共查询到20条相似文献,搜索用时 0 毫秒
1.
Antibiotic synergy against biofilm-forming <Emphasis Type="Italic">Pseudomonas aeruginosa</Emphasis>
Eight antibiotics (aztreonam, ceftazidim, cefoperazon, cefepim, netilmicin, amikacin, ofloxacin and ciprofloxacin) exhibited
antimicrobial activity individually and/or in combinations against 20 wild-type biofilm-forming strains of Pseudomonas aeruginosa. The strains were less susceptible in biofilm; in 10 strains antibiotic synergy was observed for the combination of aztreonam
and ciprofloxacin. Synergy was also demonstrated in the case of β-lactams and aminoglycosides, β-lactams and fluoroquinolones,
aminoglycosides and fluoroquinolones, and for monobactams and β-lactams although the strains were resistant to the individual
antibiotics. Synergism or partial synergism was found with one or more antibiotic combinations against 32.4% of isolates. 相似文献
2.
Regulation of the balance between production of reactive oxygen species (ROS) by cellular processes and its removal by antioxidant
defense system maintains normal physiological processes. Any condition leading to increased ROS results in oxidative stress
which has been related with a number of diseases including cancer. Improvement in antioxidant defense system is required to
overcome the damaging effects of oxidative stress. Therefore in the present study, effect of the aqueous extract of a medicinal
plant Andrographis paniculata (AP) on antioxidant defense system in liver is investigated in lymphoma bearing AKR mice. Estimating catalase, superoxide
dismutase and glutathione S transferase monitored the antioxidant action. Oral administration of the aqueous extract of A. paniculata in different doses causes a significant elevation of catalase, superoxide dismutase and glutathione S transferase activities.
It reveals the antioxidant action of the aqueous extract of AP, which may play a role in the anticarcinogenic activity by
reducing the oxidative stress. LDH activity is known to increase in various cancers due to hypoxic condition. Lactate dehydrogenase
is used as tumor marker. We find a significant decrease in LDH activity on treatment with AP, which indicates a decrease in
carcinogenic activity. A comparison with Doxorubicin (DOX), an anticancerous drug, indicates that the aqueous extract of AP
is more effective than DOX with respect to its effect on catalase, superoxide dismutase, glutathione S transferase as well
as on lactate dehydrogenase activities in liver of lymphoma bearing mice. 相似文献
3.
Soma Roy Kiranmayee Rao Ch. Bhuvaneswari Archana Giri Lakshmi Narasu Mangamoori 《World journal of microbiology & biotechnology》2010,26(1):85-91
The present study describes the phytochemical profile and antimicrobial activity of Andrographis paniculata. For the present investigation, two samples of A. paniculata extracts, obtained by extraction in chloroform and chloroform + HCl, respectively, were compared for their antimicrobial
activity and further subjected to GC-MS analysis to find out the nature of the compounds responsible for the antimicrobial
activity. The antibacterial activities were assessed by measuring the diameter of the inhibition zones, MIC and MBC values.
Compared to the chloroform + HCl extract, the chloroform extract showed better antimicrobial activity against all the nine
pathogenic bacterial strains tested. The chloroform extract was observed to be active against the opportunistic and pathogenic
gram-negative bacteria, indicating its potential application related to noscomial infections. GC-MS results revealed phenols,
aromatic carboxylic acids and esters in the chloroform extract to be the molecules responsible for the antimicrobial activity
of A. paniculata. This is the first report on analysis of antimicrobial components from A. paniculata, and our results confer the utility of this plant extract in developing a novel broad spectrum antimicrobial agent. 相似文献
4.
In recent decades, many researchers have written numerous articles about microbial biofilms. Biofilm is a complex community of microorganisms and an example of bacterial group behavior. Biofilm is usually considered a sessile mode of life derived from the attached growth of microbes to surfaces, and most biofilms are embedded in self-produced extracellular matrix composed of extracellular polymeric substances (EPSs), such as polysaccharides, extracellular DNAs (eDNA), and proteins. Dispersal, a mode of biofilm detachment indicates active mechanisms that cause individual cells to separate from the biofilm and return to planktonic life. Since biofilm cells are cemented and surrounded by EPSs, dispersal is not simple to do and many researchers are now paying more attention to this active detachment process. Unlike other modes of biofilm detachment such as erosion or sloughing, which are generally considered passive processes, dispersal occurs as a result of complex spatial differentiation and molecular events in biofilm cells in response to various environmental cues, and there are many biological reasons that force bacterial cells to disperse from the biofilms. In this review, we mainly focus on the spatial differentiation of biofilm that is a prerequisite for dispersal, as well as environmental cues and molecular events related to the biofilm dispersal. More specifically, we discuss the dispersal-related phenomena and mechanisms observed in Pseudomonas aeruginosa, an important opportunistic human pathogen and representative model organism for biofilm study. 相似文献
5.
