首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on a patient with severe mental retardation, dysmorphic features as well as juvenile idiopathic arthritis. G-banding indicated two independent karyotypic anomalies in this patient: an interstitial deletion del(X)(p21p22.3) and a rearrangement involving chromosomes 1 and 7, which represents a direct insertion, ins(7;1)(q36;p13.2p31.2). Non-random inactivation of the paternally derived del(X) chromosome was observed in blood lymphocytes and fibroblasts. High resolution analysis of the rearrangement involving chromosomes 1 and 7 subsequently revealed the additional submicroscopic deletion of at least 5 Mb at the 1p13.2 breakpoint. The deletion occurred on the paternal chromosome and encompasses the PTPN22 gene, already known to be associated with juvenile idiopathic arthritis. Our findings underline the importance of closely investigating the breakpoint regions of apparently balanced rearrangements in patients with abnormal phenotypes since complex chromosomal rearrangements (CCRs) may turn out to be unbalanced. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Interstitial deletions of the short arm of chromosome 9 are associated with glioma, acute lymphoblastic leukemia, melanoma, mesothelioma, lung cancer, and bladder cancer. The distal breakpoints of the deletions (in relation to the centromere) in 14 glioma and leukemia cell lines have been mapped within the 400 kb IFN gene cluster located at band 9p21. To obtain information about the mechanism of these deletions, we have isolated and analyzed the nucleotide sequences at the breakpoint junctions in two glioma-derived cell lines. The A1235 cell line has a complex rearrangement of chromosome 9, including a deletion and an inversion that results in two breakpoint junctions. Both breakpoints of the distal inversion junction occurred within AT-rich regions. In the A172 cell line, a tandem heptamer repeat was found on either side of the deletion breakpoint junction. The distal breakpoint occurred 5' of IFNA2; the 256 bp sequenced from the proximal side of the breakpoint revealed 95% homology to long interspersed nuclear elements. One- and two-base-pair overlaps were observed at these junctions. The possible role of sequence overlaps, and repetitive sequences, in the rearrangement is discussed.  相似文献   

3.
We have identified a 300-kb germline deletion in 11p13 in a family with aniridia but no Wilms’ tumor. Cloning and sequencing of the breakpoint revealed that the deletion starts in intron 10 of the PAX6 gene and removes the C-terminal part of the proline-serine-threonine rich domain, leaving both DNA-binding domains intact. The PAX6 gene is joined head-to-head to a LINE-1 (L1) element. The L1 is truncated at the 3′ end, removing part of ORF2. Sequencing of the L1 element shows that it does not encode a functional transposase and is therefore probably not an active element. These data suggest that the L1 element is normally present at the site of the distal deletion endpoint in 11p13. No extensive sequence homologies are detected at the deletion junction points; however, the PAX6 gene as well as the L1 element have runs of T nucleotides at this position, indicating that the deletion occurred by nonhomologous recombination. Several consensus recognition sequences for topoisomerase I flank the deletion site in both sequences, suggesting an involvement of this enzyme during the deletion-recombination process. Received: 22 November 1995 / Revised: 25 March 1996  相似文献   

4.
Ryu B  Song J  Sohn T  Hruban RH  Kern SE 《Genomics》2001,72(1):108-112
A number of carcinomas show high frequency of loss of heterozygosity (LOH) at chromosome 8p, suggesting that putative tumor suppressor genes are present in this region. While searching for homozygous deletions in a panel of pancreatic and biliary tumors, we discovered a homozygous deletion at the microsatellite AFMa224wh5 in chromosome region 8p12-p21. We applied a six-step algorithm comprising germline analysis, breakpoint sequencing, population screening, online gene mapping, allelic discrimination of tumor-associated LOH, and family history analysis. The results indicated that the deletion was likely due to a normal 102-bp deletion polymorphism present in nearly 10% of the study population, not likely to involve a recessive cancer-associated gene. Researchers need to be aware that germline insertion/deletion polymorphisms can affect the results of positional cloning efforts in human neoplasms. This problem would be accentuated in studies of cell lines where a paired sample of constitutional DNA is often unavailable.  相似文献   

