首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HIV-infected individuals currently cannot be completely cured because existing antiviral therapy regimens do not address HIV provirus DNA, flanked by long terminal repeats (LTRs), already integrated into host genome. Here, we present a possible alternative therapeutic approach to specifically and directly mediate deletion of the integrated full-length HIV provirus from infected and latently infected human T cell genomes by using specially designed zinc-finger nucleases (ZFNs) to target a sequence within the LTR that is well conserved across all clades. We designed and screened one pair of ZFN to target the highly conserved HIV-1 5′-LTR and 3′-LTR DNA sequences, named ZFN-LTR. We found that ZFN-LTR can specifically target and cleave the full-length HIV-1 proviral DNA in several infected and latently infected cell types and also HIV-1 infected human primary cells in vitro. We observed that the frequency of excision was 45.9% in infected human cell lines after treatment with ZFN-LTR, without significant host-cell genotoxicity. Taken together, our data demonstrate that a single ZFN-LTR pair can specifically and effectively cleave integrated full-length HIV-1 proviral DNA and mediate antiretroviral activity in infected and latently infected cells, suggesting that this strategy could offer a novel approach to eradicate the HIV-1 virus from the infected host in the future.  相似文献   

2.
HIV-1 integrates into the host chromosome of infected cells and persists as a provirus flanked by long terminal repeats. Current treatment strategies primarily target virus enzymes or virus-cell fusion, suppressing the viral life cycle without eradicating the infection. Since the integrated provirus is not targeted by these approaches, new resistant strains of HIV-1 may emerge. Here, we report that the engineered recombinase Tre (see Molecular evolution of the Tre recombinase , Buchholz, F., Max Planck Institute for Cell Biology and Genetics, Dresden) efficiently excises integrated HIV-1 proviral DNA from the genome of infected cells. We produced loxLTR containing viral pseudotypes and infected HeLa cells to examine whether Tre recombinase can excise the provirus from the genome of HIV-1 infected human cells. A virus particle-releasing cell line was cloned and transfected with a plasmid expressing Tre or with a parental control vector. Recombinase activity and virus production were monitored. All assays demonstrated the efficient deletion of the provirus from infected cells without visible cytotoxic effects. These results serve as proof of principle that it is possible to evolve a recombinase to specifically target an HIV-1 LTR and that this recombinase is capable of excising the HIV-1 provirus from the genome of HIV-1-infected human cells.Before an engineered recombinase could enter the therapeutic arena, however, significant obstacles need to be overcome. Among the most critical issues, that we face, are an efficient and safe delivery to targeted cells and the absence of side effects.Download video file.(93M, mov)  相似文献   

3.
The “in vitro virus” is a molecular construct to perform evolutionary protein engineering. The “virion(=viral particle)”(mRNA-peptide fusion), is made by bonding a nascent protein with its coding mRNA via puromycin in a test tube for in vitro translation. In this work, the puromycin-linker was attached to mRNA using the Y-ligation, which was a method of two single-strands ligation at the end of a double-stranded stem to make a stem-loop structure. This reaction gave a yield of about 95%. We compared the Y-ligation with two other ligation reactions and showed that the Y-ligation gave the best productivity. An efficient amplification of the in vitro virus with this “viral genome” was demonstrated. Published: October 28, 2002  相似文献   

4.
The recent advances of the evolutionary molecular engineering revealed the effectiveness of bonding strategy for assignment of the phenotype to its genotype, which non-enveloped viruses such as simple bacteriophages adopt. On the other hand, cellular organisms adopt another kind of the strategy, namely the compartmentalzation of both genotype and phenotype molecules in a single compartment enclosed with a cell membrane. The simplest strategy is that adopted by ribozymes in the RNA world. A single molecule carries both genotype and its phenotype. Based on the definition of “virus”-type and “cell”-type of the assignment strategy, we propose a virus-early/cell-late model of the history of life.  相似文献   

