首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutathione reductase from S. cerevisiae (EC 1.6.4.2) catalyzes the NADPH oxidation by glutathione in accordance with a "ping-pong" scheme. The catalytic constant kcat) is 240 s-1 (pH 7.0, 25 degrees C); kcat for the diaphorase reaction is 4-5 s-1. The enzyme activity does not change markedly at pH 5.5-8.0. At pH less than or equal to 7.0, NADP+ acts as a competitive inhibitor towards NADPH and as a noncompetitive inhibitor towards glutathione. NADP+ increases the diaphorase activity of the enzyme. The maximal activity is observed, when the NADP+/NADPH ratio exceeds 100. At pH 8.0, NADP+ acts as a mixed type inhibitor during the reduction of glutathione. High concentrations of NADP+ also inhibit the diaphorase activity due to the reoxidation of the reduced enzyme by NADP+ at pH 8.0. The redox potential of glutathione reductase calculated from the inhibition data is--306 mV (pH 8.0). Glutathione reductase reduces quinoidal compounds in an one-electron way. The hyperbolic dependence of the logarithm of the oxidation constant on the one electron reduction potential of quinone is observed. It is assumed that quinones oxidize the equilibtium fraction of the two-electron reduced enzyme containing reduced FAD.  相似文献   

2.
The relationship between the NADH:lipoamide reductase and NADH:quinone reductase reactions of pig heart lipoamide dehydrogenase (EC 1.6.4.3) was investigated. At pH 7.0 the catalytic constant of the quinone reductase reaction (kcat.) is 70 s-1 and the rate constant of the active-centre reduction by NADH (kcat./Km) is 9.2 x 10(5) M-1.s-1. These constants are almost an order lower than those for the lipoamide reductase reaction. The maximal quinone reductase activity is observed at pH 6.0-5.5. The use of [4(S)-2H]NADH as substrate decreases kcat./Km for the lipoamide reductase reaction and both kcat. and kcat./Km for the quinone reductase reaction. The kcat./Km values for quinones in this case are decreased 1.85-3.0-fold. NAD+ is a more effective inhibitor in the quinone reductase reaction than in the lipoamide reductase reaction. The pattern of inhibition reflects the shift of the reaction equilibrium. Various forms of the four-electron-reduced enzyme are believed to reduce quinones. Simple and 'hybrid ping-pong' mechanisms of this reaction are discussed. The logarithms of kcat./Km for quinones are hyperbolically dependent on their single-electron reduction potentials (E1(7]. A three-step mechanism for a mixed one-electron and two-electron reduction of quinones by lipoamide dehydrogenase is proposed.  相似文献   

3.
The most positive redox potential ever recorded for a flavin adenine dinucleotide (FAD) containing protein has been measured for an electron-transfer flavoprotein (ETF) synthesized by Methylophilus methylotrophus. This potential value, 0.196 V versus the standard hydrogen electrode (vs SHE), was measured at pH 7.0 for the one-electron reduction of fully oxidized ETF (ETFox) to the red anionic semiquinone form of ETF (ETF.-). Quantitative formation of ETF.- was observed. The first successful reduction of ETF from M. methylotrophus to its two-electron fully reduced form was also achieved. Although addition of the second electron to ETF.- was extremely slow, the potential value measured for this reduction was -0.197 V vs SHE, suggesting a kinetic rather than thermodynamic barrier to two-electron reduction. These data are believed to be consistent with the postulated catalytic function of ETF to accept one electron from the iron-sulfur cluster of trimethylamine dehydrogenase (TMADH). The second electron reduction appears to have no catalytic function. The very positive potential measured for this ETF and the wide separation of potentials for the two electron reduction steps show that this ETF is a unique and interesting flavoprotein. In addition, this work highlights that while ETFs exhibit similar structural and spectral properties, they display wide variations in redox properties.  相似文献   

