首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AM真菌在植物病虫害生物防治中的作用机制   总被引:12,自引:0,他引:12  
罗巧玉  王晓娟  李媛媛  林双双  孙莉  王强  王茜  金樑 《生态学报》2013,33(19):5997-6005
丛枝菌根(Arbuscular Mycorrhizae,AM)真菌是一类广泛分布于土壤生态系统中的有益微生物,能与大约80%的陆生高等植物形成共生体。由土传病原物侵染引起的土传病害被植物病理学界认定为最难防治的病害之一。研究表明,AM真菌能够拮抗由真菌、线虫、细菌等病原体引起的土传性植物病害,诱导宿主植物增强对病虫害的耐/抗病性。当前,利用AM真菌开展病虫害的生物防治已经引起生态学家和植物病理学家的广泛关注。基于此,围绕AM真菌在植物病虫害生物防治中的最新研究进展,从AM真菌改变植物根系形态结构、调节次生代谢产物的合成、改善植物根际微环境、与病原微生物直接竞争入侵位点和营养分配、诱导植株体内抗病防御体系的形成等角度,探究AM真菌在植物病虫害防治中的作用机理,以期为利用AM真菌开展植物病虫害的生物防治提供理论依据,并对本领域未来的发展方向和应用前景进行展望。  相似文献   

2.
Recent developments in water status measurement techniques using the psychrometer, the pressure probe, the osmometer and pressure chamber are reviewed, and the process of cell elongation from the viewpoint of plant-water relations is discussed for plants subjected to various environmental stress conditions. Under water-deficient conditions, cell elongation of higher plants can be inhibited by interruption of water flow from the xylem to the surrounding elongating cells. The process of growth inhibition at low water potentials could be reversed by increasing the xylem water potential by means of pressure application in the root region, allowing water to flow from the xylem to the surrounding cells. This finding confirmed that a water potential field associated with growth process,i.e., the growth-induced water potential, is an important regulating factor for cell elongation other than metabolic factors. The concept of the growth-induced water potential was found to be applicable for growth retardation caused by cold stress, heat stress, nutrient deficiency and salinity stress conditions. In the present review, the fact that the cell elongation rate is primarily associated with how much water can be absorbed by elongating cells under water-deficiency, nutrient deficiency, salt stress, cold stress and heat stress conditions is suggested.  相似文献   

3.
Effects of water-stress treatment of Zea mays L. plants on protoplast volume and photosynthesis in leaf slices exposed to solutions of different osmotic potential ( s) were studied. Decreased photosynthetic capacity in the leaf slices at low tissue w was associated with dehydration-induced protoplast-volume reduction. Leaf slices from plants exposed to in-situ water deficits exhibited greater photosynthetic capacity and relative protoplast volume at low water potential ( w) invitro than tissue from control plants.In-situ water stress induced osmotic adjustment of the leaf tissue as determined by pressure/volume analysis. It is concluded that plant acclimation to low leaf w may involve a reduced degree of cell shrinkage at a given w. This acclimation would allow for the maintenance of relatively higher photosynthetic capacity at low water protentials.Symbols s Osmotic potential - w water potential New Jersey Agricultural Experiment Station Publication No. 12149-6-87  相似文献   

4.
为揭示河竹对长期淹水后恢复正常供水的生理生态响应机制,本研究测定了淹水3个月(TR3)和恢复正常供水3个月(R3)时河竹叶片光合色素、MDA、可溶性蛋白、养分含量和抗氧化酶活性、相对电导率。结果表明,TR3处理时,河竹发生膜脂过氧化,抗氧化系统活性减弱,细胞渗透性增大,渗透调节能力下降,叶片主要养分含量和化学计量比发生明显的适应性调节。与TR3处理相比,R3处理河竹抗氧化系统得到有效的恢复,叶片SOD活性提高了15.58%,相对电导率和MDA含量分别降低了23.64%和43.46%,可溶性蛋白质含量提高了9.58倍,这些指标均恢复到正常生长水平。河竹叶绿体细胞受到的伤害也能得到一定程度的修复,并且叶片主要养分元素含量和化学计量比能完全恢复到正常生长水平,体现出河竹极强的生长恢复能力,可尝试应用于江河湖库消落带的植被恢复。  相似文献   

5.
Summary

Notes are given of species of special interest, including several which are newly observed or rare in Britain, recorded in a survey of fungi around Kindrogan, Perthshire in September 1991.  相似文献   

