首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to examine the viability and proliferation of uninucleated and multinucleated giant cells formed after 6 Gy X irradiation. The pedigrees of 102 individual EJ30 giant cells present 5 days after irradiation were analyzed from time-lapse movies captured over 6.3 days from 100 fields (100x). Pedigree analysis enabled us to study the proliferation of giant cells. The average starting size (area) of the giant cells (14500 +/- 9100 microm(2)) was approximately 25 times larger than the normal-sized cells observed after irradiation (560 +/- 200 microm(2)). From a total of 76 pedigrees of uninucleated giant cells, 42 had giant cells that either died or were arrested, while 34 divided at least once and produced progeny that divided again (five three times and three four times) before the progeny died or were arrested. Twenty-four pedigrees contained progeny that were lost from observation after dividing at least once. While most progeny continued to have giant cell morphology, two uninucleated giant cells ultimately produced progeny that contained two normal-sized cells. From a total of 26 multinucleated giant cells, only three divided. Two divided only once, but one produced progeny that divided two times. In all, 37 out of 102 giant cells divided at least once; eight of these divided four or five times with two of these pedigrees ultimately producing two normal-sized daughter cells. These results suggest that a small fraction of giant cells might be potentially clonogenic.  相似文献   

2.
Asynchronous rat embryo cells expressing Myc were followed in 50 fields by computerized video time lapse (CVTL) for three to four cycles before irradiation (4 Gy) and then for 6-7 days thereafter. Pedigrees were constructed for single cells that had been irradiated in different parts of the cycle, i.e. at different times after they were born. Over 95% of the cell death occurred by postmitotic apoptosis after the cells and their progeny had divided from one to six times. The duration of the process of apoptosis once it was initiated was independent of the phase in which the cell was irradiated. Cell death was defined as cessation of movement, typically 20-60 min after the cell rounded with membrane blebbing, but membrane rupture did not occur until 5 to 40 h later. The times to apoptosis and the number of divisions after irradiation were less for cells irradiated late in the cycle. Cells irradiated in G(1) phase divided one to six times and survived 40-120 h before undergoing apoptosis compared to only one to two times and 5-40 h for cells irradiated in G(2) phase. The only cells that died without dividing after irradiation were irradiated in mid to late S phase. Essentially the same results were observed for a dose of 9.5 Gy, although the progeny died sooner and after fewer divisions than after 4 Gy. Regardless of the phase in which they were irradiated, the cells underwent apoptosis from 2 to 150 h after their last division. Therefore, the postmitotic apoptosis did not occur in a predictable or programmed manner, although apoptosis was associated with lengthening of both the generation time and the duration of mitosis immediately prior to the death of the daughter cells. After the non-clonogenic cells divided and yielded progeny entering the first generation after irradiation with 4 Gy, 60% of the progeny either had micronuclei or were sisters of cells that had micronuclei, compared to none of the progeny of clonogenic cells having micronuclei in generation 1. However, another 20% of the non-clonogenic cells had progeny with micronuclei appearing first in generation 2 or 3. As a result, 80% of the non-clonogenic cells had progeny with micronuclei. Furthermore, cells with micronuclei were more likely to die during the generation in which the micronuclei were observed than cells not having micronuclei. Also, micronuclei were occasionally observed in the progeny from clonogenic cells in later generations at about the same time that lethal sectoring was observed. Thus cell death was associated with formation of micronuclei. Most importantly, cells irradiated in late S or G(2) phase were more radiosensitive than cells irradiated in G(1) phase for both loss of clonogenic survival and the time of death and number of divisions completed after irradiation. Finally, the cumulative percentage of apoptosis scored in whole populations of asynchronous or synchronous populations, without distinguishing between the progeny of individually irradiated cells, underestimates the true amount of apoptosis that occurs in cells that undergo postmitotic apoptosis after irradiation. Scoring cell death in whole populations of cells gives erroneous results since both clonogenic and non-clonogenic cells are dividing as non-clonogenic cells are undergoing apoptosis over a period of many days.  相似文献   

3.
BACKGROUND: Homogeneity of cell populations is a basic requirement for gene expression analyses of the cell cycle, such as those based on microarrays. The most common approach to obtain specific populations is the use of synchronization methods that increase the number of cells representing a certain cell cycle stage. On the one hand, conventional synchronization usually causes undesirable effects. On the other hand, cell separation methods may imply loss of RNA quality, another limiting factor for expression profiling. We describe a new strategy to specifically separate live cells in different phases of the cell cycle (G(1) and G(2)/M) to obtain good quality RNA for gene expression analyses. METHODS: The experimental design included sorting G(1) and G(2)/M cells with the vital fluorochrome Hoechst 33342, followed by RNA isolation from the sorted cells. RESULTS: Sorted living G(1) and G(2)/M cells, analyzed by immunocytochemistry and laser scanning cytometry, showed strong enrichment. The quality and specificity of the isolated RNA were demonstrated by northern blot. CONCLUSIONS: This new approach has many potential applications, such as expression profiling of specific cell populations after eliminating the irrelevant data produced by cells in other stages of the cycle.  相似文献   