5.
6.
Breakpoints on chromosome 22 in the translocation t(9;22) found in Philadelphia positive acute lymphoblastic leukaemia patients fall within two categories. In the first the breakpoint is localized within the breakpoint cluster region of the BCR gene, analogous to the chromosome 22 breakpoint in chronic myeloid leukaemia. The second category has a breakpoint 5' of this area, but still within the BCR gene. We have previously shown that these breakpoints occur within the first intron of the BCR gene and cloned the 9q+ junction from such a patient. We have now determined the sequences around the breakpoints on both translocation partners from this patient as well as the germline regions. The chromosome 9 ABL sequence around the breakpoint shows homology to the consensus Alu sequence whereas the chromosome 22 BCR sequence does not. At the junction there is a 6 bp duplication of the chromosome 22 sequence which is present both in the 9q+ and in the 22q- translocation products. Possible mechanisms for the generation of the translocation are discussed.  相似文献   

7.
We describe a novel chromosome structure in which telomeric sequences are present interstitially, at the apparent breakpoint junctions of structurally abnormal chromosomes. In the linear chromosomes with interstitial telomeric sequences, there were three sites of hybridization of the telomere consensus sequence within each derived chromosome: one at each terminus and one at the breakpoint junction. Telomeric sequences also were observed within a ring chromosome. The rearrangements examined were constitutional chromosome abnormalities with a breakpoint assigned to a terminal band. In each case (with the exception of the ring chromosome), an acentric segment of one chromosome was joined to the terminus of an apparently intact recipient chromosome. One case exhibited apparent instability of the chromosome rearrangement, resulting in somatic mosaicism. The rearrangements described here differ from the telomeric associations observed in certain tumors, which appear to represent end-to-end fusion of two or more intact chromosomes. The observed interstitial telomeric sequences appear to represent nonfunctional chromosomal elements, analogous to the inactivated centromeres observed in dicentric chromosomes.  相似文献   

8.
Vazna A  Havlovicova M  Sedlacek Z 《Gene》2008,407(1-2):186-192
The breakpoint junction on a ring chromosome 17 in a girl with autism, mental retardation, mild dysmorphism and neurofibromatosis was identified and analysed at the nucleotide level. The extent of the deleted segments was about 1.9 Mb on 17p and about 1.0 Mb on 17q. The structure of the junction between the 17p and 17q arms, especially the lack of significant homology between the juxtaposed genomic regions and the presence of short microhomology at the junction site, indicated non-homologous end joining as the most likely mechanism leading to the rearrangement. In addition to the 17p-17q junction itself, a de novo 1 kb deletion in a distance of 400 bp from the junction was identified, which arose most likely as a part of the rearrangement. The defect directly inactivated 3 genes, and the deleted terminal chromosome segments harboured 27 and 14 protein-coding genes from 17p and 17q, respectively. Several of the genes affected by the rearrangement are candidates for the symptoms observed in the patient. Additional rearrangements similar to the 1 kb deletion observed in our patient may remain undetected but can participate in the phenotype of patients with chromosomal aberrations. They can also be the reason for repeated failures to clone breakpoint junctions in other patients described in the literature.  相似文献   

9.
The central portion of the dystrophin gene locus is a preferential site for deletions causing progressive muscular dystrophy of the Duchenne type (DMD). The nucleotide sequence of a deletion junction fragment from a DMD patient was determined, revealing that the proximal breakpoint of the deletion in intron 43 fell within the sequence of a transposon-like element. This segment, belonging to the THE-1 family of human transposable elements, is normally present in a complete form in intron 43 of the dystrophin gene. The deletion mutation was maternally transmitted and eliminated two-thirds of the THE-1 element. Analysis of DNA from additional DMD patients revealed a second deletion with the proximal breakpoint mapping within the same THE-1 element.  相似文献   

10.
11.
Using a recombinant DNA probe, we have demonstrated the presence of residual 3.4-kilobase (kb) repeat sequences in a family with a Yq- chromosome. The heterochromatin of this Y variant was not readily detectable with conventional chromosome-banding techniques. These data suggest that the breakpoint of the deletion occurs at the heterochromatin region proximal to the euchromatin/heterochromatin junction.  相似文献   

