首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plants with poorly attractive flowers or with little floral rewards may have inadequate pollinator service, which in turn reduces seed output. However, pollinator service of less attractive species could be enhanced when they are associated with species with highly attractive flowers (so called ‘magnet‐species’). Although several studies have reported the magnet species effect, few of them have evaluated whether this positive interaction result in an enhancement of the seed output for the beneficiary species. Here, we compared pollinator visitation rates and seed output of the invasive annual species Carduus pycnocephalus when grow associated with shrubs of the invasive Lupinus arboreus and when grow alone, and hypothesized that L. arboreus acts as a magnet species for C. pycnocephalus. Results showed that C. pycnocephalus individuals associated with L. arboreus had higher pollinator visitation rates and higher seed output than individuals growing alone. The higher visitation rates of C. pycnocephalus associated to L. arboreus were maintained after accounting for flower density, which consistently supports our hypothesis on the magnet species effect of L. arboreus. Given that both species are invasives, the facilitated pollination and reproduction of C. pycnocephalus by L. arboreus could promote its naturalization in the community, suggesting a synergistic invasional process contributing to an ‘invasional meltdown’. The magnet effect of Lupinus on Carduus found in this study seems to be one the first examples of indirect facilitative interactions via increased pollination among invasive species.  相似文献   

2.
Abiotic factors are often thought to be the predominant forces shaping desert plant communities. But both positive and negative interactions between plants are frequently observed in deserts, and it is an open question whether they can strongly affect the spatial structure of a desert community. The goal of this study was to answer this question for a plant community in the North American Mojave Desert. Two semi-shrub species, Ambrosia dumosa and Acamptopappus sphaerocephalus, were the focus of this study. At the study site, seedlings emerged predominantly on the northern side of shrubs, indicating positive effects of canopy shading on emergence, but survival of Ambrosia seedlings was much higher in open areas than at the edge of conspecific shrubs. Negative intraspecific interactions also affected Ambrosia shrubs, which did not increase in size over a 4-year period unless the nearest conspecific neighbor had been removed. These negative intraspecific interactions among different life stages of Ambrosia appear to contribute to spatial segregation observed among shrubs of this species. In contrast, Acamptopappus shrubs and their seedlings were aggregated with Ambrosia shrubs, and occurred more often on the northern side of Ambrosia than expected by chance. Removal of Ambrosia neighbors positively affected growth of Acamptopappus, but only when the neighbor was removed on the northern side. For Acamptopappus, an Ambrosia neighbor on the southern side may have some positive effects, which appear to neutralize the negative effects found for northern neighbors. These positive effects were likely at least partly due to shading. Removal of Ambrosia neighbors negatively affected predawn xylem pressure potentials of Acamptopappus, but this effect was only found during one growing season and was briefly reversed during the next. In summary, negative intraspecific interactions appear to cause spatial segregation of Ambrosia shrubs, while a combination of positive and negative interactions apparently contribute to the directional association between Ambrosia and Acamptopappus. Thus plant interactions in this desert appear to shape community structure in at least two dimensions by influencing the distances and in which directions to their neighbors plants can grow and survive.  相似文献   

3.
We investigated the potential for indirect interactions between two prey species, pea aphids ( Acyrthosiphon pisum ) and potato leafhoppers ( Empoasca fabae ), through a shared predator (Nabis spp.), and how these interactions may change across three spatial scales. In greenhouse experiments using small clusters of plants containing pea aphids and/or potato leafhoppers, the predation rates on both pea aphids and potato leafhoppers were independent of the presence of the other species, indicating no indirect interactions. In greenhouse experiments using cages containing 48 plants, when aphids and leafhoppers were confined to separate plants among which nabids could move, pea aphids had a positive effect on the survival of potato leafhoppers from predation. The positive effect of aphids on leafhoppers occurred because nabids spent more time on plants harboring aphids, thereby drawing nabids away from plants containing leafhoppers. Finally, we measured the abundance of nabids in a large-scale experiment designed to manipulate the abundances of pea aphids and potato leafhoppers in alfalfa fields. Fields with high aphid density contained more nabids, thereby suggesting that pea aphids will have a negative indirect effect on potato leafhoppers by increasing the density of nabids within fields. Potato leafhoppers had no indirect effects on pea aphids at any scale. This study shows that indirect interactions between prey species may depend upon spatial scale, because the factors affecting a predator's diet choice on a small scale may differ from those factors affecting a predator's distribution at larger scales.  相似文献   