4.
Computerized video time-lapse (CVTL) microscopy of X-irradiated cultures of cells of the murine lymphoma cell lines ST4 and L5178Y-S and the human lymphoid cell line MOLT-4 demonstrated that these cells exhibit a wide disparity in the timing of induction and execution of radiation-induced cell death that included rapid-interphase apoptosis, delayed apoptosis, and postmitotic apoptosis. ST4 cells that received 2.5 or 4 Gy of X radiation underwent rapid-interphase apoptosis within 2 h. Apoptosis commenced with a 10-20-min burst of membrane blebbing followed by swelling for 2-4 h and cell collapse. No apoptotic bodies were formed. After a dose of 1 Gy, approximately 90% of ST4 cells died by rapid-interphase apoptosis, while the remainder completed several rounds of cell division prior to cell death. Postmitotic death of ST4 cells occurred with the same morphological sequence of events as during rapid-interphase apoptosis induced by doses of 1-4 Gy. In contrast, L5178Y-S and MOLT-4 cells that received 4 Gy underwent apoptosis more slowly, with a complex series of events occurring over 30-60 h. Only 3% of L5178Y-S cells and 24% of MOLT-4 cells underwent apoptosis without attempting cell division. The cells became abnormally large during a long G(2)-phase delay, and then most of the cells (76-97%) attempted to divide for the first or second time at approximately 18-30 h postirradiation. However, either mitosis failed or division was aberrant; i.e., the large cells divided into three or four fragments which eventually fused together. This process was followed by several rounds of complex and unpredictable membrane blebbing, gross distortions of shape, fragmentation-refusion events, and formation of apoptotic bodies, after which the cells collapsed at 36-60 h postirradiation.  相似文献   

5.
The chicken anaemia virus protein 3 (VP3 or apoptin) induces apoptosis specifically in tumour and transformed cells but not in normal cells. This selective apoptosis is ideal for therapeutic purposes. However, VP3, a heterologous protein, is immunogenic in vivo. Such a drawback limits its clinical usage. To diminish its potential immunogenicity, we modified the sequence of VP3. The VP3 genes functional sequence starts at 33 AA (amino acids) from the N‐terminal side, and the first protein structural domain consists of 30 AA. We found that the first domain of VP3 contains no functional sequences. Therefore, this domain was removed to test whether its absence affects apoptosis. Transfection of EGFP (enhance green fluorescent protein)‐modified‐VP3 or HA‐modified‐VP3 in bladder cancer cell lines (EJ) resulted in its expression, successful localization to the nucleus and efficient induction of apoptosis. Expression of EGFP‐modified‐VP3 or HA‐modified‐VP3 had no influence on mouse fibroblast cells (3T3). The modified VP3 (30–121), like the wild‐type VP3, induced EJ cell apoptosis without affecting 3T3 cells. This study increases our understanding of modified VP3 (30–121) as a possible substitute for the wild‐type VP3, which makes VP3 (30–121) an interesting candidate for the development of novel therapeutic strategies.  相似文献   

6.
Chlorophyllin (Chln), a sodium-copper salt derivative of chlorophyll, like chlorophyll-a and -b found in green plants, has been studied for its protective action against the carcinogenic effects of various physical and chemical agents and in relation to the mutagenic and clastogenic activities of genotoxic agents. The aim of the present study was to evaluate chlorophyllin in different phases of the cell cycle for clastogenicity and anticlastogenicity, the latter in reversing DNA damage induced by ethyl methane sulfonate (EMS). The test for chromosomal aberrations was performed in cultured mammalian cells (CHO-K1). The three Chln concentrations tested (6.25, 12.5 and 25 microg/ml) were not clastogenic and damage induced by EMS (1240 microg/ml) was reduced in cells treated with Chln as well during S (25-48%) and G2/S (70-80%). The results demonstrate a greater protective effectiveness of Chln against EMS during G2/S.  相似文献   