5.
Highly active antiretroviral therapy (HAART) suppresses human immunodeficiency virus (HIV) replication to undetectable levels but cannot fully eradicate the virus because a small reservoir of CD4+ T cells remains latently infected. Since HIV efficiently infects only activated CD4+ T cells and since latent HIV primarily resides in resting CD4+ T cells, it is generally assumed that latency is established when a productively infected cell recycles to a resting state, trapping the virus in a latent state. In this study, we use a dual reporter virus—HIV Duo-Fluo I, which identifies latently infected cells immediately after infection—to investigate how T cell activation affects the estab-lishment of HIV latency. We show that HIV latency can arise from the direct infection of both resting and activated CD4+ T cells. Importantly, returning productively infected cells to a resting state is not associated with a significant silencing of the integrated HIV. We further show that resting CD4+ T cells from human lymphoid tissue (tonsil, spleen) show increased latency after infection when compared to peripheral blood. Our findings raise significant questions regarding the most commonly accepted model for the establishment of latent HIV and suggest that infection of both resting and activated primary CD4+ T cells produce latency.  相似文献   

6.
Candidatus Liberobacter,” the uncultured bacterium associated with citrus Huanglongbing (HLB) disease, is an α-Proteobacteria, and two species, “Candidatus L. africanum” and “Candidatus L. asiaticum,” have been characterized by sequence analysis of the 16S rDNA and β operon (rplKAJL-rpoBC) genes. These genes were isolated by PCR and random cloning of DNA from infected plants. However, this strategy is laborious and allowed selection of only three Liberobacter DNA fragments. In this paper, we described isolation of additional genes using Random Amplified Polymorphic DNA (RAPD). In total, 102 random 10-mer primers were used in PCR reactions on healthy and Liberobacter-infected plant DNA. Eight DNA bands amplified from infected plant DNA were cloned and analyzed. Six of them were found to be part of the Liberobacter genome by sequence and hybridization experiments. On these DNA fragments, four genes were identified: nusG, pgm, omp, and a hypothetical protein gene. These results indicate that RAPD can be used to clone DNA of uncultured organisms. Received: 14 September 1998 / Accepted: 6 October 1998  相似文献   

7.
Current antiviral therapy does not cure HIV-infected individuals because the virus establishes lifelong latent infection within long-lived memory T cells as integrated HIV proviral DNA. Here, we report a new therapeutic approach that aims to cure cells of latent HIV infection by rendering latent virus incapable of replication and pathogenesis via targeted cellular mutagenesis of essential viral genes. This is achieved by using a homing endonuclease to introduce DNA double-stranded breaks (dsb) within the integrated proviral DNA, which is followed by triggering of the cellular DNA damage response and error-prone repair. To evaluate this concept, we developed an in vitro culture model of viral latency, consisting of an integrated lentiviral vector with an easily evaluated reporter system to detect targeted mutagenesis events. Using this system, we demonstrate that homing endonucleases can efficiently and selectively target an integrated reporter lentivirus within the cellular genome, leading to mutation in the proviral DNA and loss of reporter gene expression. This new technology offers the possibility of selectively disabling integrated HIV provirus within latently infected cells.  相似文献   

8.
Parent-specific, randomly amplified polymorphic DNA (RAPD) markers were obtained from total genomic DNA ofChlamydomonas reinhardtii. Such parent-specific RAPD bands (genomic fingerprints) segregated uniparentally (through mt+) in a cross between a pair of polymorphic interfertile strains ofChlamydomonas (C. reinhardtii andC. minnesotti), suggesting that they originated from the chloroplast genome. Southern analysis mapped the RAPD-markers to the chloroplast genome. One of the RAPD-markers, “P2” (1.6 kb) was cloned, sequenced and was fine mapped to the 3 kb region encompassing 3′ end of 23S, full 5S and intergenic region between 5S and psbA. This region seems divergent enough between the two parents, such that a specific PCR designed for a parental specific chloroplast sequence within this region, amplified a marker in that parent only and not in the other, indicating the utility of RAPD-scan for locating the genomic regions of sequence divergence. Remarkably, the RAPD-product, “P2” seems to have originated from a PCR-amplification of a much smaller (about 600 bp), but highly repeat-rich (direct and inverted) domain of the 3 kb region in a manner that yielded no linear sequence alignment with its own template sequence. The amplification yielded the same uniquely “sequence-scrambled” product, whether the template used for PCR was total cellular DNA, chloroplast DNA or a plasmid clone DNA corresponding to that region. The PCR product, a "unique" new sequence, had lost the repetitive organization of the template genome where it had originated from and perhaps represented a “complex path” of copy-choice replication.  相似文献   