6.
R. F. Meyer  J. S. Boyer 《Planta》1981,151(5):482-489
Soybean (Glycine max (L.) Merr.) seedlings osmoregulate when the supply of water is limited around the roots. The osmoregulation involves solute accumulation (osmotic adjustment) by the elongating region of the hypocotyls. We investigated the relationship between growth, solute accumulation, and the partitioning of solutes during osmoregulation. Darkgrown seedlings were transplanted to vermiculite containing 1/8 (0.13 x) the water of the controls. Within 12–15 h, the osmotic potential of the elongating region had decreased to-12 bar, but it was-7 bar in the controls. This osmoregulation involved a true solute accumulation by the hypocotyls, since cell volume and turgor were virtually the same regardless of the water regime. The hypocotyls having low water potentials elongated slowly but, when deprived of their cotyledons, did not elongate or accumulate solute. This result indicated a cotyledonary origin for the solutes and a dependence of slow growth on osmotic adjustment. The translocation of nonrespired dry matter from the cotyledons to the seedling axis was unaffected by the availability of water, but partitioning was altered. In the first 12 h, dry matter accumulated in the elongating region of the 0.13 x hypocotyls, and osmotic adjustment occurred. The solutes involved were mostly free amino acids, glucose, fructose, and sucrose, and these accounted for most of the increased dry weight. After osmotic adjustment was complete, dry matter ceased to accumulate in the hypocotyls and bypassed them to accumulate in the roots, which grew faster than the control roots. The proliferation of the roots resulted in an increased root/shoot ratio, a common response of plants to dry conditions.Osmotic adjustment occurred in the elongating region of the hypocotyls because solute utilization for growth decreased while solute uptake continued. Adjustment was completed when solute uptake subsequently decreased, and uptake then balanced utilization. The control of osmotic adjustment was therefore the rate of solute utilization and, secondarily, the rate of solute uptake. Elongation was inhibited by unknown factors(s) despite the turgor and substrates associated with osmotic adjustment. The remaining slow elongation depended on osmotic adjustment and represented some optimum between the necessary inhibition for solute accumulation and the necessary growth for seedling establishment.  相似文献   

7.
The dynamics of stomatal resistance and osmotic adjustment in response to plant water deficits and stage of physiological development was studied in the leaves of spring wheat ( Triticum aestivum L., GWO 1809). Plants were germinated and grown in pots in a growth chamber at the Duke University Phytotron to four physiological stages of development (4th leaf, 7th leaf, anthesis, and soft dough), during which time stomatal resistance, total water potential and osmotic potential were measured on the last fully developed leaf of water stressed and non-stressed plants. Pressure potential was obtained by difference. Stomatal closure of the abaxial and adaxial surfaces were independent of each other, each having a different critical total water potential. The total water potential required to close the stomata on the last fully developed leaf were different at different stages of physiological development, decreasing as the plants grew older. The development of osmoregulation in wheat allows the closure of stomata during the vegetative stage at a high total water potential, but insures that stomata remain open from anthesis through the ear filling period to a lower total water potential.  相似文献   

8.
《Fungal biology》2022,126(8):480-487
Eutypa dieback and Esca are serious fungal grapevine trunk diseases (GTDs). Eutypa dieback is caused by Eutypa lata (Elata), and is often associated Phaeoacremonium minimum (Pmin), and Phaeomoniella chlamydospora (Pch) which are also important contributors to Esca disease.Understanding the complex pathogenesis mechanisms used by these causative fungi may potentially lead targeted treatments for GTDs in the future. Elata has been reported as a wood decay “soft rot” fungus and understanding of Elata’s pathogenesis chemistries can aid in controlling GTDs. Recent work that suggests that Pmin and Pch may contribute to pathogenesis by stimulating hydroxyl radical generation via secretion of low molecular weight phenolic metabolites. Building on these findings, we tested a hypothesis that antioxidants and chelators, and biocontrol agents that have been reported to secrete antioxidants and low molecular weight chelators, may inhibit the growth and activity of these fungi. Butylated hydroxy anisole (BHA) and butylated hydroxytoluene (BHT) were tested as antioxidant/chelators. BHA was found to be a highly effective control measure for the three pathogenic fungi tested at concentrations >0.5 mM. The biocontrol species Bacillus subtilis and Hypocrea (Trichoderma) atroviride were also tested, with both H. atroviride and B. subtilis effectively inhibiting growth of the three GTD fungi.  相似文献   