7.
The variation of DNA repair activity during the cell cycle was studied by analysing the UV-stimulated DNA synthesis in cells synchronized in mitosis. This activity was detected both by autoradiography and by directly measuring the incorporation of tritiated thymidine in cells irradiated and incubated in the presence of hydroxyurea. Cells in all phases were found to be able to perform repair. However the activity appeared to be considerably lower in mitotic cells than in cell in other phases. Increasing values of repair capacity were observed in G1 cells, in mixed G2, S and M cells and in asynchronous cells. The relationship between these findings and data on survival rates in the same synchronized cells is discussed.  相似文献   

8.
It has been demonstrated that caspase-3 is responsible for determining the mode of cell death, i.e., apoptosis or necrosis. To characterize the mode of cell death induced by the inhibition of caspase-3, we have studied the effects of Ac-DEVD-CHO, Ac-YVAD-CHO, and Ac-IETD-CHO, inhibitors of caspases, on structural changes in X-irradiated human leukemic MOLT-4 cells. When cells were irradiated with X-rays and incubated in the presence of Ac-DEVD-CHO, the expression of cell death, as measured by the dye exclusion test, was inhibited, whereas no such change was observed in colony-forming ability. The hallmarks of apoptosis, i.e., nuclear condensation and DNA ladder formation, were depressed. However, a new type of nuclear morphology appeared. The sum of the frequencies of apoptosis and this new type of nuclear structure corresponded to the frequency of X-ray-induced apoptosis for cells incubated in the absence of Ac-DEVD-CHO. Removal of Ac-DEVD-CHO during the course of post-irradiation incubation increased apoptotic nuclear condensation accompanied by a slight decrease in the frequency of the new type of nuclear structure. When Ac-IETD-CHO was used in place of Ac-DEVD-CHO, inhibition of cell death (apoptosis) was also observed, but not in the case of Ac-YVAD-CHO. These results suggest that the inhibition of caspase-3 diminishes the expression of apoptotic hallmarks with no effect on cell survival, that the morphology observed in the presence of Ac-DEVD-CHO is an apoptosis-related structure, and that the cell death observed is a programmed cell death independent of caspase-3. The development of this mode of cell death was slower than that of apoptosis by 4 h.  相似文献   

9.
10.
We present a new cell line, EJ established from an invasive endometrioid adenocarcinoma of the uterine corpus in a 56-year-old patient. The cells show rapid growth in culture with a doubling time of 16 h and high migration activity. Monolayer-cultured cells were polygonal in shape showing a tendency to pile up without contact inhibition. Subcutaneous transplantation of the EJ cells into nude mice formed solid tumors that were histologically diagnosed as adenocarcinoma, whereas no metastasis was observed. Cultured EJ cells produced tissue polypeptide antigen (IPA). Genetic and molecular analyses revealed high telomerase activity but not estrogen receptor alpha expression. Using the DNA sequencing technique, we have screened EJ cells for p53 mutation in exon 5 to 8 but no mutation of p53 was observed. This cell line appears to represent the development of a more malignant clone with divergent receptor function and growth behavior, and provides us with an interesting new tool for the study of tumorigenesis in the human endometrium.  相似文献   

11.
Recombinant mammalian cultures for heterologous gene expression typically involve cells traversing the cell cycle. Studies were conducted to characterize rates of accumulation of intracellular foreign protein in single cells during the cell cycle of Chinese hamster ovary (CHO) cells transfected with an expression vector containing the gene for dihydrofolate reductase (dhfr) and the lacZ gene for bacterial beta-galactosidase (a nonsecreated protein). The lacZ gene was under the control of the constitutive cytomegalovirus promoter. These normally attachment-grown cells were adapted to suspension culture in 10(-7) M methotrexate, and a dual-laser flow cytometer was used to simultaneously determine the DNA and foreign protein (beta-galactosidase) content of single living cells. Expression of beta-galactosidase as a function of cell cycle phase was evaluated for cells in the exponential growth phase, early plateau phase, and inhibited traverse of the cell cycle during exponential growth. The results showed that the beta-galactosidase production rate is higher in the S phase than that in the G1 or G2/M phases. Also, when cell cycle progression was stopped at the S phase by addition of aphidicolin, beta-galactosidase content in single cells was higher than that in exponential phase or plateau phase cells and increased with increasing culture time. Although the cells did not continue to divide after aphidicolin addition, the production of beta-galactosidase per unit volume of culture was very similar to that in normal exponential growth. (c) 1993 John Wiley & Sons, Inc.  相似文献   