4.
A major beta-glucosidase I and a minor beta-glucosidase II were purified from culture filtrates of the fungus Trichoderma reesei grown on wheat straw. The enzymes were purified using CM-Sepharose CL-6B cation-exchange and DEAE Bio-Gel A anion-exchange chromatography steps, followed by Sephadex G-75 gel filtration. The isolated enzymes were homogeneous in SDS-polyacrylamide gel electrophoresis and isoelectric focusing. beta-Glucosidase I (71 kDa) was isoelectric at pH 8.7 and contained 0.12% carbohydrate; beta-glucosidase II (114 kDa) was isoelectric at pH 4.8 and contained 9.0% carbohydrate. Both enzymes catalyzed the hydrolysis of cellobiose and p-nitrophenyl-beta-D-glucoside (pNPG). The Km and kcat/Km values for cellobiose were 2.10 mM, 2.45.10(4) s-1 M-1 (beta-glucosidase I) and 11.1 mM, 1.68.10(3) s-1 M-1 (beta-glucosidase II). With pNPG as substrate the Km and kcat/Km values were 182 microM, 7.93.10(5) s-1 M-1 (beta-glucosidase I) and 135 microM, 1.02.10(6) s-1 M-1 (beta-glucosidase II). The temperature optimum was 65-70 degrees C for beta-glucosidase I and 60 degrees C for beta-glucosidase II, the pH optimum was 4.6 and 4.0, respectively. Several inhibitors were tested for their action on both enzymes. beta-Glucosidase I and II were competitively inhibited by desoxynojirimycin, gluconolactone and glucose.  相似文献   

5.
The reductant of ferricytochrome c2 in Rhodopseudomonas sphaeroides is a component, Z, which has an equilibrium oxidation-reduction reaction involving two electrons and two protons with a midpoint potential of 155 mV at pH 7. Under energy coupled conditions, the reduction of ferricytochrome c2 by ZH2 is obligatorily coupled to an apparently electrogenic reaction which is monitored by a red shift of the endogeneous carotenoids. Both ferricytochrome c2 reduction and the associated carotenoid bandshift are similarly affected by the concentrations of ZH2 and ferricytochrome c2, pH, temperature the inhibitors diphenylamine and antimycin, and the presence of ubiquinone. The second-order rate constant for ferricytochrome c2 reduction at pH 7.0 and at 24 degrees C was 2 - 10(9) M-1 - s-1, but this varied with pH, being 5.1 - 10(8) M-1 = s-1 at pH 5.2 and 4.3 - 10(9) M-1 - s-1 at pH 9.3. At pH 7 the reaction had an activation energy of 10.3 kcal/mol.  相似文献   

6.
Lipoamide dehydrogenase, a component of the bovine adrenal ketoglutarate dehydrogenase complex, catalyzes the oxidation of NADH by p-quinones and ferricyanide. The kinetics of oxidation obey the ping-pong mechanism. At pH 7.0, the constants for the active center oxidation by quinones (kox) are equal to 1.1 X 10(4)-5.3 X 10(5) M-1s-1 and increase as the acceptor potential rises. The values of kox for quinones change insignificantly within the pH range of 7.7-5.0, whereas that for ferricyanide increases 10-fold with a decrease of pH from 7.0 to 5.0. The value of the catalytic constant for the enzyme (kcat) reaches its maximum at pH 5.5. The quinones interact with the thiol groups of lipoamide dehydrogenase by inhibiting the fluorescence of FAD and diaphorease activity. The reaction is catalyzed by a basic amino acid (pK 6.7) within the composition of the enzyme.  相似文献   

7.
One- and two-electron reduction of quinones by glutathione reductase   总被引:1,自引:0,他引:1  
Yeast glutathione reductase (E.C. 1.6.4.2) catalyzes the oxidation of NADPH by p-quinones and ferricyanide with a maximal turnover number (TNmax) of 4-5 s-1.NADP+ stimulates the reaction and the TNmax/Km value of acceptors is reached at NADP+/NADPH greater than or equal to 100. TNmax is increased up to 30-33 s-1. The stimulatory effect of NADP+ may be associated with its complexation with the NADPH-binding site in the reduced enzyme (Kd = 40-60 microM). It is suggested that NADP+ shifts the electron density towards FAD in the two-electron-reduced enzyme and, evidently, changes its one-electron-reduction potentials, while quinones oxidize an equilibrium form of glutathione reductase containing reduced FAD. In the absence of NADP+ the reduction of quinones by glutathione reductase proceeds mainly in a two-electron manner. At NADP+/NADPH = 100 a one-electron reduction makes up 44% of the total process. At pH 6.0-7.0 the reduced forms of naphthoquinones undergo cyclic redox conversions. A hyperbolic dependence exists of the log TN/Km of quinones on their one-electron-reduction potentials.  相似文献   

