首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self-association of Calcium-binding Protein S100A4 and Metastasis   总被引:1,自引:0,他引:1  
Elevated levels of the calcium-binding protein S100A4 promote metastasis and in carcinoma cells are associated with reduced survival of cancer patients. S100A4 interacts with target proteins that affect a number of activities associated with metastatic cells. However, it is not known how many of these interactions are required for S100A4-promoted metastasis, thus hampering the design of specific inhibitors of S100A4-induced metastasis. Intracellular S100A4 exists as a homodimer through previously identified, well conserved, predominantly hydrophobic key contacts between the subunits. Here it is shown that mutating just one key residue, phenylalanine 72, to alanine is sufficient to reduce the metastasis-promoting activity of S100A4 to 50% that of the wild type protein, and just 2 or 3 specific mutations reduces the metastasis-promoting activity of S100A4 to less than 20% that of the wild type protein. These mutations inhibit the self-association of S100A4 in vivo and reduce markedly the affinity of S100A4 for at least two of its protein targets, a recombinant fragment of non-muscle myosin heavy chain isoform A, and p53. Inhibition of the self-association of S100 proteins might be a novel means of inhibiting their metastasis-promoting activities.  相似文献   

2.
3.
The role of S100A4 in tumor progression and metastasis is well documented in numerous research articles and summarized in several reviews. Currently S100A4 is categorized as an essential metastasis-promoting factor whose production and secretion from "activated" stromal cells (fibroblasts, immunocytes and vascular cells) is initiated and stimulated by signals derived in tumor cells (cytokines, growth factors and others). However recent data gained from experimental and clinical studies significantly extend our knowledge on S100A4. Implications of S100A4 in various non-malignant pathological conditions have been demonstrated by number of research groups. In the mini-review we attempted to highlight the role of S100A4 in other than cancer important human pathologies, such as autoimmune inflammation (RA) and disorders in cardio-vascular, nervous and pulmonary systems. We suggest that diverse human diseases might have common molecular components and pathway(s). Possibly, inflammatory machinery and S100A4 as its intrinsic constituent could contribute to the pathogenesis of various disorders. Therefore, we presume that facts on S100A4 performance could be attractive for broad range of researchers and clinicians.  相似文献   

4.
Nuclear localization of the metastasis-associated protein S100A4 has been shown to correlate with advanced disease stage in primary colorectal carcinomas (CRC), but nuclear function and its relevance for the metastatic capacity of tumor cells is still unclear. Among several nuclear interacting protein partners suggested for S100A4, the tumor suppressor protein p53 has attracted particular interest, and previous studies suggest direct and indirect modes of interaction between the two proteins. The present study was undertaken to assess coexpression and potential interaction in CRC. TP53 mutational status and S100A4 expression were investigated in a selected series of primary CRC specimens (n = 40) and cell lines (n = 17) using DNA sequencing, western blot, and double immunostaining. Additionally, S100A4 and p53 were experimentally up- and down-regulated in vitro to assess reciprocal effects. For the first time, S100A4 and p53 coexpression was demonstrated in individual CRC cells, with nuclear colocalization as a particularly interesting feature. In contrast to previous studies, no correlation was observed between TP53 mutational status and S100A4 expression, and no evidence was obtained to support reciprocal regulation between the two molecules in the HCT116 isogenic cell line model. In conclusion, S100A4 and p53 were shown to be colocalized in individual nuclei of CRC cells, and it might be speculated whether the proteins interact in this subcellular compartment.  相似文献   

5.
The calcium-binding protein S100A4 (p9Ka) has been shown to cause a metastatic phenotype in rodent mammary tumor cells and in transgenic mouse model systems. mRNA for S100A4 (p9Ka) is present at a generally higher level in breast carcinoma than in benign breast tumor specimens, and the presence of immunocytochemically detected S100A4 correlates strongly with a poor prognosis for breast cancer patients. Recombinant S100A4 (p9Ka) has been reported to interact in vitro with cytoskeletal components and to form oligomers, particularly homodimers in vitro. Using the yeast two-hybrid system, a strong interaction between S100A4 (p9Ka) and another S100 protein, S100A1, was detected. Site-directed mutagenesis of conserved amino acid residues involved in the dimerization of S100 proteins abolished the interactions. The interaction between S100A4 and S100A1 was also observed in vitro using affinity column chromatography and gel overlay techniques. Both S100A1 and S100A4 can occur in the same cultured mammary cells, suggesting that in cells containing both proteins, S100A1 might modulate the metastasis-inducing capability of S100A4.  相似文献   

