首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Quantitative studies on the interactions of adenosine-triphosphate and several biogenic amines with magnesium ion have been carried out in an attempt to correlate the thermodynamic stabilities of the metal-binding of the amines with the in vivo affinities of the amines for granule-binding. Equilibrium data indicate that in each of the ternary chelate systems (viz. Mg2+-ATP-amine), the predominant reaction in the pH range 3.0–7.0 is the formation of a magnesium-ATP chelate with a stability constant, log KML=3.22 ± 0.02. Each of the biogenic amines coordinates with Mg2+-ATP system in the pH range 7.0–10.5 to form the mixed ligand chelate (or ternary chelate), Mg2+-ATP-amine(1:1:1). The stability constants for the binding of the amines with Mg2+-ATP are: (i) norepinephrine (NE) = 2.34 ± 0.32; (ii) epinephrine (E) = 2.95 ± 0.08; (iii) dopamine (DA) = 3.05 ± 0.06; (iv) octopamine (OA) = 1.93 ± 0.12; (v) 6-hydroxydopamine (6-HDA) = 2.42 ± 0.14; (vi) 3-methoxynorephedrine (MeN) =2.76 ± 0.09; (vii) amphetamine (AA) =2.09 ± 0.05; (viii) tyramine (TA) = 2.60 ± 0.04; (ix) phenylethylamine (PEA) = 0. A general correlation is indicated between the stability constants (binding strengths) of the amine chelates and the metal-binding functionalities of the amines on the one hand and their vesicular binding characteristics in in vivo systems on the other (Carlsson and Waldeck , 1966). The Mg2+-ATP-dependant amine storage mechanism of KIRSHNER (1962a;b) and Carlsson , Hillårp and Waldeck (1963) is discussed both in the light of the data on metal chelate stability and of a significant modification of metal coordination hypothesis.  相似文献   

2.
Abstract— Equilibrium studies on the interaction of biogenic amines with iron (Fe2+ and Fe3+) and magnesium (Mg2+) were undertaken in an attempt to correlate the stabilities of metal-amine chelates and the reported granule-binding affinities of the biogenic amines. By means of potentiometric equilibrium measurements at 25°C and an ionic strength of 10 (KNO3) the formation constants of the Fe2+ chelates with norepinephrine (NE) and adenosine-S-triphosphate (ATP) were determined. Possible structures were derived for the co-ordinate binding of Fe2 + with NE. The interactions of Fe2+ and Fe2+-ATP with NE were investigated and the formation of Fe2+-NE-ATP (1:1:1) mixed ligand ternary chelate was proposed on the basis of the equilibrium data. Information obtained from chelation studies of Fe2+ with pyrocatechol and ethanolamine taken together with the data obtained on the Fe2+-NE system indicated that the binding of Fe2+ by NE was probably via the pyrocatechol moiety. Equilibrium constants for the binding of tyramine (TA) dopamine (DA) and NE with Mg2+ were also determined. The equilibrium data obtained on the Mg2+-amine systems indicated a correlation between the metal-amine binding affinities and the structure and amine-release (and storage) activities of the biogenic amines. A consideration of the stabilities of the Fe2+ and Mg2+ chelates together with the occurrence of these metal ions in synaptosomes suggests their possible involvement in the intra vesicular amine-binding and storage sites.  相似文献   

3.
Reactivities of several amine derivatives with the Folin and Lowry reagents were examined. Tertiary amines reacted with the Folin reagent to produce a blue color, and secondary amines having a 2-hydroxyethyl group reacted with the Folin reagent only in the presence of Cu2+, i.e., with the Lowry reagent. On the other hand, primary and quarternary amines and amine N-oxides produced no color with either reagent. Reactivities of tertiary amines were greatly influenced by the nature of the N-substituted groups, and the color yield of those forming stable chelate complexes with metals was strongly inhibited by the presence of Cu2+, indicating that the formation of a stable complex with Cu2+ reduces the reactivity of tertiary amino nitrogen. The requirement of Cu2+ for the color development with secondary amines having a 2-hydroxyethyl group may be due to the formation of weak chelate complex with Cu2+.  相似文献   