8.
Two ORFs encoding a protein related to bacterial dimethylglycine oxidase were cloned from Pyrococcus furiosus DSM 3638. The protein was expressed in Escherichia coli, purified, and shown to be a flavoprotein amine dehydrogenase. The enzyme oxidizes the secondary amines L-proline, L-pipecolic acid and sarcosine, with optimal catalytic activity towards L-proline. The holoenzyme contains one FAD, FMN and ATP per alphabeta complex, is not reduced by sulfite, and reoxidizes slowly following reduction, which is typical of flavoprotein dehydrogenases. Isolation of the enzyme in a form containing only FAD cofactor allowed detailed pH dependence studies of the reaction with L-proline, for which a bell-shaped dependence (pK(a) values 7.0 +/- 0.2 and 7.6 +/- 0.2) for k(cat)/K(m) as a function of pH was observed. The pH dependence of k(cat) is sigmoidal, described by a single macroscopic pK(a) of 7.7 +/- 0.1, tentatively attributed to ionization of L-proline in the Michaelis complex. The preliminary crystal structure of the enzyme revealed active site residues conserved in related amine dehydrogenases and potentially implicated in catalysis. Studies with H225A, H225Q and Y251F mutants ruled out participation of these residues in a carbanion-type mechanism. The midpoint potential of enzyme-bound FAD has a linear temperature dependence (- 3.1 +/- 0.05 mV x C degrees (-1)), and extrapolation to physiologic growth temperature for P. furiosus (100 degrees C) yields a value of - 407 +/- 5 mV for the two-electron reduction of enzyme-bound FAD. These studies provide the first detailed account of the kinetic/redox properties of this hyperthermophilic L-proline dehydrogenase. Implications for its mechanism of action are discussed.  相似文献   

9.
Human Hageman factor, a plasma proteinase zymogen, was activated in vitro under a near physiological condition (pH 7.8, ionic strength I = 0.14, 37 degrees C) by Pseudomonas aeruginosa elastase, which is a zinc-dependent tissue destructive neutral proteinase. This activation was completely inhibited by a specific inhibitor of the elastase, HONHCOCH(CH2C6H5)CO-Ala-Gly-NH2, at a concentration as low as 10 microM. In this activation Hagemen factor was cleaved, in a limited fashion, liberating two fragments with apparent molecular masses of 40 and 30 kDa, respectively. The appearance of the latter seemed to correspond chronologically to the generation of activated Hageman factor. Kinetic parameters of the enzymatic activation were kcat = 5.8 x 10(-3) s-1, Km = 4.3 x 10(-7) M and kcat/Km = 1.4 x 10(4) M-1 x s-1. This Km value is close to the plasma concentration of Hageman factor. Another zinc-dependent proteinase, P. aeruginosa alkaline proteinase, showed a negligible Hageman factor activation. In the presence of a negatively charged soluble substance, dextran sulfate (0.3-3 micrograms/ml), the activation rate by the elastase increased several fold, with the kinetic parameters of kcat = 13.9 x 10(-3) s-1, Km = 1.6 x 10(-7) M and kcat/Km = 8.5 x 10(4) M-1 x s-1. These results suggested a participation of the Hageman factor-dependent system in the inflammatory response to pseudomonal infections, due to the initiation of the system by the bacterial elastase.  相似文献   

10.
Kinetics of reduction of phototrophic bacterial flavocytochromes c by exogenous flavin semiquinones and fully reduced flavins generated by laser flash photolysis have been studied. The mechanisms of reduction of Chromatium and Chlorobium flavocytochromes c are more similar to one another than previously thought. Neither protein is very reactive with neutral flavin semiquinones (k less than 10(7) M-1 s-1), and the reactions with fully reduced flavins are slower than expected on the basis of comparison with other electron-transfer proteins of similar redox potentials. Deazaflavin radical is reactive with the flavocytochromes c by virtue of its low redox potential, but this reaction is also slower than expected on the basis of comparison with other electron-transfer proteins. These experiments indicate that the active site for reduction of flavocytochrome c is relatively buried and probably inaccessible to solvent. Fully reduced FMN does not show an ionic strength effect in its reaction with flavocytochrome c, which demonstrates that the active site is uncharged. Sulfite, which forms an adduct with protein-bound FAD, partially blocks heme reduction. This shows that heme is reduced via the FAD. The rate constant for intramolecular electron transfer between FAD and heme must be on the order of 10(4) s-1 or larger.  相似文献   