9.
Current HIV therapy, although highly effective, may cause very serious side effects, making adherence to the prescribed regimen difficult. Mathematical modeling may be used to evaluate alternative treatment regimens by weighing the positive results of treatment, such as higher levels of helper T cells, against the negative consequences, such as side effects and the possibility of resistance mutations. Although estimating the weights assigned to these factors is difficult, current clinical practice offers insight by defining situations in which therapy is considered “worthwhile”. We therefore use clinical practice, along with the probability that a drug-resistant mutation is present at the start of therapy, to suggest methods of rationally estimating these weights. In our underlying model, we use ordinary differential equations to describe the time course of in-host HIV infection, and include populations of both activated CD4+ T cells and CD8+ T cells. We then determine the best possible treatment regimen, assuming that the effectiveness of the drug can be continually adjusted, and the best practical treatment regimen, evaluating all patterns of a block of days “on” therapy followed by a block of days “off” therapy. We find that when the tolerance for drug-resistant mutations is low, high drug concentrations which maintain low infected cell populations are optimal. In contrast, if the tolerance for drug-resistant mutations is fairly high, the optimal treatment involves periods of reduced drug exposure which consequently boost the immune response through increased antigen exposure. We elucidate the dependence of the optimal treatment regimen on the pharmacokinetic parameters of specific antiviral agents.  相似文献   

10.
Neutralizing antibodies are recognized to be one of the essential elements of the adaptive immune response that must be induced by an effective vaccine against HIV. However, only a limited number of antibodies have been identified to neutralize a broad range of primary isolates of HIV-1 and attempts to induce such antibodies by immunization were unsuccessful. The difficulties to generate such antibodies are mainly due to intrinsic properties of HIV-1 envelope spikes, such as high sequence diversity, heavy glycosylation, and inducible and transient nature of certain epitopes. In vitro neutralizing antibodies are identified using “conventional” neutralization assay which uses phytohe-magglutinin (PHA)-stimulated human PBMCs as target cells. Thus, in essence the assay evaluates HIV-1 replication in CD4+ T cells. Recently, several laboratories including us demonstrated that some monoclonal antibodies and HIV-1-specific polyclonal IgG purified from patient sera, although they do not have neutralizing activity when tested by the “conventional” neutralization assay, do exhibit potent and broad neutralizing activity in “unconventional” ways. The neutralizing activity of these antibodies and IgG fractions is acquired through post-translational modifications, through opsonization of virus particles into macrophages and immature dendritic cells (iDCs), or through expression of antibodies on the surface of HIV-1-susceptible cells. This review will focus on recent findings of this area and point out their potential applications in the development of preventive strategies against HIV. Foundation item: Chinese Ministry of Science and Technology 973 program grant awarded to Paul Zhou (2006CB504308).  相似文献   

11.
When highly active antiretroviral therapy is administered for long periods of time to HIV-1 infected patients, most patients achieve viral loads that are “undetectable” by standard assay (i.e., HIV-1 RNA < 50 copies/ml). Yet despite exhibiting sustained viral loads below the level of detection, a number of these patients experience unexplained episodes of transient viremia or viral “blips”. We propose here that transient activation of the immune system by opportunistic infection may explain these episodes of viremia. Indeed, immune activation by opportunistic infection may spur HIV replication, replenish viral reservoirs and contribute to accelerated disease progression. In order to investigate the effects of intercurrent infection on chronically infected HIV patients under treatment with highly active antiretroviral therapy (HAART), we extend a simple dynamic model of the effects of vaccination on HIV infection [Jones, L.E., Perelson, A.S., 2002. Modeling the effects of vaccination on chronically infected HIV-positive patients. JAIDS 31, 369–377] to include growing pathogens. We then propose a more realistic model for immune cell expansion in the presence of pathogen, and include this in a set of competing models that allow low baseline viral loads in the presence of drug treatment. Programmed expansion of immune cells upon exposure to antigen is a feature not previously included in HIV models, and one that is especially important to consider when simulating an immune response to opportunistic infection. Using these models we show that viral blips with realistic duration and amplitude can be generated by intercurrent infections in HAART treated patients.  相似文献   