9.
Acclimation of leaf growth to low water potentials in sunflower   总被引:13,自引:5,他引:13  
Abstract Leaf growth is one of the most sensitive of plant processes to water deficits and is frequently inhibited in field crops. Plants were acclimated for 2 weeks under a moderate soil water deficit to determine whether the sensitivity of leaf growth could be altered by sustained exposure to low water potentials. Leaf growth under these conditions was less than in the controls because expansion occurred more slowly and for less of the day than in control leaves. However, acclimated leaves were able to grow at leaf water potentials (Ψ1) low enough to inhibit growth completely in control plants. This ability was associated with osmotic adjustment and maintenance of turgor in the acclimated leaves. Upon rewatering, the growth of acclimated leaves increased but was less than the growth of controls, despite higher concentrations of cell solute and greater turgor in the acclimated leaves than in controls. Therefore, factors other than turgor and osmotic adjustment limited the growth of acclimated leaves at high ψ1 Four potentially controlling factors were investigated and the results showed that acclimated leaves were less extensible and required more turgor to initiate growth than control leaves. The slow growth of acclimated leaves was not due to a decrease in the water potential gradient for water uptake, although changes in the apparent hydraulic conductivity for water transport could have occurred. It was concluded that leaf growth acclimated to low ψ1, by adjusting osmotically, and the concomitant maintenance of turgor permitted growth where none otherwise would occur. However, changes in the extensibility of the tissue and the turgor necessary to initiate growth caused generally slow growth in the acclimated leaves.  相似文献   

10.
The snow mold fungus, Sclerotinia borealis, shows optimal growth at 4°C on potato dextrose agar (PDA) and can grow even at subzero temperature. Its mycelial growth was improved on frozen PDA at −1°C and on PDA containing potassium chloride (KCl) (water potential, −4.27 to −0.85 MPa) or d(−) sorbitol (−3.48 to −0.92 MPa). Its optimal growth temperature shifted from 4 to 10°C on PDA amended with KCl or sorbitol, indicating that inherent optimal growth occurs at high temperatures. These results suggest that S. borealis uses concentrated nutrients in the frozen environment and that such physiologic characteristics are critical for the fungus to prevail at subzero temperatures.  相似文献   

11.
AIMS: To study the improvement of tolerance to low water activity (aw) and desiccation during spray drying in Pantoea agglomerans cells subjected to mild osmotic stress during growth. METHODS AND RESULTS: The micro-organism was cultured in an unmodified liquid (control) or in aw-modified media, and viability of these cells was evaluated on unstressed (0.995) and 0.96 aw stressed solid media, in order to check total viability and aw stress tolerance respectively. Significant improvements in viability on unmodified medium were observed with cells grown for 24 h in NaCl 0.98 aw, glycerol 0.98 aw and 0.97 aw and for 48 h in NaCl 0.98 aw and 0.97 aw modified media. Both yield improvements and water stress tolerance were achieved with low aw media. Cells grown for 24 h in NaCl 0.98 aw or for 48 h in NaCl 0.98 aw, 0.97 aw and 0.96 aw, glucose 0.97 aw and glycerol 0.97 aw showed improved aw stress tolerance in comparison with control cells. The best results were obtained with NaCl treatments (0.98 aw and 0.97 aw) which also exhibited better survival rates than control cells during spray-drying process and maintained their efficacy against postharvest fungal pathogens in apples and oranges. CONCLUSIONS: NaCl treatments are very appropriate for improving P. agglomerans low aw tolerance obtaining high production levels and maintaining biocontrol efficacy. SIGNIFICANCE AND IMPACT OF THE STUDY: Improving stress tolerance of biocontrol agents could be an efficient way to obtain consistency and maintain efficacy of biological control under practical conditions.  相似文献   

12.
The cucurbit powdery mildew (CPM) caused by different fungal species is a major concern for cucurbit crops around the world. In Argentina CPM constitutes the most common and damaging disease for cucurbits, especially for squash crops (Cucurbita moschata). The present study displays initial insights into the knowledge of the disease in western Argentina, including the determination of the prevalent species causing CPM, as well as the evaluation of the resistance of squash cultivars and breeding lines. Fungal colonies were isolated from samples collected in Mendoza province, Argentina. A field trial was also performed to assess the resistance of five squash accessions, including commercial cultivars and breeding lines. The severity of CPM was analyzed and epidemiological models were built based on empirical data. The morphological determinations and analysis with specific molecular markers confirmed Podosphaera xanthi as the prevalent causal agent of CPM in Mendoza. The results od the field trial showed differences in the resistance trait among the squash accessions. The advanced breeding line BL717/1 showed promising results as source of CPM resistance for the future development of open pollinated resistant cultivars, a crucial tool for an integrative control of the disease.  相似文献   