4.
The stabilities of the 1:1 complexes of Mn2+, Cu2+, and Zn2+ with lipoate and its chainshortened catabolites, viz., bisnorlipoate and tetranorlipoate, were studied by potentiometric titrations in water containing 50% dioxane (I = 0.1, NaClO4; 25 °C). A comparison of the stabilities of these complexes with those of simple carboxylates reveals that the catabolite complexes formed with Cu2+ and Zn2+ are more stable than expected from only the basicity of the carboxylate groups. This is evidence that chelates involving the disulfide group are formed. The stability of all Mn2+ complexes is determined by the basicity of the carboxylate groups. The same pattern of stability holds for the mixed-ligand complexes formed by Cu2+ or Zn2+, 2,2′-bipyridyl, and lipoate or one of its derivatives. It is evident that the disulfide group of the 1,2-dithiolane moiety can participate in the formation of binary and ternary complexes. The somewhat less-pronounced coordinating properties of the 1,2-dithiolane moiety compared with the tetrahydrothiophene moiety are discussed. It is apparent that the electron density at S(1) and S(2) in the dithiolane moiety of lipoate is not equivalent: S(1) is favored over S(2) in electrophilic reactions; possible biological implications are indicated.  相似文献   

5.
25Mg NMR spectroscopy was first applied to the ternary complexes consisting of Mg2+, ATP, ADP and creatine kinase. The 25Mg NMR spectra of the Mg2+-ATP (or ADP) complex are remarkably broadened in the ternary Mg2+-ATP(or ADP)-creatine kinase complex in contrast with previous prediction. From temperature dependence of the spectra of the protein-bound ion, it is suggested that Mg2+ of the protein-bound Mg2+-ATP(or ADP) complex is not in the fast exchange regime. The 25Mg NMR signal of the transition state analogue complex is narrower and less temperature-dependent than those of the ternary complex, suggesting that Mg2+ in the transition state analogue complex is in a more symmetrical environment or exchanges slower than that of the ternary complex.  相似文献   

6.
Cu+-ATPases are integral membrane proteins belonging to the IB subfamily of the P-type ATPases that couple Cu+ transport to the hydrolysis of ATP. As some structural and functional particularities arise for Cu+-ATPases, several authors suggest that some of the reaction steps of the Albers-Post model postulated for other P-ATPases may be different. In this work we describe a functional characterization of Legionella pneumophila Cu+-ATPase (LpCopA), the first PIB-ATPase whose structure was determined by X-ray crystallography. Cu+-ATPase activity of the enzyme presents a maximum at ~37 °C and pH 6.6–6.8. Phospholipids enhance LpCopA Cu+-ATPase activity in a non-essential mode where optimal activity is achieved at an asolectin molar fraction of 0.15 and an amphiphile-protein ratio of ~30,000. As described for other P-ATPases, Mg2+ acts as an essential activator. Furthermore, Cu+-ATPase activity dependence on [Cu+] and [ATP] can both be described by a sum of two hyperbolic functions. Based on that, and the [Cu+] and [ATP] dependencies of the best fitting parameters of the hyperbolae pointed above, we propose a minimal reaction scheme for the catalytic mechanism that shares the basic reaction steps of the Albers-Post model for P-type ATPases. The reaction scheme postulated contemplates two different binding affinities for a single ATP (apparent affinities of 0.66 and 550 μM at [Cu+] → ∞) and binding of at least 2 Cu+ with different affinities as well (apparent affinities of 1.4 and 102.5 μM at [ATP] → ∞).  相似文献   