11.
FK506-binding protein (FKBP) catalyzes the cis-trans isomerization of the peptidyl-prolyl amide bond (the PPIase reaction) and is the major intracellular receptor for the immunosuppressive drugs FK506 and rapamycin. One mechanism proposed for catalysis of the PPIase reaction requires attack of an enzyme nucleophile on the carbonyl carbon of the isomerized peptide bond. An alternative mechanism requires conformational distortion of the peptide bond with or without assistance by an enzyme hydrogen bond donor. We have determined the kinetic parameters of the human FKBP-catalyzed PPIase reaction. At 5 degrees C, the isomerization of Suc-Ala-Leu-Pro-Phe-pNA proceeds in 2.5% trifluorethanol with kcat = 600 s-1, Km = 0.5 mM and kcat/Km = 1.2 x 10(6) M-1s-1. The kcat/Km shows little pH dependence between 5 and 10. A normal secondary deuterium isotope effect is observed on both kcat and kcat/Km. To investigate dependence on enzyme nucleophiles and proton donors, we have replaced eight potential catalytic residues with alanine by site-directed mutagenesis. Each FKBP variant efficiently catalyzes the PPIase reaction. Taken together, these data support an unassisted conformational twist mechanism with rate enhancement due in part to desolvation of the peptide bond at the active site. Fluorescence quenching of the buried tryptophan 59 residue by peptide substrate suggests that isomerization occurs in a hydrophobic environment.  相似文献   

12.
M C Walker  G Tollin 《Biochemistry》1992,31(10):2798-2805
Intramolecular electron transfer between the heme and flavin cofactors of flavocytochrome b2 is an obligatory step during the enzymatic oxidation of L-lactate and subsequent reduction of cytochrome c. Previous kinetic studies using both steady-state and transient methods have suggested that such intramolecular electron transfer is inhibited when pyruvate, the two-electron oxidation product of L-lactate, is bound at the active site of Hansenula anomala flavocytochrome b2. In contrast to this, we have recently demonstrated using laser flash photolysis that intramolecular electron transfer could be observed in the flavocytochrome b2 from Saccharomyces cerevisiae only when pyruvate was present [Walker, M., & Tollin, G. (1991) Biochemistry 30, 5546-5555], despite a large thermodynamic driving force of 100 mV and apparently favorable cofactor geometry as indicated by crystallographic studies. In the present study, we have utilized laser flash photolysis to investigate intramolecular electron transfer in the flavocytochrome b2 from H. anomala in an effort to address these apparently conflicting interpretations with respect to the influence of pyruvate on enzyme properties. The results obtained are closely comparable to those we reported using the protein from Saccharomyces. Thus, in the absence of pyruvate, bimolecular reduction of both the heme and FMN cofactors by deazaflavin semiquinone occurs (k approximately 10(9) M-1 s-1), followed by a protein concentration dependent intermolecular electron transfer from the semiquinone form of the FMN cofactor to the heme (k approximately 10(7) M-1 s-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The interaction between six class C beta-lactamases and various penicillins has been studied. All the enzymes behaved in a very uniform manner. Benzylpenicillin exhibited relatively low kcat. values (14-75 s-1) but low values of Km resulted in high catalytic efficiencies [kcat./Km = 10 X 10(6)-75 X 10(6) M-1.s-1]. The kcat. values for ampicillin were 10-100-fold lower. Carbenicillin, oxacillin cloxacillin and methicillin were very poor substrates, exhibiting kcat. values between 1 x 10(-3) and 0.1 s-1. The Km values were correspondingly small. It could safely be hypothesized that, with all the tested substrates, deacylation was rate-limiting, resulting in acyl-enzyme accumulation.  相似文献   