13.
利用盆栽实验研究了水分胁迫条件下AM真菌对柠条锦鸡儿(Caragana korshinskii)生长和抗旱性的影响.在土壤相对含水量为80%、60%和40%条件下,分别接种摩西球囊霉(Glomus mosseae)和柠条锦鸡儿根际土著菌,结果表明,水分胁迫对AM真菌的接种效果有显著影响.不同水分条件下,接种AM真菌显著提高了宿主植物根系菌根侵染率.土壤相对含水量为40%~60%时,接种株的株高、茎粗、生物干重和叶片保水力明显高于不接种株;接种AM真菌提高了植株对土壤有效N和有效P的利用率,增加了植株全P、叶片叶绿素和可溶性糖含量以及SOD、POD、CAT等保护酶活性.土壤相对含水量为40%时,叶片MDA含量明显下降.水分胁迫条件下,以接种柠条锦鸡儿根际土著菌的效果最佳.AM真菌增强宿主植物的抗旱性可能源于促进宿主植物根系对土壤水分和矿质元素吸收的直接作用和改善植物体内生理代谢活动、提高保护酶活性的间接作用.  相似文献   

14.
We studied the effect of low above-zero temperature (2°C) on the content of low-molecular antioxidants (ascorbic acid, glutathione, and carotenoids) and also activities of antioxidant enzymes (ascorbate peroxidase, APO; catalase, CAT; glutathione reductase, GR; and superoxide dismutase, SOD) in green barley (Hordeum vulgare L.) seedlings. Under stress conditions, the content of low-molecular antioxidants, especially that of reduced ascorbate form, increased. Low-temperature stress activated APO, CAT, GR, and SOD. First enzymes responding to the action of stress factor were APO and CAT, i.e., enzymes neutralizing hydrogen peroxide in plant cells, which indicated H2O2 active generation at low temperature. Cytoplasmic SOD was more active than its chloroplast isoforms. This indicates that oxidative process initiation under low-temperature stress occurred more active in the cytosol. After termination of stress-factor action, the content of total ascorbate, glutathione, and carotenoids reduced rapidly to the level close to the initial one. During post-stress period, the amount of reduced ascorbate declined as well; however, it remained at the level higher than the initial one. Activities of APO and CAT dropped sharply; activities of GR and SOD reduced gradually. Thus, reduced ascorbate, APO, and CAT play an important role in plant cell defense against above-zero temperatures close to zero; reduced ascorbate, GR, and SOD are especially important during post-stress period.  相似文献   

15.
The model presented here modifies a susceptible-infected (SI) host–pathogen model to determine the influence of mating system on the outcome of a host–pathogen interaction. Both deterministic and stochastic (individual-based) versions of the model were used. This model considers the potential consequences of varying mating systems on the rate of spread of both the pathogen and resistance alleles within the population. We assumed that a single allele for disease resistance was sufficient to confer complete resistance in an individual, and that both homozygote and heterozygote resistant individuals had the same mean birth and death rates. When disease invaded a population with only an initial small fraction of resistant genes, inbreeding (selfing) tended to increase the probability that the disease would soon be eliminated from a small population rather than become endemic, while outcrossing greatly increased the probability that the population would become extinct due to the disease.  相似文献   

16.
水分胁迫下AM真菌对沙打旺生长和抗旱性的影响   总被引:7,自引:0,他引:7  
郭辉娟  贺学礼 《生态学报》2010,30(21):5933-5940
利用盆栽试验研究了水分胁迫条件下接种AM真菌对优良牧草和固沙植物沙打旺(Astragalus adsurgens Pall.)生长和抗旱性的影响。在土壤相对含水量为70%、50%和30%条件下,分别接种摩西球囊霉(Glomus mosseae)和沙打旺根际土著菌,不接种处理作为对照。结果表明,水分胁迫显著降低了沙打旺植株(无论接种AM真菌与否)的株高、分枝数、地上部干重和地下部干重,并显著提高了土著AM真菌的侵染率,对摩西球囊霉的侵染率无显著影响。接种AM真菌可以促进沙打旺生长和提高植株抗旱性,但促进效应因土壤含水量和菌种不同而存在差异。不同水分条件下,接种AM真菌显著提高了植株菌根侵染率、根系活力、地下部全N含量和叶片CAT活性。土壤相对含水量为30%和50%时,接种株地上部全N、叶片叶绿素、可溶性蛋白、脯氨酸含量和POD活性显著高于未接种株;接种AM真菌显著降低了叶片MDA含量;接种土著AM真菌的植株株高、分枝数、地上部和地下部干重显著高于未接种株。土壤相对含水量为30%时,接种AM真菌显著增加了地上部全P含量和叶片相对含水量;接种摩西球囊霉的植株株高、分枝数、地上部和地下部干重显著高于未接种株。水分胁迫40d,接种AM真菌显著提高了叶片可溶性糖含量。水分胁迫80d,接种株叶片SOD活性显著增加。菌根依赖性随水分胁迫程度增加而提高。沙打旺根际土著菌接种效果优于摩西球囊霉。水分胁迫和AM真菌的交互作用对分枝数、菌根侵染率、叶片SOD、CAT和POD活性、叶绿素、脯氨酸、可溶性蛋白、地上部全N和全P、地下部全N和根系活力有极显著影响,对叶片丙二醛和地下部全P有显著影响。AM真菌促进根系对土壤水分和矿质营养的吸收,改善植物生理代谢活动,从而提高沙打旺抗旱性,促进其生长。试验结果为筛选优良抗旱菌种,充分利用AM真菌资源促进荒漠植物生长和植被恢复提供了依据。  相似文献   