7.
The complex formation behaviors of an α-helical polypeptide containing pyridyl ligands in the side chains, poly (Nω-2-pyridylmethyl L -glutamine) (P2PG), were investigated by absorption and CD spectroscopy using Cu2+ ion as a guest molecule in 2,2,2-trifiuoroethanol solution. In the low Cu2+ ion concentration, P2PG exhibited the predominant formation of Cu2+ and two pyridyl side-chain complexes, involving a regular arrangement of the pyridyl side chains. On the other hand, the complexes were converted to Cu2+ and one pyridyl side-chain species with increasing Cu2+ ion concentration. The conversion was accompanied by the disappearance of the side-chain ordered structure without any changes in the backbone conformation. Moreover, the still remaining coordination sites of Cu2+ were capable of complexing monomer pyridine (Py) added as a second guest to form ternary complexes, P2PG-Cu2+-Py, following the reconstitution of the ordered structure on the periphery of the α-helix backbone. The unique characteristics of P2PG can be explained in terms of the restriction of the pyridyl side chains to form intramolecular chelate complexes, depending on the rigid α-helix conformation. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The capabilities of a new class of immobilized (im) metal ion chelate complexes (IMCCs), derived from 1,4,7‐triazacyclononane (tacn), bis(1,4,7‐triazacyclononyl) ethane (dtne) and bis(1,4,7‐triazacyclononyl)propane (dtnp) complexed with the borderline metal ions Cu2+, Ni2+, Zn2+, Mn2+, Co2+, and Cr3+, for the purification of proteins have been investigated. In particular, the binding behavior of a model protein, the C‐terminal hexahistidine tagged recombinant fusion protein Schistosoma japonicum glutathione S‐transferase‐Saccharomyces cerevisiae mitochondrial ATP synthase δ‐subunit (GST‐δATPase‐His6), with these new immobilized metal ion affinity chromatographic (IMAC) sorbents was compared to the properties of a conventional sorbent, derived from immobilized Ni(II)‐nitrilotriacetic acid (im‐Ni2+‐NTA). Investigations using the recombinant GST‐δATPase‐His6 and recombinant S. japonicum glutathione S‐transferase (GST) lacking a hexahistidine tag have confirmed that the C‐terminal tag hexahistidine residues were required for the binding process to occur with these IMAC systems. The results also confirm that recombinant fusion proteins such as GST‐δATPase‐His6 can be isolated in high purity with these IMAC systems. Moreover, these new macrocyclic systems manifest different selectivity features as a function of pH or ionic strength when compared to the conventional, unconstrained iminodiacetic acid (IDA) or NTA chelating ligands, complexed with borderline metal ions such as Cu2+ or Ni2+, as IMAC systems. Biotechnol. Bioeng. 2009;103: 747–756. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
The 1:1 complexes of Mn2+, Cu2+, and Zn2+ with S-carboxymethyl alkyl and S-carboxymethyl aryl mercaptans were studied in water containing 50% dioxane (I = 0.1; t = 25 °). The determination of the stability constants and a comparison with simple carboxylate complexes reveals that the complexes of Cu2+ (and slightly also of Zn2+) with the S-carboxymethyl alkyl mercaptans are more stable than expected from only basicity of the carboxylate groups. This suggests that the thioether group participates in complex formation, i.e., chelates are formed. The Mn2+ complexes of both kinds of ligands, and the Cu2+ or Zn2+ complexes with S-carboxymethyl aryl mercaptans have the stability expected according to the basicity of the carboxylate groups. NMR experiments with S-carboxymethyl ethyl mercaptan confirm the formation of chelates with Cu2+ and suggest simple carboxylate complexes with Mn2+. Analogous experiments with (S-carboxymethyl phenyl mercaptan do not allow an unequivocal statement about the distribution between simple carboxylate complexes and chelates for both metal ions. Also, as the thioether acids are biologically oxidized, the complex stabilities of several of such oxidized derivatives were measured.  相似文献   

10.
Harold G. Weger 《Planta》1999,207(3):377-384
Cells of the green alga Chlamydomonas reinhardtii Dangeard were grown in Fe-limited chemostat culture over a range of growth rates (0.15–1.5 d−1). Greater cell densities and culture chlorophyll levels were achieved using an excess of chelator [ethylenediamine di-(o-hydroxyphenylacetic acid)] relative to FeCl3 (80:1), compared to growth using a 1:1 chelator:FeCl3 ratio. The C. reinhardtii cells reduced extracellular ferric chelates, and ferric chelate reductase activity increased with increasing Fe-limited growth rates. However Fe-sufficient cells exhibited a low rate of ferric chelate reductase activity, similar to severely Fe-limited cells. Iron-limited cells were capable of reducing a wide variety of ferric chelates, representing a wide range of stability constants, at similar rates, suggesting that the stability constants of ferric complexes are not important determinants of ferric reducing activity. Cupric reductase activity also increased with increasing Fe-limited growth rates, and Cu(II) was preferentially reduced compared to Fe(III). These results suggest that both reductase activities may represent the same plasma-membrane enzyme. The rate of cupric reduction was a function of the free [Cu2+], not the total [Cu(II)], suggesting that free Cu2+ is the actual substrate for cupric reductase activity. Received: 8 July 1998 / Accepted: 5 August 1998  相似文献   