4.
Natural enemies of plants have the potential to influence the dynamics of plant populations and the structure of plant communities. In diverse tropical forests, research on the effects of plant enemies has largely focused on the diversity-enhancing effects of highly specialized enemies, while the community-level effects of enemies with broader diets have rarely been considered. We investigated the community of insect seed predators interacting with seven tree species in the family Lauraceae on Barro Colorado Island (Panama). We present one of the first quantitative food webs for pre-dispersal insect seed predators and their host plants, and use the information in the web to assess the potential for indirect interactions between the tree species. Our data suggest that there is high potential for indirect interactions between Lauraceae species via their shared seed predators. The strength and direction of these interactions are largely unrelated to the phylogenetic distance and trait similarity between species but are likely governed by the volume of fruit produced by each tree species.  相似文献   

5.
Predators can affect herbivores both through direct consumption (density-mediated interactions) and by changing behavioural, physiological or morphological attributes of the prey (trait-mediated interactions). These effects on the herbivore can in turn affect the plant through density- and trait-mediated indirect interactions (DMIIs and TMIIs). While the effects of DMIIs and TMIIs imposed by predators has been shown to influence plant density and plant communities, we know little about the effects on plant quality. In addition, the DMII and TMII components of the predator may influence each other so that the total effect of the predator on the plant is not simply the sum of the DMII and TMII. We examined DMIIs and TMIIs between a stinkbug predator and a caterpillar, and show how these interactions affect plant quality, as measured by damage, resistance to herbivores, and a defence chemical, peroxidase. We used novel methods to estimate the independent and non-additive contribution of DMIIs and TMIIs to the plant phenotype. Both predator-induced DMIIs and TMIIs caused decreases in the amount of caterpillar herbivory on plants; a strong non-additive effect between the two resulted from redundancy in their effects. TMIIs initiated by the predator were primarily responsible for a decrease in induced plant resistance. However, DMIIs predominated for reducing the production of peroxidase. These data demonstrate how DMIIs and TMIIs initiated by predators cascade through tri-trophic interactions to affect plant damage and induced resistance.  相似文献   

6.
Plant–pollinator interactions determine reproductive success for animal-pollinated species and, in the case of invasive plants, they are supposed to play an important role in invasive success. We compared the invasive Senecio inaequidens to its native congener S. jacobaea in terms of interactions with pollinators. Visitor guild, visitation rate, and seed set were compared over 3 years in three sites in Belgium. Floral display (capitula number and arrangement) and phenology were quantified, and visiting insects were individually censused, i.e. number of visited capitula and time per visited capitulum. As expected from capitula resemblance, visitor guilds of both species were very similar (proportional similarity = 0.94). Senecio inaequidens was visited by 33 species, versus 36 for S. jacobaea. For both species, main visitors were Diptera, especially Syrphidae, and Hymenoptera. Visitation rate averaged 0.13 visitor per capitulum per 10 min for S. inaequidens against 0.08 for S. jacobaea. However, insects visited more capitula per plant on S. jacobaea, due to high capitula density (886 m−2 versus 206 m−2 for S. inaequidens), which is likely to increase self-pollen deposition considerably. Seed set of S. jacobaea was lower than that of S. inaequidens. We suggest that floral display is the major factor explaining the differences in insect visitation and seed set between the two Senecio species.  相似文献   

7.
Problems and concerns in relation to the use of inorganic fertilisers, irrigation, herbicides and pesticides have led to the search for alternative strategies to combat limiting soil nutrient and water levels and the effect of weeds and pests on crops. Greater utilisation of microorganisms in agricultural systems could possibly allow reductions in the use of inorganic fertilisers, water, herbicides and pesticides with no impact on crop yield. Positive plant microbial interactions which are currently under study are considered here.  相似文献   

8.
The population and community level consequences of positive interactions between plants remain poorly explored. In this study we incorporate positive resource-mediated interactions in classic resource competition theory and investigate the main consequences for plant population dynamics and species coexistence. We focus on plant communities for which water infiltration rates exhibit positive dependency on plant biomass and where plant responses can be improved by shading, particularly under water limiting conditions. We show that the effects of these two resource-mediated positive interactions are similar and additive. We predict that positive interactions shift the transition points between different species compositions along environmental gradients and that realized niche widths will expand or shrink. Furthermore, continuous transitions between different community compositions can become discontinuous and bistability or tristability can occur. Moreover, increased infiltration rates may give rise to a new potential coexistence mechanism that we call controlled facilitation.  相似文献   