12.
The synthesis of S100 protein in cultured human melanoma cells was examined using metabolic labeling with [35S]methionine, immunoprecipitation with anti-S100 protein antiserum, and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Six of seven cell lines derived from melanomas synthesized relatively large amounts of S100 protein, whereas three cell lines derived from normal melanocytes synthesized lesser amounts. Synthesis of S100 protein was not detected in 10 human cell lines of nonneuroectodermal origin. Analysis of poly(A+) RNA from one melanoma cell line by Northern blot hybridization with a probe specific for the beta subunit of rat S100 protein revealed a single mRNA species of 1.0 kb coding for the human protein. Flow cytometric analysis of individual cells of two melanoma cell lines and the rat glioma cell line C6 indicated that G0/G1 cells were heterogeneous with respect to S100 protein expression, while almost all the cells in S + G2 + M expressed S100 protein. These results suggest that expression of S100 protein in G0/G1 could be a prerequisite for progression of the cells through the cell cycle.  相似文献   

13.
In this present study, the efficacy of metabolomics as a tool for tumor cell energetics for in vitro cell cultures was demonstrated with full competence for the first time by elucidating the anabolic and energy-yielding segments of glycolysis and glutaminolysis, which constitute a part of energy metabolism in tumor cells. By synchronizing colon cancer cells SW480 and SW620 in culture, the metabolome specific to cell cycle phases was analyzed using nuclear magnetic resonance spectroscopy. At the G1/S transition of the cell cycle (i.e. transition from cell growth to duplication of genetic material), the majority of the energy production was realized by glycolysis through a high channeling of glucose carbons towards lactate. During the late S phase, the majority of energy was produced by glutaminolysis through a high channeling of glutamine carbons towards lactate, while the glucose carbons were channeled towards bio-synthetic pathways. These results indicate that the metabolism of proliferating cells is heterogeneous throughout the cell cycle and can be better interpreted on the basis of different cell cycle phases. These findings could be exploited for the development of a tool for tumor diagnosis as well as for targeting tumors.  相似文献   

14.
tBid is a pro-apoptotic molecule. Apoptosis inducers usually act in a cell cycle-specific fashion. The aim of this study was to elucidate whether effect of tBid on hepatocellular carcinoma (HCC) Hep3B cells was cell cycle phase specific. We synchronized Hep3B cells at G0/G1, S or G2/M phases by chemicals or flow sorting and tested the susceptibility of the cells to recombinant tBid. Cell viability was measured by MTT assay and apoptosis by TUNEL. The results revealed that tBid primarily targeted the cells at G0/G1 phase of cell cycle, and it also increased the cells at the G2/M phase. 5-Fluorouracil (5-FU), on the other hand, arrested Hep3B cells at the G0/G1 phase, but significantly reduced cells at G2/M phase. The levels of cell cycle-related proteins and caspases were altered in line with the change in the cell cycle. The combination of tBid with 5-FU caused more cells to be apoptotic than either agent alone. Therefore, the complementary effect of tBid and 5-FU on different phases of the cell cycle may explain their synergistric effect on Hep3B cells. The elucidation of the phase-specific effect of tBid points to a possible therapeutic option that combines different phase specific agents to overcome resistance of HCC.  相似文献   

15.
Mouse Ehrlich ascites tumor cells were centrifuged at low speed on a linear Ficoll gradient. Cells from different fractions of the gradient were collected separately and analysed by cytological and cytochemical methods (DNA content, mean volume and number of cells). Nearly pure populations of cells in G1 or S were selected. A heterogeneous population containing 70% G2 and mitotic cells was also isolated. No ultrastructural alterations were detected in the cells after centrifugation. Selected G1 cells were cultured in vitro, their kinetic parameters were measured and compared with those of the original population. No difference was observed as far as the duration of the cycle of these cells is concerned.  相似文献   

16.
Few conventional cytotoxic anticancer therapeutics induce immunogenic cell death (ICD). This means that they induce tumor cells to undergo apoptosis while eliciting the emission of a spatiotemporal-defined combination of damage-associated molecular patterns (DAMPs) decoded by the immune system to activate antitumor immunity effective for long-term therapeutic success. The neurotoxin capsaicin (CPS) can induce both cancer cell apoptosis and immune-mediated tumor regression. In the present study, we investigated whether CPS is capable of eliciting the emission of ICD hallmarks in human bladder cancer cell lines undergoing apoptosis. We demonstrated that CPS induces pre- and early apoptotic cell surface exposure of calreticulin (CRT), HSP90, and HSP70 as well as ATP release. Moreover, CRT exposure was prevented by inhibition of endoplasmic reticulum–Golgi traffic by brefeldin A. Furthermore, high-mobility group box 1, HSP90, and HSP70 were passively released at late apoptotic stages. We provide the first evidence that CPS is an inducer of ICD hallmarks, suggesting CPS as a novel potential immunogenic cytotoxic agent.  相似文献   