11.
Summary Enzymatic activity was investigated in metal-binding proteins from rat epidermal cells. Tris-HCl buffer soluble and KSCN solubilized proteins were extracted stepwise from granular and cornified cells of 2-day old rat epidermis. Each extract was separately applied to a Cu2+ or Zn2– chelate Sepharose 6B column and the proteins were eluted with buffers of different pHs and finally with EDTA solution. Metal chelate-binding proteins were found in both soluble and solubilized proteins but there was a larger amount in the latter. Affinity of the proteins to bind with Cu2+ chelate was greater than that with Zn2+ chelate. In Tris-HCl buffer extract, histidase activity was detected in Cu2+ chelate-binding proteins, but not in Zn2+ chelate-binding proteins. Acid phosphatase, cysteine proteinase, dipeptidase, cathepsin D, -galactosidase, gelatin hydrolase, and superoxide dismutase did not bind to metal chelates although these enzymes, except acid phosphatase, were inhibited by Cu2+, but not by Zn2+. In contrast, KSCN solubilized metal chelate-binding proteins showed plasminogen activator, acid phosphatase, and gelatin and casein hydrolases while histone hydrolase did not bind to either chelate column. Since metal-binding proteins in rat epidermal cells have been shown previously to be histidine- and cysteine-rich proteins concentrated in keratohyalin granules, interaction of metals and the structural proteins with certain enzymes may be involved in the regulation of epidermal cell functions.  相似文献   

12.
《Phytochemistry》1986,26(1):65-69
In the presence of K+, the hydrolysis of ATP catalysed by the ATPase of corn plasma membrane showed negative cooperative kinetics. When the complexes of ATP and Mg2+, Mn2+, Ca2+ or Cd2+ were used as substrates, the catalysed hydrolysis changed to follow simple Michaelis-Menten kinetics. However, this change was not observed with Zn2+-ATP as the substrate. A substantial enhancement of the hydrolysis was observed only when the complexes of Mg2+ and Mn2+ were used. Kinetic parameter determination indicated that the enzyme exhibited a similar binding property but a different catalytic efficiency to Mg2+, Mn2+ and Ca2+-ATP. The enzyme formed a more stable but less reactive complex with Cd2+-ATP. The presence of aluminium ions competitively inhibited the membrane-catalysed hydrolysis of Mg2+-ATP, but showed no effect when free ATP was the substrate. This finding suggested that aluminium might bind in the vicinity of the Mg2+ of Mg2+-ATP in the active site of the enzyme. On the basis of these observed inhibitory effects, possible origins of metal ion toxicity to root plasma membrane ATPase activity are discussed.  相似文献   

13.
The modulation of many enzymatic reactions involved in the metabolism of nucleotide phosphates such as ATP often require divalent metal ions. In the present study reverse-phase high-performance liquid chromatography (HPLC) was used to study the chelation of divalent metal ions, such as Mn2+, Mg2+, and Ca2+, by ATP. The results of our study using radiolabeled [45Ca] showed that the metal-ATP chelate formed in solution was retained longer than the metal-free ATP due to the nonpolar groups on the column packing. Recovery of the two forms of ATP showed that the [45Ca] coeluted exclusively with the ATP-metal chelate. Other experiments showed that the retention time of the chelated form of the ATP was unaffected by eluent flow rate, but was affected by eluant pH and methanol concentration. The amount of ATP in the chelated form was found to be dependent on the amount of the metal in solution and that under appropriate conditions, i.e., with 0.1 m CaCl2 in the mobile phase, on the divalent cation as well. Thus, we found that in terms of effectiveness in chelate formation, the metal ions were Ca2+ > Mg2+ > Mn2+. Recovery of the chelate and its reanalysis by HPLC revealed that the complex had dissociated. The chelate could be reformed by restoring the metal concentration to its original value and dissociated again by the addition of EDTA. The resolution of the ATP in a metal chelated form from the ATP in an unchelated form is discussed in terms of the stability of these chelates and the role of the hydrophobic groups of the column packing used in the reverse-phase HPLC in enhancement of this stability.  相似文献   

