of the family Poaceae. The Vetiveria zizanioides L. from the family Cyperaceae showed the highest (86.47%) percentage of root colonization, however, only one plant species viz. Scirpus lateriflorus Gmel. from the same family was found to be nonmycorrhizal. The rhizospheric soil samples of most of the plant species were found to be dominated by Glomus morphotypes. All total 18 AMF morphotypes were recorded which comprises four genera viz. Glomus (66.67%), Acaulospora (16.66%), Gigaspora (11.11%) and Scutellospora (5.56%). The observation of diversity of AMF in 25 different plant species among the wetland plants gives a glimpse of AMF diversity and their host selectivity in the said ecosystem.  相似文献   

12.
Arbuscular mycorrhizal (AM) fungi influence the expression of defence-related genes in roots and can cause systemic resistance in plants probably due to the induced expression of specific defence proteins. Among the different groups of defence proteins, plant food allergens were identified. We hypothesized that tomato-allergic patients differently react to tomatoes derived from plants inoculated or not by mycorrhizal fungi. To test this, two tomato genotypes, wild-type 76R and a nearly isogenic mycorrhizal mutant RMC, were inoculated with the AM fungus Glomus mosseae or not under conditions similar to horticultural practice. Under such conditions, the AM fungus showed only a very low colonisation rate, but still was able to increase shoot growth of the wild-type 76R. Nearly no colonisation was observed in the mutant RMC, and shoot development was also not affected. Root fresh weights were diminished in AM-inoculated plants of both genotypes compared to the corresponding controls. No mycorrhizal effects were observed on the biomass and the concentration of phosphate and nitrogen in fruits. Real-time quantitative polymerase chain reaction analysis revealed that six among eight genes encoding for putative allergens showed a significant induced RNA accumulation in fruits of AM-colonised plants. However, human skin reactivity tests using mixed samples of tomato fruits from the AM-inoculated and control plants showed no differences. Our data indicate that AM colonisation under conditions close to horticultural practice can induce the expression of allergen-encoding genes in fruits, but this does not lead necessarily to a higher allergenic potential.  相似文献   

13.
We identified five taxonomic groups of arbuscular mycorrhizal fungi (AMF) inside roots of young trees of six species of legumes and six species of non-legumes from a field site in southern Costa Rica using an AMF group-specific PCR assay of the intergenic transcribed sequence and 18S rRNA gene fragment. Assay specificity was verified by cloning and sequencing representatives from four of the five AMF groups. We found no difference in overall AMF diversity levels between legumes and non-legumes or between plant species. Some groups of AMF may associate more frequently with legumes than others, as Glomus Group A (Glomus mosseae/intradices group) representatives were detected more frequently in legumes than non-legumes relative to Glomus Group B (Glomus etunicatum/claroideum) representatives.  相似文献   

14.
Herbaceous plant species are important components of forest ecosystems, and their persistence in forests may be affected by invasive plant species that reduce mycorrhizal colonization of plant roots. I examined the effect of the invasive plant Alliaria petiolata on arbuscular mycorrhizal fungi (AMF) colonizing the roots of three forest plant species. AMF root colonization and community structure was examined from plants that were growing either in the absence or presence of Alliaria under natural forest conditions. AMF root colonization varied among the plant species but was not significantly affected by Alliaria. With molecular methods, ~12 different taxa of AMF could be distinguished among the root samples, and these taxa belonged to the genera Acaulospora and Glomus, with Glomus dominating AMF communities. There were significant differences between the community of AMF colonizing roots of Maianthemum racemosum and Trillium grandiflorum, but only AMF communities of Maianthemum roots were significantly affected by Alliaria. Indicator species analysis found that an Acaulospora species type was a significant indicator of Maianthemum plants grown in the absence of Alliaria. These results suggest invasive plants like Alliaria may selectively suppress AMF fungi, and this suppression can affect AMF communities colonizing the roots of some native plant species.  相似文献   