9.
Aya Yamaguchi  Osamu Kishida 《Oikos》2016,125(2):271-277
Intrapopulation size variation strongly influences ecological interactions because individuals belonging to different size groups have distinct functions. Most demonstrations of the impacts of size variation in trophic systems have focused on size variation in predator species, and the consequences of size variation in prey species are less well understood. We investigated how prey size structure shapes intra‐ and interspecific interactions in experiments with a gape‐limited predator (larvae of the salamander Hynobius retardatus) and its heterospecific prey (frog tadpoles, Rana pirica). We found that large and small tadpole size groups each increased mortality in the other group by intensifying salamander predation; this type of indirect interactions is called apparent competition. The antagonistic impacts on the prey size groups were caused by different size‐specific mechanisms. By consuming small tadpoles, the salamanders grew large enough to consume large tadpoles. The activity of large tadpoles, by increasing the activity of the small tadpoles, may increase the number of encounters with the predator and thus small tadpole mortality. These results suggest that the magnitude of a predator's ecological role, such as whether a top–down trophic cascade is initiated, depends on size variation in its heterospecific prey.  相似文献   

10.
植物邻体间的正相互作用   总被引:1,自引:0,他引:1  
张炜平  王根轩 《生态学报》2010,30(19):5371-5380
植物间的正负相互作用是构建植被群落的重要因素,也是群落生态学研究的中心内容之一。近20a来,植物间正相互作用的研究得到快速发展。综述了正相互作用的定义,不同植物群落中的直接、间接正相互作用及其发生机制,正相互作用研究的实验和模型方法,正负相互作用随胁迫梯度的变化及正相互作用对群落构建的影响。探讨了正相互作用研究前景:(1)进一步理解正负相互作用的平衡及其对群落构建的影响;(2)加深对全球变暖背景下的正相互作用的认识;(3)需把正相互作用研究同进化联系起来;(4)充分发挥正相互作用在生态系统中的推动力作用,把正相互作用应用到生态恢复中,为恢复退化生态系统服务。  相似文献   

11.
The effects of herbivores and diversity on plant communities have been studied separately but rarely in combination. We conducted two concurrent experiments over 3 years to examine how tree seedling diversity, density and herbivory affected forest regeneration. One experiment factorially manipulated plant diversity (one versus 15 species) and the presence/absence of deer (Odocoileus virginianus). We found that mixtures outperformed monocultures only in the presence of deer. Selective browsing on competitive dominants and associational protection from less palatable species appear responsible for this herbivore-driven diversity effect. The other experiment manipulated monospecific plant density and found little evidence for negative density dependence. Combined, these experiments suggest that the higher performance in mixture was owing to the acquisition of positive interspecific interactions rather than the loss of negative intraspecific interactions. Overall, we emphasize that realistic predictions about the consequences of changing biodiversity will require a deeper understanding of the interaction between plant diversity and higher trophic levels. If we had manipulated only plant diversity, we would have missed an important positive interaction across trophic levels: diverse seedling communities better resist herbivores, and herbivores help to maintain seedling diversity.  相似文献   

12.
Abstract. A competitive effect hierarchy for 15 Namaqualand pioneer plant species was established by using the mean mass of the phytometer (Dimorphotheca sinuata) when grown in combination with itself and 14 other species. There were no clear groupings of species in the hierarchy. This competitive hierarchy (gradient) indicated which species are strong competitors (resulting in a low phytometer mass) with D. sinuata and which species are weak competitors (resulting in a high phytometer mass). Each plant species has a certain combination of plant traits which determines its life history strategy and competitive ability. Regressions of various plant traits (measured on plants grown singly) against phytometer biomass indicated which traits were significantly correlated. The traits, most being size-related, were: maximum shoot mass, total mass, stem mass, reproductive mass, leaf area, stem allocation, specific leaf area (SLA), vegetative height × diameter, leaf area ratio (LAR); and mean number of days to flower initiation. A forward stepwise multiple regression of the significant traits was used to determine an equation to predict competitive effect.  相似文献   

13.
Plant Ecology - Plant–plant interactions influence community assembly and species responses to environmental change. However, species interactions are complex phenomena influenced by context...  相似文献   