14.
Thermodynamic formation constants for the magnesium (II)-ATP and manganese (II)-ATP species have been evaluated by direct potentiometry with ion-selective liquid membrane electrodes responsive to Mg2+ and Mn2+, respectively. The existence of the second complex Mg2ATP has also been demonstrated; an evaluation of its formation constant is provided. It is shown that the ion electrode method offers advantages over earlier methods because it permits direct measurement of ion activities and, further, enables the ion of interest to be measured selectively in the presence of other ions needed to control pH and ionic strength.  相似文献   

15.
SYNOPSIS. It was shown in an investigation of the phosphofructokinases of Leishmania donovani and Leishmania braziliensis that both enzymes are similar to that of Crithidia fasciculata. Although the enzymes are allosteric with respect to their substrates and require AMP for activation, there is no influence by other heterotropic modifiers. The Mg2+-ATP chelate activates these enzymes in a first order process and they can be inhibited by free ATP. The inhibition is reversed by the activator, AMP, in a competitive manner. The requirement for the nucleotide in L. donovani can be eliminated by decreasing the pH. The data indicate that phosphofructokinase, a pivotal enzyme in glycolysis for most organisms, probably does not play an important role in glycolysis in Leishmania.  相似文献   

16.
Four flavonoids quercetin (QU), luteolin (LU), taxifolin (TA) and (+)-catechin (CA) with the same A- and B-rings but different C-ring substituents have been investigated for their binding to bovine serum albumin (BSA) in the absence and presence of Cu2+ by means of various spectroscopic methods such as fluorescence, UV-visible and circular dichroism (CD). The results indicated that hydroxyl group at 3-position increased the binding affinities between flavonoids and BSA. The values of the binding affinities were in the order: QU > CA > TA > LU. The presence of Cu2+ affected the interactions of flavonoids with BSA significantly. The binding affinities of QU and TA for BSA were decreased about 6.7% and 13.2%. However, the binding affinities of LU and CA for BSA were increased about 43.0% and 20.7%. The formation of Cu2+-flavonoid complex and steric hindrance together influenced the binding affinities of QU, LU and TA for BSA, while the conformational change of BSA may be the main reason for the increased binding affinity of CA for BSA. However, the quenching mechanism for QU, LU, TA and CA to BSA was based on static quenching combined with non-radiative energy transfer irrespective of the absence or presence of Cu2+. The UV-visible results showed the change in BSA conformation and the formation of flavonoid-Cu2+ complex. The CD results also explained the conformational changes of BSA on binding with flavonoids.  相似文献   

17.
Thiophosphate analogs of adenine nucleotides were used to establish the absolute stereochemistry of nucleotide substrates in the reactions of carbamate kinase (Streptococcus faecalis), unadenylylated glutamine synthetase (Escherichia coli), and carbamoyl-phosphate synthetase (E. coli). 31P NMR was used to determine that carbamate kinase uses the B isomer of Ado-5′-(2-thioPPP) in the presence of Mg2+. The stereospecificity of the reaction with carbamate kinase was not reversed by Cd2+ suggesting that the metal ion does not bind to the β-phosphoryl group or that both Mg2+ and Cd2+ bind to the sulfur atom. Carbamate kinase uses both A and B isomers of Ado-5′-(1-thioPP) with Mg2+ and Cd2+. We have previously reported that carbamoyl-phosphate synthetase uses the A isomer of Ado-5′-(2-thioPPP) at both ATP sites with Mg2+ (Raushel et al., 1978J. Biol. Chem.253, 6627). Current experiments show that the stereospecificity is reversed by Cd2? and that both A and B isomers are used when Zn2+ is present. With Ado-5′-(1-thioPPP), the B isomer is used with Mg2+, the A isomer with Cd2+, and both isomers with Zn2+. Neither carbamate kinase nor carbamoyl-phosphate synthetase utilized Co(III)(NH3)4ATP as a substrate and thus we can only speculate that the Δ chelate ring configuration is the chelate structure utilized by carbamoyl-phosphate synthetase (based on the analogy between thiophosphate-ATP analogs and Co3+-ATP analogs utilized by hexokinase (E. K. Jaffe, and M. Cohn, 1978Biochemistry17, 652). If the sulfur of the β-phosphoryl of Ado-5′-(2-thioPPP) binds to the metal ion with carbamate kinase, then the Δ chelate ring is also used in this enzyme that catalyzes one of the steps in the overall reaction catalyzed by carbamoyl-phosphate synthetase. Glutamine synthetase reacts with the B isomer of both Ado-5′-(2-thioPPP) and Ado-5′-(1-thioPPP) in the presence of Mg2+. When Co2+ is used with this enzyme the A and B isomers of both thio-ATP compounds are substrates. Co(III)(NH3)4ATP is not a substrate for glutamine synthetase. Glutamine synthetase is therefore different from the two previously mentioned enzymes in that it used the opposite A ring configuration for the metal-ATP chelate.  相似文献   