15.
The impact of arbuscular mycorrhizal fungi (AMF) on plant ecosystems has been intensively reported. In this research, we explored the difference between native and introduced AMF in promoting the growth of dominant and subordinate plant species. In glasshouse experiments, dominants and subordinates from subtropical grasslands were colonized by native AMF or introduced AMF, Glomus versiforme. The biomass revealed that mycorrhizal dependencies (MD) on the native AMF of the dominants were much higher than those of the subordinates, while MD on the introduced AMF changed following the replacement of native AMF with introduced AMF. A close relationship between biomass promotion and increase in phosphorus uptake was observed, indicating the important role of AMF-enhanced nutrient acquisition by roots. Our results show that plant community structures are partly determined by MD on native AMF, and could be modified by introducing exogenous AMF species.  相似文献   

16.
Plant plasma membrane (pm) vesicles from mycorrhizal tobacco (Nicotiana tabacum cv. Samsun) roots were isolated with negligible fungal contamination by the aqueous two-phase partitioning technique as proven by fatty acid analysis. Palmitvaccenic acid became apparent as an appropriate indicator for fungal membranes in root pm preparations. The pm vesicles had a low specific activity of the vanadate-sensitive ATPase and probably originated from non-infected root cells. In a phosphate-limited tobacco culture system, root colonisation by the vesicular arbuscular mycorrhizal fungus, Glomus mosseae, is inhibited by external nitrate in a dose-dependent way. However, detrimental high concentrations of 25 mM nitrate lead to the highest colonisation rate observed, indicating that the defence system of the plant is impaired. Nitric oxide formation by the pm-bound nitrite:NO reductase increased in parallel with external nitrate supply in mycorrhizal roots in comparison to the control plants, but decreased under excess nitrate. Mycorrhizal pm vesicles had roughly a twofold higher specific activity as the non-infected control plants when supplied with 10–15 mM nitrate.  相似文献   

17.
Although salt has detrimental effects on spore germination of arbuscular mycorrhizal fungi (AMF), their hyphal growth and the colonization rate of plants under laboratory conditions, many salt tolerant plants (the halophytes) are strongly colonized by AMF in their natural habitats. AMF spores in several saline soils consist of to up to 80 % of one single species, Glomus geosporum. In contrast, roots of halophytes are mostly colonized by fungi of the Glomus intraradices group, of which many are as yet uncultured. Salt stress is intimately related to drought in saline habitats. Molecular analyses of genes expressed upon salt stress indicate that aquaporins which facilitate the transfer of water across membranes play a major role in alleviating salt stress in plants. In AMF, genes serving to scavenge reactive oxygen species (ROS) are expressed upon exposure to salt, indicating that fungi have to develop an enhanced oxidative defence. The development of AMF inocula that confer sustained salt tolerance to plants would have enormous practical applications. Many positive reports on salt stress alleviation by AMF exist. However, the state of the art has not yet reached field applications. In contrast to other recent reviews, the present article focuses on ecological aspects of the symbiosis between AMF and halophytes. It also emphasizes the complexity of the interactions between salt and drought stress as well as the role of AMF in alleviating salt stress.  相似文献   

18.
The epiphytic vascular mycobiota is scarce and facultative in semi-arid Mediterranean ecosystems. However, unlike in soil conditions, little is known about the factors driving mycorrhizal communities in epiphytic environments. Here, we investigated the arbuscular mycorrhizal fungi (AMF) harboured by 31 plant species occurring on the trunks of Phoenix dactylifera. We wanted to ascertain if host identity and plant functional traits shape mycorrhizal communities. Specifically, we tested the plant life-cycle (perennial versus annual), the plant life-form (herbaceous versus woody), the plant origin (exotic versus native) and the plant species. The plant affiliation to species strongly influenced the AMF community composition. Plant life-form and plant life-cycle also shaped indicator taxa. The AMF structure differed between annual and perennial species and higher AMF richness was detected in perennial plants. The epiphytic plants associated with AMF irrespective of whether they were native or not, probably because here no functional differences derive from plant origin.  相似文献   