14.
Facilitation by nurse plants plays an important role in determining community composition in severe environments. Although the unidirectional effect of nurses on beneficiary species has received considerable research interest, nurse‐mediated interactions among beneficiary species (so‐called indirect interactions) are less known. Consequently, community composition in nurse plant systems is generally considered as a simple consequence of the facilitative effect of the nurse even though beneficiary species may significantly contribute to community assembly and modulate the direct nurse effects on the community. In an observational study we assessed nurse effects and nurse‐mediated beneficiary interactions in two contrasting nurse plant systems in dry environments using a newly developed framework. We quantified plant–plant interaction intensity using the relative interaction index (RII) at the community and species level for three Retama sphaerocarpa shrub size‐classes in a semiarid shrubland and four Arenaria tetraquetra cushion plant communities differing in aspect and elevation in dry alpine gravel habitats. The observed RII was split into nurse and beneficiary effects, and related to individual mass, species frequency and abundance using generalized linear mixed models. Results showed predominantly positive nurse effects and negative beneficiary interactions. The effect size of nurse plants, however, was significantly higher than the effect size of beneficiary species in both systems. Individual plant mass and abundance of species was dependent on the combined effects of nurse and beneficiary species whereas species occurrence was related to nurse effects only. Despite evident differences, the semiarid and alpine nurse plant systems showed strong functional parallelisms. We found interdependence between the effects of nurse and beneficiary species on beneficiary plant assemblages emphasizing their combined role on community assembly in both systems. Our results highlight the need to consider indirect interactions to understand fully plant community dynamics.  相似文献   

15.
Summary From 1985–1987, patterns of fruit and seed set were studied in a population of mayapple (Podophyllum peltatum), a clonal, self-incompatible herb found in deciduous woods in eastern North America. Mayapple flowers do not produce nectar, but depend on infrequent visits by nectar-seeking queen bumble bees for pollination. In all years female reproductive success in mayapple colonies was influenced by colony size (number of flowers), by the distance to neighbouring colonies and by proximity to lousewort plants (Pedicularis canadensis), a prolific nectar producer heavily visited by bumble bees. In all years fruit and seed set were greater in mayapple colonies <25 m from lousewort flowers than in matched colonies which were >50 m from lousewort. In 1985 and 1987 the frequency of queen bumble bee visits to flowers in colonies close to lousewort was about four times greater than to distant colonies. In 1986 I removed about 80% of lousewort flowers to test whether the enhanced fruit and seed set in mayapples close to lousewort was pollinator mediated. Mayapple colonies close to flowerless lousewort patches did not differ in fruit or seed set from matched colonies >50 m from lousewort. In contrast, mayapples close to flowering lousewort patches had greater fruit and seed set compared with distant colonies. Over all years, a larger proportion of mayapples close to flowering lousewort patches had enhanced fruit and seed set compared with colonies close to louseworts without flowers. Though rarely documented, this type of facilitative interaction between plants that are highly attractive to pollinators (magnet species), and co-flowering species that are rarely visited by pollinators, may be widespread in plant communities.  相似文献   

16.
17.
The importance of facilitative processes due to the presence of nitrogen-fixing legumes in temperate grasslands is a contentious issue in biodiversity experiments. Despite a multitude of studies of fertilization effects of legumes on associated nonfixers in agricultural systems, we know little about the dynamics in more diverse systems. We hypothesised that the identity of target plant species (phytometers) and the diversity of neighbouring plant species would affect the magnitude of such positive species interactions. We therefore sampled aboveground tissues of phytometers planted into all plots of a grassland biodiversity–ecosystem functioning experiment and analysed their N concentrations, δ15N values and biomasses. The four phytometer species (Festuca pratensis, Plantago lanceolata, Knautia arvensis and Trifolium pratensis) each belonged to one of the four plant functional groups used in the experiment and allowed the effects of diversity on N dynamics in individual species to be assessed. We found significantly lower δ15N values and higher N concentrations and N contents (amount of N per plant) in phytometer species growing with legumes, indicating a facilitative role for legumes in these grassland ecosystems. Our data suggest that the main driving force behind these facilitative interactions in plots containing legumes was reduced competition for soil nitrate (“nitrate sparing”), with apparent N transfer playing a secondary role. Interestingly, species richness (and to a lesser extent functional group number) significantly decreased δ15N values, N concentrations and N content irrespective of any legume effect. Possible mechanisms behind this effect, such as increased N mineralisation and nitrate uptake in more diverse plots, now need further investigation. The magnitude of the positive interactions depended on the identity of the phytometer species. Evidence for increased N uptake in communities containing legumes was found in all three nonlegume phytometer species, with a subsequent strong increase in biomass in the grass F. pratensis across all diversity levels, and a lesser biomass gain in P. lanceolata and K. arvensis. In contrast, the legume phytometer species T. pratense was negatively affected when other legumes were present in their host communities across all diversity levels.  相似文献   