6.
IN 1969, after carbenicillin had been in use for three years in this unit, highly resistant strains of Pseudomonas aeruginosa were isolated for the first time1. Because these resistant strains included, from their first appearance, representatives of two unrelated types, it seemed likely that the resistance was transferable; this hypothesis was supported by experiments showing the transfer of carbenicillin resistance between Ps. aeruginosa and Escherichia coli K12 in vitro and in vivo2–4;. The resistant Ps. aeruginosa produced a penicillinase (β lactamase) similar to that normally produced by some strains of Enterobacteria and different from that normally produced by Ps. aeruginosa2,3, so it seemed likely that the Ps. aeruginosa had initially acquired resistance by the transfer of an R factor from a carbenicillin-resistant member of the Enterobacteriaceae colonizing the same burn. This hypothesis is now supported by a study on strains of Enterobacteria and Ps. aeruginosa isolated in a number of hospitals. We have also found evidence suggesting that Ps. aeruginosa which has acquired this R factor may not show resistance until it has been exposed repeatedly to carbenicillin. 相似文献
7.
Smita Dube Kamna Nanda Reema Rani Namrata Jit Kaur Jatin Kumar Nagpal Dilip J. Upadhyay Ian A. Cliffe Kulvinder Singh Saini Kedar P. Purnapatre 《World journal of microbiology & biotechnology》2010,26(9):1623-1629
Multi-drug resistant Pseudomonas aeruginosa (MDRPA) are emerging as a major threat in the hospitals as they have become resistant to current antibiotics. There is an
immediate requirement of drugs with novel mechanisms as the pipeline of investigational drugs against these organisms is lean.
UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) enzyme that catalyzes the first committed step of bacterial cell wall
biosynthesis is an ideal target for the discovery of novel antibiotics against Gram negative pathogens as they have only one
copy of murA gene in its genome. We have performed biochemical characterization and comparative kinetic analysis of MurA from E. coli and P. aeruginosa. Both enzymes were active at broad range of pH with temperature optima of 37°C. Metal ions did not enhance the activity of
both enzymes. These enzymes had an apparent affinity constant (K
m
) for its substrate UDP-N-acetylglucosamine 36 ± 5.2 and 17.8 ± 2.5 μM and for phosphoenolpyruvate 0.84 ± 0.13 μM and 0.45 ± 0.07 μM
for E. coli and P. aeruginosa enzymes respectively. Both the enzymes showed 5–7 fold shift in IC50 for the known inhibitor fosfomycin upon pre-incubation with the substrate UDP-N-acetylglucosamine. This observation was used
to develop a novel rapid sensitive high throughput assay for the screening of MurA inhibitors. 相似文献
8.
The level of lysozyme in fat body, hemocytes and cell-free hemolymph from Galleria mellonella larvae infected with Pseudomonas aeruginosa was determined and evaluated. In the samples of fat body and hemocytes, an increase in lysozyme content was detected 1 d after infection and then a significant decrease was observed after a prolonged infection time. In the case of cell-free hemolymph, an increase in the lysozyme level was noticeable during the first 30 h post injection and stayed at a similar level for 42 h. The smaller decrease of the lysozyme level after 42 h might be associated with the development of bacteremia of P. aeruginosa in insects. In addition, the gradual increase in the content of lysozyme correlated with the increase of its activity in the hemolymph of the infected larvae as a response to injection with P. aeruginosa. The G. mellonella lysozyme appeared to be insensitive to extracellular proteinases produced in vivo by P. aeruginosa. 相似文献
9.
Young-Joon Lee Hye-Jeong Jang In-Young Chung You-Hee Cho 《Journal of microbiology (Seoul, Korea)》2018,56(8):534-541
Non-mammalian infection models have been developed over the last two decades, which is a historic milestone to understand the molecular basis of bacterial pathogenesis. They also provide small-scale research platforms for identification of virulence factors, screening for antibacterial hits, and evaluation of antibacterial efficacy. The fruit fly, Drosophila melanogaster is one of the model hosts for a variety of bacterial pathogens, in that the innate immunity pathways and tissue physiology are highly similar to those in mammals. We here present a relatively simple protocol to assess the key aspects of the polymicrobial interaction in vivo between the human opportunistic pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, which is based on the systemic infection by needle pricking at the dorsal thorax of the flies. After infection, fly survival and bacteremia over time for both P. aeruginosa and S. aureus within the infected flies can be monitored as a measure of polymicrobial virulence potential. The infection takes ~24 h including bacterial cultivation. Fly survival and bacteremia are assessed using the infected flies that are monitored up to ~60 h post-infection. These methods can be used to identify presumable as well as unexpected phenotypes during polymicrobial interaction between P. aeruginosa and S. aureus mutants, regarding bacterial pathogenesis and host immunity. 相似文献
10.