12.
This paper presents a number of deterministic models for theoretically assessing the potential impact of an imperfect prophylactic HIV-1 vaccine that has five biological modes of action, namely “take,” “degree,” “duration,” “infectiousness,” and “progression,” and can lead to increased risky behavior. The models, which are of the form of systems of nonlinear differential equations, are constructed via a progressive refinement of a basic model to incorporate more realistic features of HIV pathogenesis and epidemiology such as staged progression, differential infectivity, and HIV transmission by AIDS patients. The models are analyzed to gain insights into the qualitative features of the associated equilibria. This allows the determination of important epidemiological thresholds such as the basic reproduction numbers and a measure for vaccine impact or efficacy. The key findings of the study include the following (i) if the vaccinated reproduction number is greater than unity, each of the models considered has a locally unstable disease-free equilibrium and a unique endemic equilibrium; (ii) owing to the vaccine-induced backward bifurcation in these models, the classical epidemiological requirement of vaccinated reproduction number being less than unity does not guarantee disease elimination in these models; (iii) an imperfect vaccine will reduce HIV prevalence and mortality if the reproduction number for a wholly vaccinated population is less than the corresponding reproduction number in the absence of vaccination; (iv) the expressions for the vaccine characteristics of the refined models take the same general structure as those of the basic model.  相似文献   

13.
We study the practical identifiability of parameters, i.e., the accuracy of the estimation that can be hoped, in a model of HIV dynamics based on a system of non-linear Ordinary Differential Equations (ODE). This depends on the available information such as the schedule of the measurements, the observed components, and the measurement precision. The number of patients is another way to increase it by introducing an appropriate statistical “population” framework. The impact of each improvement of the experimental condition is not known in advance but it can be evaluated via the Fisher Information Matrix (FIM). If the non-linearity of the biological model, as well as the complex statistical framework makes computation of the FIM challenging, we show that the particular structure of these models enables to compute it as precisely as wanted. In the HIV model, measuring HIV viral load and total CD4+ count were not enough to achieve identifiability of all the parameters involved. However, we show that an appropriate statistical approach together with the availability of additional markers such as infected cells or activated cells should considerably improve the identifiability and thus the usefulness of dynamical models of HIV.  相似文献   

14.
15.
Site-specific recombinases revolutionized “in vivo” genetic engineering because they can catalyze precise excisions, integrations, inversions, or translocations of DNA between their distinct recognition target sites. We have constructed a synthetic gene encoding Cre recombinase with the GC content 67.7% optimized for expression in high-GC bacteria and demonstrated this gene to be functional in Streptomyces lividans. Using the synthetic cre(a) gene, we have removed an apramycin resistance gene flanked by loxP sites from the chromosome of S. lividans with 100% efficiency. Sequencing of the chromosomal DNA part showed that excision of the apramycin cassette by Cre recombinase was specific.  相似文献   

16.
TheenvelopeproteinofhepatitisBvirus(HBV)consistsofthreeproteins:small(S),middle(M)andlarge(L)[1].TheSproteincarriesalltheinformationrequiredforcellularlipidsmobilization,subviralparticleformationandsecretion.Ithasbeensuccessfullydevelopedasacarriertoexpressf…  相似文献   