17.
Effect of isoprenaline on cells in different phases of the mitotic cycle   总被引:4,自引:0,他引:4  
The effects of isoprenaline on parotid acinar cells in different phases of the mitotic cycle have been investigated. Cells in mitosis at the time of drug administration are not depleted of secretory granules whilst those in other phases are. The drug causes temporary blocks both in metaphase and in the G2 phase. The blocks are prolonged by repeated injections of the drug. Cells continue to undergo DNA synthesis during the period of secretion following the drug. The mitotic delay appears to be specific for the parotid and submaxillary glands.  相似文献   

18.
The present study focused on the effects of simulated microgravity on the human follicular thyroid carcinoma cell line ML-1. Cultured on a three-dimensional clinostat ML- 1 cells formed three-dimensional multicellular tumor spheroids (MCTS: 0.3 +/= 0.01mm in diameter). Furthermore, ML-1 cells grown on the clinostat showed elevated amounts of the apoptosis-associated Fas protein, of p53 and of bax, but reduced quantities of bcl-2. In addition, signs of apoptosis as assessed by TdT-mediated DUTP digoxigenin nick end labeling, DAPI staining, DNA laddering and 85-kDa apoptosis-related DNA fragments became detectable. The latter ones resulted from enhanced 116-kDa poly(ADP-ribose)polymerase activity. Electron microscopy revealed all morphological signs of apoptosis. Caspase 3 was clearly upregulated. In conclusion, our experiments show that conditions of simulated microgravity induce early programmed cell death and use different pathways of apoptosis.  相似文献   

19.
Fucoxanthin (Fx) is an active compound commonly found in the many types of seaweed with numerous biological activities. The main goal of this investigation is to explore the effect of Fx against the cell proliferation, apoptotic induction and oxidative stress in the oral squamous (KB) cell line. Cytotoxicity of Fx was determined by MTT assay. The intracellular ROS production, mitochondrial membrane potential (MMP) and apoptosis induction in KB cells were examined through DCFH-DA, Rhodamine-123 and DAPI, and dual staining techniques. Effect of Fx on the antioxidant enzymes and lipid peroxidation in the KB cells was studied through the standard procedures. Fx treated KB cells showed morphological changes and reduced cell survival, which is exhibited by the cytotoxic activity of 50 µM/ml (IC50) Fx against the KB cells. The Fx treatment considerably induced the apoptotosis cells (EB/AO) and decreased the MMP (Rh-123) in KB cells. Further, it was pointed out that there was an increased lipid peroxidation (LPO) with decreased antioxidants (CAT, SOD and GSH). These results concluded that Fx has the cytotoxic effect against KB cells and has the potential to induce the apoptosis via increased oxidative stress. Hence, the Fx can be a promising agent for the treatment of oral cancer and it may lead to the development of cancer therapeutics.  相似文献   

20.
It was examined whether ethylene induces programmed cell death in a cell cycle-specific manner. Following synchronization of the tobacco TBY-2 cell line with aphidicolin and its subsequent removal, ethylene was injected into the head space of 300 cm(3) culture flasks at 0 h or 3.5 h later and cells were sampled for 26 h. There were significant increases in cell mortality at G(2)/M in both the 0 h and 3.5 h ethylene treatments, and for the latter treatment, another peak in S-phase. The effect at G(2)/M was greater in the 3.5 h treatment, but was ameliorated by the simultaneous addition of silver nitrate (1.2 microM). In addition, the 3.5 h ethylene treatment resulted in a 1 h delay in the characteristic rise in the mitotic index following aphidicolin-induced synchrony. The addition of silver nitrate alone (1.2 microM), also delayed the entry of cells into mitosis but had no effect on cell cycle length compared with the controls (14 h throughout all treatments) but it induced a peak of mortality 2.5 h after its addition. Nuclear shrinkage was also a characteristic feature of dying cells at G(2)/M. Using Apoptag, an in situ apoptosis detection kit, nuclear DNA fragmentation was observed in the TBY-2 cells which were often isolated on the end of a filament of normal cells. In the 3.5 h ethylene treatment, a marked increase was noted in the percentage of such cells at the G(2)/M transition compared with the controls. Hence, the data show cell death occurring at a major phase transition of the cell cycle and the observations of nuclear shrinkage, isolation of dying cells and nuclear DNA fragmentation suggest a programmed mechanism of cell death exacerbated by ethylene treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号