12.
Summary In a four-generation family, chondrodysplasia punctata was found in a boy and one of his maternal uncles. These two patients also have short stature, as do all female members of the family. DNA molecular analysis of the pseudoautosomal and Xp22.3-specific loci revealed the presence of an interstitial deletion that cosegregates with the phenotypic abnormalities. The proximal breakpoint of this deletion was located distal to the DXS31 locus and the distal breakpoint in the pseudoautosomal region between DXYS59 and DXYS17. This maps the recessive X-linked form of chondrodysplasia punctata between the proximal boundary of the pseudoautosomal region and DXS31, and an Xp gene controlling growth between DXYS59 and DXS31.  相似文献   

13.
14.
In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17-74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS.  相似文献   

15.
Neurofibromatosis type 1 (NF1) microdeletion syndrome is caused by haploinsufficiency of the NF1 gene and of gene(s) located in adjacent flanking regions. Most of the NF1 deletions originate by nonallelic homologous recombination between repeated sequences (REP-P and -M) mapped to 17q11.2, while a few uncommon deletions show unusual breakpoints. We characterized an uncommon 1.5-Mb deletion of an NF1 patient displaying a mild phenotype. We applied high-resolution FISH analysis allowing us to obtain the sequence of the first junction fragment of an uncommon deletion showing the telomeric breakpoint inside the IVS23a of the NF1 gene. Sequence analysis of the centromeric and telomeric boundaries revealed that the breakpoints were present in the AluJb and AluSx regions, respectively, showing 85% homology. The centromeric breakpoint is localized inside a chi-like element; a few copies of this sequence are also located very close to both breakpoints. The in silico analysis of the breakpoint intervals, aimed at identifying consensus sequences of several motifs usually involved in deletions and translocations, suggests that Alu sequences, probably associated with the chi-like element, might be the only recombinogenic motif directly mediating this large deletion.  相似文献   

16.
Recently, we have found an allelic deletion of the secretor alpha(1,2)fucosyltransferase (FUT2) gene in individuals with the classical Bombay phenotype of the ABO system. The FUT2 gene consists of two exons separated by an intron that spans approximately 7 kb. The first exon is noncoding, whereas exon 2 contains the complete coding sequence. Since the 5' breakpoint of the deletion has previously been mapped to the single intron of FUT2, we have cloned the junction region of the deletion in a Bombay individual by cassette-mediated polymerase chain reaction. In addition, the region from the 3' untranslated region of FUT2 to the 3' breakpoint sequence has been amplified from a control individual. DNA sequence analysis of this region indicates that the 5' breakpoint is within a free left Alu monomer (FLAM-C) sequence that lies 1.3 kb downstream of exon 1, and that the 3' breakpoint is within a complete Alu element (AluSx) that is positioned 1.5 kb downstream of exon 2. The size of the deletion is estimated to be about 10 kb. There is a 25-bp sequence identity between the reference DNA sequences surrounding the 5' and 3' breakpoints. This demonstrates that an Alu-mediated large gene deletion generated by unequal crossover is responsible for secretor alpha(1,2)fucosyltransferase deficiency in Indian Bombay individuals.  相似文献   

17.
Germline mutation in the adenomatous polyposis coli (APC) gene results in familial adenomatous polyposis (FAP), a heritable form of colorectal cancer. We have previously reported two novel mutations that delete exons 11 and 14 of the APC gene, respectively, at the cDNA level without any splice junction defects at the genomic level. We describe here the precise breakpoints of the two mutations and the possible mechanisms leading to the genomic rearrangement. The first rearrangement is most likely a topoisomerase-I-mediated non-homologous recombination resulting in a 2-kb deletion that deletes exon 11 of the APC gene. Both 5' and 3' breakpoints have two topoisomerase I recognition sites and runs of pyrimidines within the 10-bp sequences in their vicinity. Further, the 3' breakpoint has an adenine-thymidine-rich region. This is probably the first report of a topoisomerase-I-mediated germline mutation in a tumor suppressor gene. The second rearrangement is most likely an Alu-Alu homologous recombination resulting in a 6-kb deletion encompassing exon 14. The Alu elements at the 5' and 3' breakpoints include the 26-bp core sequence thought to stimulate recombination. In both rearrangements, partial sequences from the long interspersed nuclear element family are in the vicinity of the breakpoints. Other than serving as markers for regions of DNA damage, their precise role in the recombination events, if any, is unclear. Both deletions result in truncated APC proteins missing the beta-catenin- and axin-binding domains, resulting in severe polyposis and cancer.  相似文献   