17.
The sexually transmitted infection (STI) Herpes simplex virus type-2 (HSV-2) is of public health concern because it is a very common frequently unrecognized lifelong infection, which may facilitate HIV transmission. Within HIV/STI modeling, structural uncertainty has received less attention than parametric uncertainty. By merging the compartments of a “complex” model, a “simple” HSV-2 model is developed. Sexual interactions between female sex workers (FSWs) and clients are modeled using data from India. Latin Hypercube Sampling selects from parameter distributions and both models are run for each of the 10,000 parameter sets generated. Outputs are compared (except for 2,450 unrealistic simulations). The simple model is a good approximation to the complex model once the HSV-2 epidemic has reached 60% of the equilibrium prevalence (95% of the 7,550 runs produced <10% relative error). The simple model is a reduced version of the complex model that retains details implicitly. For late-stage epidemics, the simple model gives similar prevalence trends to the complex model. As HSV-2 epidemics in many populations are advanced, the simple model is accurate in most instances, although the complex model may be preferable for early epidemics. The analysis highlights the issue of structural uncertainty and the value of reducing complexity.  相似文献   

18.
An insecticidal protein gene isolated fromBacillus thuringiensis was transferred into maize by using ultrasonication. The fertile transgenic plants and their progeny were obtained. The Southern hybridization results indicated that the foreign gene had integrated into the maize genome. It has been found that the acoustic intensity and the duration of treatment are the important parameters influencing transformation efficiency by ultrasonication. The maximum relative transformation frequency of 34.1 % was achieved after 30 min of sonication at 0. 5 W/cm2 acoustic intensity. With appropriate parameters the ultrasonication can make a number of micropores formed on the cell surface and minimize the treatment damage to the foreign DNA molecules, thus facilitating the DNA molecules to enter the cells. Project supported by “863” State High Technology Development Program.  相似文献   

19.
This introductory article to the review series entitled “The Cancer Cell’s Power Plants as Promising Therapeutic Targets” is written while more than 20 million people suffer from cancer. It summarizes strategies to destroy or prevent cancers by targeting their energy production factories, i.e., “power plants.” All nucleated animal/human cells have two types of power plants, i.e., systems that make the “high energy” compound ATP from ADP and P i . One type is “glycolysis,” the other the “mitochondria.” In contrast to most normal cells where the mitochondria are the major ATP producers (>90%) in fueling growth, human cancers detected via Positron Emission Tomography (PET) rely on both types of power plants. In such cancers, glycolysis may contribute nearly half the ATP even in the presence of oxygen (“Warburg effect”). Based solely on cell energetics, this presents a challenge to identify curative agents that destroy only cancer cells as they must destroy both of their power plants causing “necrotic cell death” and leave normal cells alone. One such agent, 3-bromopyruvate (3-BrPA), a lactic acid analog, has been shown to inhibit both glycolytic and mitochondrial ATP production in rapidly growing cancers (Ko et al., Cancer Letts., 173, 83–91, 2001), leave normal cells alone, and eradicate advanced cancers (19 of 19) in a rodent model (Ko et al., Biochem. Biophys. Res. Commun., 324, 269–275, 2004). A second approach is to induce only cancer cells to undergo “apoptotic cell death.” Here, mitochondria release cell death inducing factors (e.g., cytochrome c). In a third approach, cancer cells are induced to die by both apoptotic and necrotic events. In summary, much effort is being focused on identifying agents that induce “necrotic,” “apoptotic” or apoptotic plus necrotic cell death only in cancer cells. Regardless how death is inflicted, every cancer cell must die, be it fast or slow.  相似文献   

20.
We have developed a novel linker-primer PCR assay for the detection and quantification of integrated human immunodeficiency virus type 1 (HIV) DNA. This assay reproducibly allowed the detection of 10 copies of integrated HIV DNA, in a background of 2 x 10(5) cell equivalents of human chromosomal DNA, without amplifying extrachromosomal HIV DNA. We have used this assay and a near-synchronous one-step T-cell infection model to investigate the kinetics of viral DNA accumulation following HIV infection. We report here that integrated HIV DNA started accumulating 1 h after the first appearance of extrachromosomal viral DNA and accounted for approximately 10% of the total HIV DNA synthesized in the first round of viral replication. These results highlight the efficient nature of integrase-mediated HIV integration in infected T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号