14.
The proteolytic activation of highly purified, heterodimeric porcine factor VIII and factor VIII-von Willebrand factor complex by thrombin was compared at I 0.17, pH 7.0, 22 degrees C. During the activation of factor VIII, heavy-chain cleavage is necessary to activate the procoagulant function, whereas light-chain cleavage is required to dissociate factor VIII from von Willebrand factor. The kinetics of activation of free factor VIII and factor VIII-von Willebrand factor complex were identical. The steady-state kinetics of thrombin-catalyzed heavy-chain cleavages and light-chain cleavage of factor VIII either free or in complex with von Willebrand factor were studied using sodium dodecyl sulfate-polyacrylamide gel radioelectrophoresis and scanning densitometry of fragments derived from 125I-labeled factor VIII. Association of factor VIII with von Willebrand factor resulted in an 8-fold increase in the catalytic efficiency (kcat/Km) of light-chain cleavage (from 7 x 10(6) to 54 x 10(6) M-1 s-1). The catalytic efficiencies of heavy-chain cleavage at position 372 (approximately 6 x 10(6) M-1 s-1) and position 740 (approximately 100 x 10(6) M-1 s-1) were not affected by von Willebrand factor. We conclude that von Willebrand factor promotes cleavage of the factor VIII light chain by thrombin which is followed by rapid dissociation of the complex, so that the rate-limiting step becomes heavy-chain cleavage at position 372. This accounts for the observation that von Willebrand factor has no effect on the kinetics of activation of factor VIII by thrombin.  相似文献   

15.
The molecular mass of destabilase isolated from the medicinae leech Hirudo medicinalis was found to be equal to 12.3 kDa. A kinetic analysis of the sole presently known synthetic substrate, L-gamma-Glu-pNA, showed that the enzyme is relatively stable to heating (5 min, 70 degrees C); the pH optimum lies at 7.0-8.5. The enzyme has a specific activity of 0.15 x 10(-9) mol.s-1.mg-1; Km = 2.2 x 10(-4) M, kcat is 3.53 x 10(-3) s-1 (pH 8.0, 37 degrees C).  相似文献   

16.
A general method is presented here for the determination of the Km, kcat, and kcat/Km of fluorescence resonance energy transfer (FRET) substrates using a fluorescence plate reader. A simple empirical method for correcting for the inner filter effect is shown to enable accurate and undistorted measurements of these very important kinetic parameters. Inner filter effect corrected rates of hydrolysis of a FRET peptide substrate by hepatitis C virus (HCV) NS3 protease at various substrate concentrations enabled measurement of a Km value of 4.4 +/- 0.3 microM and kcat/Km value of 96,500 +/- 5800 M-1 s-1. These values are very close to the HPLC-determined Km value of 4.6 +/- 0.7 microM and kcat/Km value of 92,600 +/- 14,000 M-1 s-1. We demonstrate that the inner filter effect correction of microtiter plate reader velocities enables rapid measurement of Ki and Ki' values and kinetic inhibition mechanisms for HCV NS3 protease inhibitors.  相似文献   

17.
The time course of the interaction between trypsin and a synthetic peptide corresponding to a segment (residues 676-703) of the bait region (residues 666-706) of human alpha 2-macroglobulin (alpha 2M) was studied by measuring the generation of cleavage products as a function of time by HPLC. Three primary cleavage sites for trypsin were present in the synthetic peptide. The fastest cleavage occurred at the bond corresponding to Arg696-Leu in alpha 2M with an estimated kcat/Km = 1-2 x 10(6) M-1.s-1. This value is of the same magnitude as that characterizing the interaction of alpha 2M and trypsin when taking into account the fact that alpha 2M is a tetramer, kcat/Km = 5 x 10(6) M-1.s-1 [Christensen, U. & Sottrup-Jensen, L. (1984) Biochemistry 23, 6619-6626]. The values of kcat/Km for cleavage at bonds corresponding to Arg681-Val and Arg692-Gly in alpha 2M were 1.5 x 10(5) M-1.s-1 and 1.3 x 10(5) M-1.s-1, respectively. Cleavage of intermediate product peptides was slower, with kcat/Km in the range 13-1.3 x 10(6) M-1.s-1. The value of Km determined for fast cleavage in the synthetic peptide was 8-10 microM. 1H-NMR spectroscopy indicated no ordered structure of the peptide. Hence, the very fast cleavage of the peptide is compatible with a loose structure that readily adopts a conformation favorable for recognition and cleavage by trypsin.  相似文献   