19.
Different species of arbuscular mycorrhizal fungi (AMF) can produce different amounts of extraradical mycelium (ERM) with differing architectures. They also have different efficiencies in gathering phosphate from the soil. These differences in phosphate uptake and ERM length or architecture may contribute to differential growth responses of plants and this may be an important contributor to plant species coexistence. The effects of the development of the ERM of AMF on the coexistence of two co-occurring plant species were investigated in root-free hyphal chambers in a rhizobox experimental unit. The dominant shrub (Salix atrocinerea Brot.) and herbaceous (Conyza bilbaoana J. Rémy) plant species found in a highly alkaline anthropogenic sediment were studied in symbiosis with four native AMF species (Glomus intraradices BEG163, Glomus mosseae BEG198, Glomus geosporum BEG199 and Glomus claroideum BEG210) that were the most abundant members of the AMF community found in the sediment. Different AMF species did not influence total plant productivity (sum of the biomass of C. bilbaoana and S. atrocinerea), but had a great impact on the individual biomass of each plant species. The AMF species with greater extracted ERM lengths (G. mosseae BEG198, G. claroideum BEG210 and the four mixed AMF) preferentially benefited the plant species with a high mycorrhizal dependency (C. bilbaoana), while the AMF species with the smallest ERM length (G. geosporum BEG199) benefited the plant species with a low mycorrhizal dependency (S. atrocinerea). Seed production of C. bilbaoana was only observed in plants inoculated with G. mosseae BEG198, G. claroideum BEG210 or the mixture of the four AMF. Our results show that AMF play an important role in the reproduction of C. bilbaoana coexisting with S. atrocinerea in the alkaline sediment and have the potential to stimulate or completely inhibit seed production. The community composition of native AMF and the length of the mycelium they produce spreading from roots into the surrounding soil can be determinant of the coexistence of naturally co-occurring plant species.  相似文献   

20.
The main objective of this study was to shed light on the previously unknown arbuscular mycorrhizal fungal (AMF) communities in Southern Arabia. We explored AMF communities in two date palm (Phoenix dactylifera) plantations and the natural vegetation of their surrounding arid habitats. The plantations were managed traditionally in an oasis and according to conventional guidelines at an experimental station. Based on spore morphotyping, the AMF communities under the date palms appeared to be quite diverse at both plantations and more similar to each other than to the communities under the ruderal plant, Polygala erioptera, growing at the experimental station on the dry strip between the palm trees, and to the communities uncovered under the native vegetation (Zygophyllum hamiense, Salvadora persica, Prosopis cineraria, inter-plant area) of adjacent undisturbed arid habitat. AMF spore abundance and species richness were higher under date palms than under the ruderal and native plants. Sampling in a remote sand dune area under Heliotropium kotschyi yielded only two AMF morphospecies and only after trap culturing. Overall, 25 AMF morphospecies were detected encompassing all study habitats. Eighteen belonged to the genus Glomus including four undescribed species. Glomus sinuosum, a species typically found in undisturbed habitats, was the most frequently occurring morphospecies under the date palms. Using molecular tools, it was also found as a phylogenetic taxon associated with date palm roots. These roots were associated with nine phylogenetic taxa, among them eight from Glomus group A, but the majority could not be assigned to known morphospecies or to environmental sequences in public databases. Some phylogenetic taxa seemed to be site specific. Despite the use of group-specific primers and efficient trapping systems with a bait plant consortium, surprisingly, two of the globally most frequently found species, Glomus intraradices and Glomus mosseae, were not detected neither as phylogenetic taxa in the date palm roots nor as spores under the date palms, the intermediate ruderal plant, or the surrounding natural vegetation. The results highlight the uniqueness of AMF communities inhabiting these diverse habitats exposed to the harsh climatic conditions of Southern Arabia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号