6.
Experimentally elevated levels of S100A4 induce a metastatic phenotype in benign mammary tumour cells in vivo. In humans, the presence of S100A4 in breast cancer cells correlates strongly with reduced patient survival. Potential interacting binding partners for S100A4 have now been examined using an optical biosensor. There was significant interaction of S100A4 with non-muscle myosin and p53, but not with actin, tropomyosin or tubulin. The results suggest that myosin and p53 are likely to be intracellular targets of S100A4. S100A4 had a greater affinity for wild-type or mutant arg-175-his p53 than for non-muscle myosin. The results suggest that S100A4 might induce metastasis by influencing the function of p53 as well as through its interaction with myosin and that any mechanism is independent of the mutational status of p53.  相似文献   

7.
8.
The cellular response to genotoxic stress is a complex cascade of events including altered protein expression, interactions, modifications, and relocalization, leading to cell cycle arrest and DNA repair or to apoptosis. p53 protein has a central role in this process, and p53 status is an important factor in the response of a tumor to genotoxic anticancer therapy. We studied p53-related changes postexposure to ionizing radiation using top-down mass spectrometry. Initially two cell lines were compared, HCT116 p53 wild type (wt) and p53(-/-), in a time course study postirradiation. In the p53 wt cell line a striking increase of a 10.2-kDa protein was detected, and this protein was identified with MS/MS analysis as S100A6. Further MS profiling led to detection of two post-translationally modified variants of S100A6, namely glutathionylated and cysteinylated forms. In p53 wt cells, a specific shift from glutathionylated to cysteinylated S100A6 occurred postirradiation. The p53 dependence of this specific change in protein level and modification pattern of S100A6 postirradiation was confirmed in a panel of four lung cancer cell lines (H23, U1810, H69, and A549) with different p53 status and using small interfering RNA against p53. Interestingly the closely related S100 family protein S100A4 showed the same changes in modification pattern post-ionizing radiation in the p53 wt lung cancer cell line, and S100A4 also showed p53-dependent expression. Using confocal microscopy, relocalization of S100A6 from nucleus to cytosol and a colocalization with tropomyosin in stress fibers was detected in A549 cells postirradiation. This relocalization coincided with the change in S100A6 modification pattern. Based on these results, we suggest that S100A6 and S100A4 are regulated via redox modifications in vivo and that these proteins are involved in the cellular response to genotoxic stress.  相似文献   

9.
S100B is an EF-hand containing calcium-binding protein of the S100 protein family that exerts its biological effect by binding and affecting various target proteins. A consensus sequence for S100B target proteins was published as (K/R)(L/I)xWxxIL and matches a region in the actin capping protein CapZ (V.V. Ivanenkov, G.A. Jamieson, Jr., E. Gruenstein, R.V. Dimlich, Characterization of S-100b binding epitopes. Identification of a novel target, the actin capping protein, CapZ, J. Biol. Chem. 270 (1995) 14651-14658). Several additional S100B targets are known including p53, a nuclear Dbf2 related (NDR) kinase, the RAGE receptor, neuromodulin, protein kinase C, and others. Examining the binding sites of such targets and new protein sequence searches provided additional potential target proteins for S100B including Hdm2 and Hdm4, which were both found to bind S100B in a calcium-dependent manner. The interaction between S100B and the Hdm2 and/or the Hdm4 proteins may be important physiologically in light of evidence that like Hdm2, S100B also contributes to lowering protein levels of the tumor suppressor protein, p53. For the S100B-p53 interaction, it was found that phosphorylation of specific serine and/or threonine residues reduces the affinity of the S100B-p53 interaction by as much as an order of magnitude, and is important for protecting p53 from S100B-dependent down-regulation, a scenario that is similar to what is found for the Hdm2-p53 complex.  相似文献   

10.
11.
12.
13.
The interaction between human S100 calcium-binding protein B (S100B) and the tumor suppressor protein p53 is considered to be a possible therapeutic target for malignant melanoma. To identify potent inhibitors of this interaction, we screened a fragment library of compounds by means of a fluorescence-based competition assay involving the S100B-binding C-terminal peptide of p53. Using active compounds from the fragment library as query compounds, we constructed a focused library by means of two-dimensional similarity searching of a large database. This simple, unbiased method allowed us to identify several inhibitors of the S100B-p53 interaction, and we elucidated preliminary structure–activity relationships. One of the identified compounds had the potential to inhibit the S100B–p53 interaction in melanoma cells.  相似文献   