18.
Hoke KR  Cobb N  Armstrong FA  Hille R 《Biochemistry》2004,43(6):1667-1674
Arsenite oxidase from Alcaligenes faecalis, an unusual molybdoenzyme that does not exhibit a Mo(V) EPR signal during oxidative-reductive titrations, has been investigated by protein film voltammetry. A film of the enzyme on a pyrolytic graphite edge electrode produces a sharp two-electron signal associated with reversible reduction of the oxidized Mo(VI) molybdenum center to Mo(IV). That reduction or oxidation of the active site occurs without accumulation of Mo(V) is consistent with the failure to observe a Mo(V) EPR signal for the enzyme under a variety of conditions and is indicative of an obligate two-electron center. The reduction potential for the molybdenum center, 292 mV (vs SHE) at pH 5.9 and 0 degrees C, exhibits a linear pH dependence for pH 5-10, consistent with a two-electron reduction strongly coupled to the uptake of two protons without a pK in this range. This suggests that the oxidized enzyme is best characterized as having an L(2)MoO(2) rather than L(2)MoO(OH) center in the oxidized state and that arsenite oxidase uses a "spectator oxo" effect to facilitate the oxo transfer reaction. The onset of the catalytic wave observed in the presence of substrate correlates well with the Mo(VI/IV) potential, consistent with catalytic electron transport that is limited only by turnover at the active site. The one-electron peaks for the iron-sulfur centers are difficult to observe by protein film voltammetry, but spectrophotometric titrations have been carried out to measure their reduction potentials: at pH 6.0 and 20 degrees C, that of the [3Fe-4S] center is approximately 260 mV and that of the Rieske center is approximately 130 mV.  相似文献   

19.
The redox properties of D-amino acid oxidase (D-amino-acid: O2 oxidoreductase (deaminating) EC1.4.3.3) have been measured at 18 degrees C in 20 mM sodium pyrophosphate, pH 8.5, and in 50 mM sodium phosphate, pH 7.0. Over the entire pH range, 2 eq are required per mol of FAD in D-amino acid oxidase for reduction to the anion dihydroquinone. The red anion semiquinone is thermodynamically stable as indicated by the separation of the electron potentials and the quantitative formation of the semiquinone species. The first electron potential is pH-independent at -0.098 +/- 0.004 V versus SHE while the second electron potential is pH-dependent exhibiting a 0.060 mV/pH unit slope. The redox behavior of D-amino acid oxidase is consistent with that observed for other oxidase enzymes. On the other hand, the behavior of the benzoate-bound enzyme under the same conditions is in marked contrast to the thermodynamics of free D-amino acid oxidase. Spectroelectrochemical experiments performed on inhibitor-bound (benzoate) D-amino acid oxidase show that benzoate binding regulates the redox properties of the enzyme, causing the energy levels of the benzoate-bound enzyme to be consistent with the two-electron transfer catalytic function of the enzyme. Our data are consistent with benzoate binding at the enzyme active site destroying the inductive effect of the positively charged arginine residue. Others have postulated that this positively charged group near the N(1)C(2) = O position of the flavin controls the enzyme properties. The data presented here are the clearest examples yet of enzyme regulation by substrate which may be a general characteristic of all flavoprotein oxidases.  相似文献   

20.
Reductive titration curves of flavodoxin from Desulfovibrio vulgaris displayed two one-electron steps. The redox potential E-2 for the couple oxidized flavodoxin/flavodoxin semiquinone was determined by direct titration with dithionite. E-2 was -149 plus or minus 3 mV (pH 7.78, 25 degrees C). The redox potential E-1 for the couple flavodoxin semiquinone/fully reduced flavodoxin was deduced from the equilibrium concentration of these species in the presence of hydrogenase and H-2. E-1 was -438 plus or minus 8 mV (pH 7.78, 25 degrees C). Light-absorption and fluorescence spectra of flavodoxin in its three redox states have been recorded. Both the rate and extent of reduction of flavodoxin semiguinone with dithionite were found to depend on pH. An equilibrium between the semiquinone and hydroquinone forms occurred at pH values close to the neutrality, even in the presence of a large excess of dithionite, suggesting an ionization in fully reduced flavodoxin with a pK-a = 6.6. The association constants K for the three FMN redox forms with the apoprotein were deduced from the value of K (K = 8 times 10-7 M-1) measured with oxidized EMN at pH 7.0. Oxidized flavodoxin was found to comproportionate with the fully reduced protein (k-comp = 4.3 times 10-3 M-1 times s-1, pH 9.0, 22 degrees C) and with reduced free FMN (K-comp = 44 M-1 times s-1, pH 8.1, 20 degrees C). Fast oxidation of reduced flavodoxin occurred in the presence of O-2. Slower oxidation of semiquinone was dependent on pH in a drastic way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号