18.
Electron paramagnetic resonance spectra at 35 GHz of Mn2+ ion bound to highly purified membrane-bound (Na+ + K+)-ATPase from sheep kidney medulla are much narrower than the corresponding spectra at 9 GHz. As a result, the sensitivity of the enzyme-Mn2+ spectrum to added substrates is much greater at the higher frequency. ATP and AMP-PNP, which caused very little broadening at low frequency, effect dramatic decreases in intensity of the Mn2+ EPR signal at 35 GHz. On the other hand, virtually no changes are observed upon addition of ADP and AMP, suggesting that the γ-phosphate of ATP plays a key role in the interaction between Mn2+ and ATP on the enzyme. The data indicate that ATP and AMP-PNP, binding at low affinity substrate sites, induce a severe distortion of the Mn2+ coordination geometry. The data also support the suggestion that the enzyme-bound Mn2+ does not enter into a typical M2+-ATP complex in this system.  相似文献   

19.
Using an original microcalorimetric method, the existence of the Mg2ATP ternary chelate has been studied. The thermodynamic parameters of this complex are H=7.2±0.5 kJ mole–1 andK=49±9 M–1. These values are compared with those previously obtained for binary chelate Mg ATP2–. A possible regulation role of Mg2ATP is discussed.  相似文献   

20.
A (?)-[3H]norepinephrine binding site was identified in a crude synaptosomal fraction isolated from bovine hypothalamus which bound norepinephrine rapidly, reversibly, and stereospecifically. The results were most consistent with binding of (-)-[3H]norepinephrine to the carrier molecule used to translocate biogenic amines into synaptic vesicles. The binding studies indicated that specific binding of (?)-[3H]norepinephrine to the crude synaptosomal fraction was greatly enhanced by 1 mM MgCl2 and 1 mM ATP. The increased binding of (?)-[3H]norepinephrine also occured in the presence of MgCl2 and GTP, but AMP, adenosine and adenyl-5′-yl imidodiphosphate would not substitute for ATP. Neither CaCl2 nor ZnSO4 could be substituted for the MgCl2. In the presence of MgCl2 and ATP, the dissociation constant for (?)-[3H]norepinephrine was 280 nM with a specific binding site density of 4.8 pmol/mg protein. Binding was stereospecific with ratios of 15, 4, and 6.5 for the affinities of (?)-isomers to (+)-isomers for norepinephrine, epinephrine and isoproterenol, respectively. Drug competition studies, conducted in the presence of Mg2+ and ATP, indicated that (?)-epinephrine, (?)-norepinephrine, dopamine and serotonin had inhibitory constants ranging from 0.25 to 0.8 μM with (?)-isoproterenol and tyramine having inhibitory constants around 2 μM. Reserpine was the most potent inhibitor having an inhibition constant of 8.6 ± 0.3 nM. The binding data were not consistent with the specific site being the α- or β-receptors for norepinephrine, the Uptake1 Site for norepinephrine into synaptosomes or the metabolizing enzymes for norepinephrine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号