18.
Shrubs establish microenvironments under their canopies that can favor the growth of other plants. However, the shrub canopy could impede pollination by reducing the number of pollinator visits to sheltered plants, resulting in pollen limitation and decreased reproductive output. We assessed whether the presence of a nurse shrub species (Flourensia thurifera) alters the reproductive output of a sheltered cactus (Eriosyce coimasensis) via the restriction of access by the giant hummingbird (Patagona gigas) to E. coimasensis flowers. During two consecutive years (2018 – 2019), we excluded hummingbirds from individual cacti (using cages) and studied fruit set and seed production in two microhabitats: underneath shrubs and in open sites. In addition, we compared the reproductive mode of E. coimasensis in the two microhabitats. We observed that shrubs limit the reproduction of E. coimasensis, which strongly depends on P. gigas for seed production. Plants in open sites produced 80% more fruit and 76% more seeds than those growing underneath shrubs. The reproduction of caged individuals was low and similar to those growing beneath shrubs. In addition, plants underneath shrubs, but not in open sites, may suffer pollen limitation. Our results offer novel insights into plant-plant interactions and suggest potential trade-offs for sheltered cacti between the mild microclimatic conditions under the canopy, that could lead to larger plants and pollinator preclusion, which decreases the reproductive performance of sheltered plants.  相似文献   

19.
Hongchun Qu  Tal Seifan  Merav Seifan 《Oikos》2017,126(12):1815-1826
Model–mimic plant systems are well known. However, the conditions promoting the existence of such systems are still an enigma. We suggest that by focusing on floral similarity between model and mimic, reward levels offered by models, and pollinators’ ability to adjust foraging accordingly, the conditions can be better understood. Using spatially‐explicit modelling, we examined trait combinations that lead to the survival of deceptive species under a large range of mimic strategies, from Batesian mimicry to general food deception. Unlike previous models studying such systems, we examined model–mimic interactions in the presence of a third, dissimilar species, thus generating a more realistic scenario where pollinators may avoid the model–mimic system altogether. Results showed that overall survival and abundance of species in food deceptive systems depend on the relative reward provided by the participating species and the potential alternatives available. Specifically, the success of a mimic in a Batesian mimicry system depends on high levels of reward provided by its model species relative to potential alternatives in the flower community. On the other hand, the success of a mimic in a general food deception system was higher when the reward offered was lower. Our study suggests that the ability of pollinators to utilize their experience as part of decision‐making is highly relevant in promoting mimic survival, thus shedding light on the conditions under which food deception is expected.  相似文献   

20.
Wei J  Wang L  Zhao J  Li C  Ge F  Kang L 《The New phytologist》2011,189(2):557-567
Recent studies on plants genetically modified in jasmonic acid (JA) signalling support the hypothesis that the jasmonate family of oxylipins plays an important role in mediating direct and indirect plant defences. However, the interaction of two modes of defence in tritrophic systems is largely unknown. In this study, we examined the preference and performance of a herbivorous leafminer (Liriomyza huidobrensis) and its parasitic wasp (Opius dissitus) on three tomato genotypes: a wild-type (WT) plant, a JA biosynthesis (spr2) mutant, and a JA-overexpression 35S::prosys plant. Their proteinase inhibitor production and volatile emission were used as direct and indirect defence factors to evaluate the responses of leafminers and parasitoids. Here, we show that although spr2 mutant plants are compromised in direct defence against the larval leafminers and in attracting parasitoids, they are less attractive to adult flies compared with WT plants. Moreover, in comparison to other genotypes, the 35S::prosys plant displays greater direct and constitutive indirect defences, but reduced success of parasitism by parasitoids. Taken together, these results suggest that there are distinguished ecological trade-offs between JA-dependent direct and indirect defences in genetically modified plants whose fitness should be assessed in tritrophic systems and under natural conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号