Soo-Kyoung Kim Xi-Hui Li Hyeon-Ji Hwang Joon-Hee Lee 《Journal of microbiology (Seoul, Korea)》2018,56(12):902-909
Pseudomonas aeruginosa, an opportunistic human pathogen, causes many biofilm-mediated chronic infections. In this study, biofilm structures of various clinical strains of P. aeruginosa isolated from hospitalized patients were examined and their influence on the biofilm-dispersing effects of chemicals was investigated. The clinical isolates formed structurally distinct biofilms that could be classified into three different groups: 1) mushroom-like, 2) thin flat, and 3) thick flat structures. A dispersion of these differently structured biofilms was induced using two biofilm-dispersing agents, anthranilate and sodium nitroprusside (SNP). Although both SNP and anthranilate could disperse all types of biofilms, the thick flat biofilms were dispersed less efficiently than the biofilms of other structures. This suggests that biofilm-dispersing agents have higher potency on the biofilms of porous structures than on densely packed biofilms. 相似文献
11.
Antimicrobial peptides (AMPs) have the potential to become valuable antimicrobial drugs in the coming years, since they offer wide spectrum of action, rapid bactericidal activity, and low probability for resistance development in comparison with traditional antibiotics. The search and improvement of methodologies for discovering new AMPs to treat resistant bacteria such as Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa are needed for further development of antimicrobial products. In this work, the software Peptide ID 1.0® was used to find new antimicrobial peptide candidates encrypted in proteins, considering the physicochemical parameters characteristics of AMPs such as positive net charge, hydrophobicity, and sequence length, among others. From the selected protein fragments, new AMPs were designed after conservative and semi-conservative modifications and amidation of the C-terminal region. In vitro studies of the antimicrobial activity of the newly designed peptides showed that two peptides, P3-B and P3-C, were active against P. aeruginosa Escherichia coli and A. baumannii with low minimum inhibitory concentrations. Peptide P3-C was also active against K. pneumoniae and S. aureus. Furthermore, bactericidal activity and information on the possible mechanisms of action are described according to the scanning electron microscopy studies. 相似文献
12.
Background
Pseudomonas aeruginosa is the leading cause of morbidity and mortality in patients with cystic fibrosis (CF). With chronicity of infection, the organism resides as a biofilm, shows multi-drug resistance, diversifies its colony morphology and becomes auxotrophic. The patients have been found to be colonized with multiple genotypes. The present work was carried out to characterize P. aeruginosa isolated from children with cystic fibrosis using phenotypic and genotypic methods. 相似文献13.
Background
Pseudomonas aeruginosa is a common pathogen in chronic respiratory tract infections. It typically makes a biofilm, which makes treatment of these infections difficult. In this study, we investigated the inhibitory effects of N-acetylcysteine (NAC) on biofilms produced by P. aeruginosa. 相似文献14.
Planktonic and biofilm cells of a clinical urinary isolate of P. aeruginosa were compared in vitro for their ability to adhere to uroepithelial cells, interaction with macrophages, and for production of virulence factors like extracellular proteinase, elastase, hemolysin, phospholipase C and pyochelin. Biofilm cells showed increased adherence to UECs, which was coupled with reduced uptake and intracellular killing by macrophages. Overall there was a decrease in production of extracellular products by biofilm cells. Comparing the two cell forms for their ability to establish infection in an ascending model of acute pyelonephritis, significant enhancement of renal bacterial load, as well as more pronounced renal pathology developed with biofilm cells. 相似文献
15.
The present study aims at biosynthesizing, characterizing and evaluating the biogenic silver nanoparticles (AgNPs) as antimicrobial and antibiofilm against Kocuria rosea and Kocuria rhizophila. Cellfree supernatant of Proteus mirabilis culture was used for biosynthesizing AgNPs, which confirmed by visualizing color change and X-ray diffraction. Transmission electron microscopy showed the formation of AgNPs in the range of 5–40 nm. ART-FTIR spectra provided evidence for presence of proteins as possible biomolecules responsible for stability of AgNPs and act as capping agent. AgNPs had ability to inhibit growth of K. rosea and K. rhizophila. The minimum inhibitory concentration (MIC90) of AgNPs against both strains was 25 μg/mL. Antiadhesive effect of AgNPs was verified at sub-MIC90 dose (12.5 μg/mL). The AgNPs concentrations up to 100 μg/mL were not effective for complete removing the already established biofilms with maximum removing percentage of 30.5–34.9%. In conclusion, the present study demonstrated an unprecedented green process for biosynthesizing stable spherical-shaped AgNPs. Early control is suggested by preventing biofilm formation using low AgNPs concentration (12.5 μg/mL) as a potential ingredient for formulating effective chemical sanitizers. 相似文献
16.