18.
Four deletions in the human factor VIII gene have been characterized at the sequence level in patients with hemophilia A. Deletion JH 1 extends 57 kb from IVS 10 to IVS 18. Intron 13 and exon 14 are partially deleted in patients JH 7 and JH 37, with a loss of 3.2 and 2.4 kb of DNA, respectively. The 3' deletion breakpoint of the JH 21 event resides in intron 3 and extends 5' into intron 1, resulting in the loss of exons 2 and 3. Seven of the eight breakpoints sequenced (5' and 3' for each of the four deletions) occur in nonrepetitive sequence, while the 3' breakpoint of the JH 1 resides in an Alu repetitive element. All of the deletions are the result of nonhomologous recombination. The 5' and 3' breakpoints of JH 1, JH 7, and JH 37 share 2- to 3-bp homologies at the deletion junctions. In contrast, two nucleotides have been inserted at the JH 21 deletion junction. Short sequence homologies may facilitate end-joining reactions in nonhomologous recombination events.  相似文献   

19.
Deletion of chromosome 9p21 is a crucial event for the development of several cancers including acute lymphoblastic leukemia (ALL). Double strand breaks (DSBs) triggering 9p21 deletions in ALL have been reported to occur at a few defined sites by illegitimate action of the V(D)J recombination activating protein complex. We have cloned 23 breakpoint junctions for a total of 46 breakpoints in 17 childhood ALL (9 B- and 8 T-lineages) showing different size deletions at one or both homologous chromosomes 9 to investigate which particular sequences make the region susceptible to interstitial deletion. We found that half of 9p21 deletion breakpoints were mediated by ectopic V(D)J recombination mechanisms whereas the remaining half were associated to repeated sequences, including some with potential for non-B DNA structure formation. Other mechanisms, such as microhomology-mediated repair, that are common in other cancers, play only a very minor role in ALL. Nucleotide insertions at breakpoint junctions and microinversions flanking the breakpoints have been detected at 20/23 and 2/23 breakpoint junctions, respectively, both in the presence of recombination signal sequence (RSS)-like sequences and of other unspecific sequences. The majority of breakpoints were unique except for two cases, both T-ALL, showing identical deletions. Four of the 46 breakpoints coincide with those reported in other cases, thus confirming the presence of recurrent deletion hotspots. Among the six cases with heterozygous 9p deletions, we found that the remaining CDKN2A and CDKN2B alleles were hypermethylated at CpG islands.  相似文献   

20.
The dilute (d) coat color locus of mouse chromosome 9 has been identified by more than 200 spontaneous and mutagen-induced recessive mutations. With the advent of molecular probes for this locus, the molecular lesion associated with different dilute alleles can be recognized and precisely defined. In this study, two dilute mutations, dilute-lethal20J (dl20J) and dilute prenatal lethal Aa2, have been examined. Using a dilute locus genomic probe in Southern blot analysis, we detected unique restriction fragments in dl20J and Aa2 DNA. Subsequent analysis of these fragments showed that they represented deletion breakpoint fusion fragments. DNA sequence analysis of each mutation-associated deletion breakpoint fusion fragment suggests that both genomic deletions were generated by nonhomologous recombination events. The spontaneous dl20J mutation is caused by an interstitial deletion that removes a single coding exon of the dilute gene. The correlation between this discrete deletion and the expression of all dilute-associated phenotypes in dl20J homozygotes defines the dl20J mutation as a functional null allele of the dilute gene. The radiation-induced Aa2 allele is a multilocus deletion that, by complementation analysis, affects both the dilute locus and the proximal prenatal lethal-3 (pl-3) functional unit. Molecular analysis of the Aa2 deletion breakpoint fusion fragment has provided access to a previously undefined gene proximal to d. Initial characterization of this new gene suggests that it may represent the genetically defined pl-3 functional unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号