14.
The S100 family, with about 20 members in humans, is composed of EF-hand calcium-regulated proteins and is linked to a range of serious human diseases, including cancer and autoimmune and neurological disorders. The oldest S100 family members are found in teleosts (bony fish). The zebrafish, Danio rerio, was suggested as a promising model system for in vivo studies on S100 family functions, and we chose to investigate zebrafish S100Z as the closest homologue of the metastasis-promoting human S100A4. Here, we report the first crystal structure of an S100 protein from this organism, the calcium-bound state of S100Z to 2.03 Å resolution. Crystal packing suggests higher-order oligomerisation of S100Z dimers, with a tetramerisation interface very similar to, but even more extensive than, that reported for S100A4. The interactions are primarily through the C-terminal αIV helices from adjacent dimers in an antiparallel orientation. Structural comparisons between known S100 multimeric assemblies together with analysis of calcium-driven changes to the dimerisation cores suggest a mechanism for calcium-promoted oligomerisation of S100 proteins.  相似文献   

15.
Epidemiological studies report that regular physical activity can reduce the risk for prostate cancer, the most common solid-tumor cancer in US men. Regular exercise alters the serum IGF axis in vivo and reduces cell proliferation while increasing apoptosis in serum-stimulated LNCaP prostate cancer cells in vitro. The present study tests the hypothesis that these effects on tumor cell lines are mediated by enhancement of the function of the p53 gene known to arrest cell growth and induce apoptosis. When LNCaP cells were cultured in exercise serum and compared with control serum, cell growth was reduced by 27%, and there was a similar 33% decrease in proliferating cell nuclear antigen protein, a marker for cell cycling. Apoptosis was increased by 371% with the exercise serum, and there was a 100% increase in p53 protein (75.2 +/- 2.0 vs. 38.2 +/- 2.0 pg/microg protein). When serum was used to stimulate LN-56 cells, a cell line with nonfunctional p53 derived from LNCaP, no significant reduction in cell growth or increase in apoptosis with the exercise serum was observed. These results indicate that exercise training alters serum factors in vivo that increase cellular p53 protein content and is associated with reduced growth and induced apoptosis in LNCaP prostate cancer cells in vitro.  相似文献   

16.
17.
18.
Elevated levels of the calcium-binding regulatory protein, S100A4, have been shown to be causative of a metastatic phenotype in models of cancer metastasis and to be associated with reduced patient survival in breast cancer patients. Recombinant S100A4 protein interacts in vitro in a calcium-dependent manner with the heavy chain of non-muscle myosin isoform A at a protein kinase C phosphorylation site. At present, the mechanism of metastasis induction by S100A4 in vivo is almost completely unknown. The binding of S100A4 to a C-terminal recombinant fragment of non-muscle myosin heavy chain in living HeLa cells has now been shown using confocal microscopy, fluorescence lifetime imaging microscopy and time-correlated single-photon counting. The association between S100A4 and non-muscle myosin heavy chain was studied by determining fluorescence resonance energy transfer-derived changes in the fluorescence lifetime of enhanced cyan fluorescent protein fused to S100A4 in the presence of a recombinant fragment of the C-terminal region of non-muscle myosin heavy chain (rNMMHCIIA) fused to enhanced yellow fluorescent protein. There was no interaction between the non-muscle myosin heavy chain fragment and a calcium-binding-deficient mutant of S100A4 protein which has been shown to be defective in the induction of metastasis in model systems in vivo. The results demonstrate, for the first time, not only direct interaction between S100A4 and a target rNMMHCIIA in live mammalian cells, but also that the interaction between S100A4 and the non-muscle myosin heavy chain in vivo could contribute to the mechanism of metastasis induction by a high level of S100A4 protein.  相似文献   

19.
20.
Werner syndrome (WS) is characterized by the early onset of symptoms of premature aging, cancer, and genomic instability. The molecular basis of the defects is not understood but presumably relates to the DNA helicase and exonuclease activities of the protein encoded by the WRN gene that is mutated in the disease. The attenuation of p53-mediated apoptosis in WS cells and reported physical interaction between WRN and the tumor suppressor p53 suggest that p53 and WRN functionally interact in a pathway necessary for the normal cellular response. In this study, we have demonstrated that p53 inhibits the exonuclease activity of the purified full-length recombinant WRN protein. p53 did not have an effect on a truncated amino-terminal WRN fragment that retains exonuclease activity but lacks the physical interaction domain for p53 located in the carboxyl terminus. Two naturally occurring p53 mutants found in human cancer displayed a reduced ability to inhibit WRN exonuclease activity. In cells arrested in S phase with hydroxyurea, WRN exits the nucleolus and colocalizes with p53 in the nucleoplasm. The regulation of WRN function by p53 is likely to play an important role in the maintenance of genomic integrity and prevention of cancer and other clinical symptoms associated with WS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号