首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Memapsin 2 is the protease known as beta-secretase whose action on beta-amyloid precursor protein leads to the production of the beta-amyloid (Abeta) peptide. Since the accumulation of Abeta in the brain is a key event in the pathogenesis of Alzheimer's disease, memapsin 2 is an important target for the design of inhibitory drugs. Here we describe the residue preference for the subsites of memapsin 2. The relative k(cat)/K(M) values of residues in each of the eight subsites were determined by the relative initial cleavage rates of substrate mixtures as quantified by MALDI-TOF mass spectrometry. We found that each subsite can accommodate multiple residues. The S(1) subsite is the most stringent, preferring residues in the order of Leu > Phe > Met > Tyr. The preferences of other subsites are the following: S(2), Asp > Asn > Met; S(3), Ile > Val > Leu; S(4), Glu > Gln > Asp; S(1)', Met > Glu > Gln > Ala; S(2)', Val > Ile > Ala; S(3)', Leu > Trp > Ala; S(4)', Asp > Glu > Trp. In general, S subsites are more specific than the S' subsites. A peptide comprising the eight most favored residues (Glu-Ile-Asp-Leu-Met-Val-Leu-Asp) was found to be hydrolyzed with the highest k(cat)/K(M) value so far observed for memapsin 2. Residue preferences at four subsites were also studied by binding of memapsin 2 to a combinatorial inhibitor library. From 10 tight binding inhibitors, the consensus preferences were as follows: S(2), Asp and Glu; S(3), Leu and Ile; S(2)', Val; and S(3)', Glu and Gln. An inhibitor, OM00-3, Glu-Leu-Asp-LeuAla-Val-Glu-Phe (where the asterisk represents the hydroxyethylene tansition-state isostere), designed from the consensus residues, was found to be the most potent inhibitor of memapsin 2 so far reported (K(i) of 3.1 x 10(-10) M). A molecular model of OM00-3 binding to memapsin 2 revealed critical improvement of the interactions between inhibitor side chains with enzyme over a previous inhibitor, OM99-2 [Ghosh, A. K., et al. (2000) J. Am. Chem. Soc. 14, 3522-3523].  相似文献   

2.
He X  Chang WP  Koelsch G  Tang J 《FEBS letters》2002,524(1-3):183-187
Memapsin 2, or beta-secretase, is a membrane-anchored aspartic protease that initiates the cleavage of beta-amyloid precursor protein (APP) leading to the production of beta-amyloid peptide in the brain and the onset of Alzheimer's disease. Memapsin 2 and APP are both endocytosed into endosomes for cleavage. Here we show that the cytosolic domain of memapsin 2, but not that of memapsin 1, binds the VHS domains of GGA1 and GGA2. Gel-immobilized VHS domains of GGA1 and GGA2 also bound to full-length memapsin 2 from cell mammalian lysates. Mutagenesis studies established that Asp(496), Leu(499) and Leu(500) were essential for the binding. The spacing of these three residues in memapsin 2 is identical to those in the cytosolic domains of mannose-6-phosphate receptors, sortilin and low density lipoprotein receptor-related protein 3. These observations suggest that the endocytosis and intracellular transport of memapsin 2, mediated by its cytosolic domain, may involve the binding of GGA1 and GGA2.  相似文献   

3.
Memapsin 2 (beta-secretase) is the membrane-anchored aspartic protease that initiates the cleavage of beta-amyloid precursor protein (APP), leading to the production of amyloid-beta (Abeta), a major factor in the pathogenesis of Alzheimer's disease. The active site of memapsin 2 has been shown, with kinetic data and crystal structures, to bind to eight substrate residues (P(4)-P(4)'). We describe here that the addition of three substrate residues from P(7) to P(5) strongly influences the hydrolytic activity by memapsin 2 and these subsites prefer hydrophobic residues, especially tryptophan. A crystal structure of memapsin 2 complexed with a statine-based inhibitor spanning P(10)-P(4)' revealed the binding positions of P(5)-P(7) residues. Kinetic studies revealed that the addition of these substrate residues contributes to the decrease in K(m) and increase in k(cat) values, suggesting that these residues contribute to both substrate recognition and transition-state binding. The crystal structure of a new inhibitor, OM03-4 (K(i) = 0.03 nM), bound to memapsin 2 revealed the interaction of a tryptophan with the S(6) subsite of the protease.  相似文献   