17.
Growth, dry root weight of seedlings and root score of apple seedlings cv. McIntosh were reduced when soils were inoculated with Pratylenchus penetrans, Penicillium janthinellum, Constantinella terrestris, Trichoderma sp., and 4 strains of Bacillus subtilis. Trichoderma sp., and B-1 and B-26 strains of B. subtilis alone reduced plant growth but the combination of Trichoderma sp. + B. subtilis (B-1) and Trichoderma sp. + B. subtilis (B-26) increased plant height. Plant height, root weight and root score were significantly reduced when P. penetrans plus B. subtilis or P. penetrans plus fungi plus bacteria were present in the soil. It is suggested that fungi, bacteria, nematodes alone or their combinations such as nematodes plus bacteria or nematodes plus fungi plus bacteria may contribute towards the occurrence of apple replant disease.Contribution number 700.Contribution number 700.  相似文献   

18.
AIMS: The contribution of the glutamate decarboxylase (GAD) acid resistance system to survival and growth of Listeria monocytogenes LO28 in modified atmosphere-packaged foods was examined. METHODS AND RESULTS: The survival and growth of the wild-type LO28 and four GAD deletion mutants (DeltagadA, DeltagadB, DeltagadC, DeltagadAB) in packaged foods (minced beef, lettuce, dry coleslaw mix) during storage at 4, 8 and 15 degrees C were studied. Survival and growth patterns varied with strain, product type, gas atmosphere and storage temperature. In minced beef, the wild-type LO28 survived better (P < 0.05) than the GAD mutant strains at 8 and 15 degrees C. In both packaged vegetables at all storage temperatures, the wild-type strain survived better (P < 0.05) than the double mutant DeltagadAB. The requirement for the individual gad genes varied depending on the packaged food. In the case of lettuce, gadA played the most important role, while the gadB and gadC genes played the greatest role in packaged coleslaw (at 15 degrees C). CONCLUSIONS: This work demonstrates that elements of the GAD system play significant roles in survival of L. monocytogenes LO28 during storage in modified atmosphere-packaged foods. SIGNIFICANCE AND IMPACT OF THE STUDY: A better understanding of how L. monocytogenes behaves in modified atmosphere-packaged foods, and how it responds to elevated carbon dioxide atmospheres.  相似文献   

19.
Abstract

The paucity of information on the moulds in Indian pearl millet (Pennisetum glaucum) led to the studies that were conducted at ICRISAT, India to evaluate (a) 447 germplasm accessions of 32 countries for mould reaction in rainy season, (b) threshed grain mould rating (TGMS) and mycoflora on grains of each accession, and (c) mould scores in field and in vitro. Post physiological maturity evaluation showed that 16% of the accessions secured a mould rating of 2. In TGMS, 18% were mould free and 57% secured a rating of 2 on a 1 – 9 scale. Assessment of twenty representative accessions in vitro against individual and mixed conidial suspensions (1 × 10(6) conidia ml(?1)) of Fusarium moniliforme, F. pallidoroseum and Curvularia pennisetti indicated significant correlation (r = 0.97) between the overall field and in vitro scores of mixed spores inoculations. The mycoflora for TGMS in blotter test revealed that Fusarium moniliforme, F. pallidoroseum, Curvularia pennisetti, Helminthosporium spp., Alternaria spp. and Colletotrichum spp. to be the major fungi affecting pearl millet grain. It is advisable to harvest panicles at the physiological maturity stage to obtain better quality grains. A strong negative correlation between TGMS and % GS (r = 0.4601) and positive correlation between TGMS and % UGS (r = 0.4654) indicated that, the lesser the threshed grain mould rating higher the % seed germination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号