Yasuko Hirakawa Hiraku Sasaki Eiichi Kawamoto Hiroki Ishikawa Tetsuya Matsumoto Naoki Aoyama Koh Kawasumi Hiromi Amao 《BMC veterinary research》2010,6(1):52
Background
Chinchillas (Chinchilla laniger) are popular as pets and are often used as laboratory animals for various studies. Pseudomonas aeruginosa is a major infectious agent that causes otitis media, pneumonia, septicaemia enteritis, and sudden death in chinchillas. This bacterium is also a leading cause of nosocomial infections in humans. To prevent propagation of P. aeruginosa infection among humans and animals, detailed characteristics of the isolates, including antibiotic susceptibility and genetic features, are needed. In this study, we surveyed P. aeruginosa distribution in chinchillas bred as pets or laboratory animals. We also characterized the isolates from these chinchillas by testing for antibiotic susceptibility and by gene analysis. 相似文献17.
Michal Moyal Ben Zvi Amir Zuker Marianna Ovadis Elena Shklarman Hagit Ben-Meir Shamir Zenvirt Alexander Vainstein 《Molecular breeding : new strategies in plant improvement》2008,22(4):543-553
As a major contributor to the flower market, Gypsophila paniculata is an important target for the breeding of new varieties. However, gypsophila breeding is strongly hampered by the sterility
of this species’ genotypes and the lack of a genetic-transformation procedure for this genus. Here we describe the establishment
of a transformation procedure for gypsophila (Gypsophila paniculata L.) based on Agrobacterium inoculation of highly regenerative stem segments. The transformation procedure employs stem explants derived from GA3-pretreated mother plants and a two-step selection scheme. The GA3 treatment was crucial for obtaining high gene-transfer frequencies (75–90% GUS-expressing explants out of total inoculated
explants), as shown using three different gypsophila varieties. An overall transformation efficiency of five GUS-expressing
shoots per 100 stem explants was demonstrated for cv. Arbel. The applicability of the transformation system to gypsophila
was further reinforced by the generation of transgenic plants expressing Agrobacterium rhizogenes
rolC driven by a CaMV 35S promoter. Transgenic gypsophila plantlets exhibited extensive rooting and branching, traits that could
be beneficial to the ornamental industry. 相似文献
18.
Keratinase from Pseudomonas aeruginosa KS-1 was expressed constitutively as an extracellular protein in Escherichia coli with high specific activity of 3.7 kU/mg. It was purified fourfold as a 33 kDa monomeric protein by Q-Sepharose ion exchange
chromatography with a recovery of 95%. It is a serine protease with optimal activity at pH 9 and 50°C. It was stable from
pH 4 to 12 for 1 h with a t1/2 of 12 min at 70°C. It hydrolyzed haemoglobin > fibrin > feather keratin > azo-casein > casein > meat protein > gelatin. Among
synthetic substrates, it efficiently hydrolyzed N-Suc-ala-ala-pro-phe-pNA, N-Suc-ala-ala-ala-pNA, N-Suc-ala-ala-pro-leu-pNA and also plasmin substrate, d-Val-Leu-Lys-pNA 相似文献
19.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes. 相似文献
20.
Thavasi R Subramanyam Nambaru VR Jayalakshmi S Balasubramanian T Banat IM 《Indian journal of microbiology》2011,51(1):30-36
This study deals with production and characterization of biosurfactant from renewable resources by Pseudomonas aeruginosa. Biosurfactant production was carried out in 3L fermentor using waste motor lubricant oil and peanut oil cake. Maximum biomass (11.6 mg/ml) and biosurfactant production (8.6 mg/ml) occurred with peanut oil cake at 120 and 132 h respectively.
Characterization of the biosurfactant revealed that, it is a lipopeptide with chemical composition of protein (50.2%) and
lipid (49.8%). The biosurfactant (1 mg/ml) was able to emulsify waste motor lubricant oil, crude oil, peanut oil, kerosene,
diesel, xylene, naphthalene and anthracene, comparatively the emulsification activity was higher than the activity found with
Triton X-100 (1 mg/ml). Results obtained in the present study showed the possibility of biosurfactant production using renewable,
relatively inexpensive and easily available resources. Emulsification activity found with the biosurfactant against different
hydrocarbons showed its possible application in bioremediation of environments polluted with various hydrocarbons. 相似文献