4.
Alzheimer’s disease (AD), which is characterized bythe progressive destruction of brain functions in olderpeople, was first recognized in the early 20th century.Since then, modern medicine has further increased thenumber of people living to old age. AD h…  相似文献   

5.
Memapsin 2 (beta-secretase) is the protease that initiates cleavage of amyloid precursor protein (APP) leading to the production of amyloid-beta (Abeta) peptide and the onset of Alzheimer's disease. Both APP and memapsin 2 are Type I transmembrane proteins and are endocytosed into endosomes where APP is cleaved by memapsin 2. Separate endocytic signals are located in the cytosolic domains of these proteins. We demonstrate here that the addition of the ectodomain of memapsin 2 (M2(ED)) to cells transfected with native APP or APP Swedish mutant (APPsw) resulted in the internalization of M2(ED) into endosomes with increased Abeta production. These effects were reduced by treatment with glycosylphosphatidylinositol-specific phospholipase C. The nontransfected parental cells had little internalization of M2(ED). The internalization of M2(ED) was dependent on the endocytosis signal in APP, because the expression of a mutant APP that lacks its endocytosis signal failed to support M2(ED) internalization. These results suggest that exogenously added M2(ED) interacts with the ectodomain of APP on the cell surface leading to the internalization of M2(ED), supported by fluorescence resonance energy transfer experiments. The interactions between the two proteins is not due to the binding of substrate APPsw to the active site of memapsin 2, because neither a potent active site binding inhibitor of memapsin 2 nor an antibody directed to the beta-secretase site of APPsw had an effect on the uptake of M2(ED). In addition, full-length memapsin 2 and APP, immunoprecipitated together from cell lysates, suggested that the interaction of these two proteins is part of the native cellular processes.  相似文献   

6.
Memapsin 2 (BACE, beta-secretase) is a membrane-associated aspartic protease that initiates the hydrolysis of beta-amyloid precursor protein (APP) leading to the production of amyloid-beta (A beta) and the progression of Alzheimer disease. Both memapsin 2 and APP are transported from the cell surface to endosomes where APP is cleaved by memapsin 2. We described previously that the cytosolic domain of memapsin 2 contains an acid cluster-dileucine motif (ACDL) that binds the VHS (Vps-27, Hrs, and STAM) domain of Golgi-localized gamma-ear-containing ARF-binding (GGA) proteins (He, X., Zhu, G., Koelsch, G., Rodgers, K. K., Zhang, X. C., and Tang, J. (2003) Biochemistry 42, 12174-12180). Here we report that GGA proteins colocalize in the trans-Golgi network and endosomes with memapsin 2 and a memapsin 2 chimera containing a cytosolic domain of a mannose-6-phosphate receptor. Depleting cellular GGA proteins with RNA interference or mutation of serine 498 to stop the phosphorylation of ACDL resulted in the accumulation of memapsin 2 in early endosomes. A similar change of memapsin 2 localization also was observed when a retromer subunit, VPS26, was depleted. These observations suggest that GGA proteins function with the phosphorylated ACDL in the memapsin 2-recycling pathway from endosomes to trans-Golgi on the way back to the cell surface.  相似文献   

7.
He X  Zhu G  Koelsch G  Rodgers KK  Zhang XC  Tang J 《Biochemistry》2003,42(42):12174-12180
Memapsin 2 (beta-secretase) is a membrane-associated aspartic protease that initiates the hydrolysis of beta-amyloid precursor protein (APP) leading to the production of amyloid-beta and the onset of Alzheimer's disease (AD). Both memapsin 2 and APP are transported from the cell surface to endosomes where APP hydrolysis takes place. Thus, the intracellular transport mechanism of memapsin 2 is important for understanding the pathogenesis of AD. We have previously shown that the cytosolic domain of memapsin 2 contains an acid-cluster-dileucine (ACDL) motif that binds the VHS domain of GGA proteins (He et al. (2002) FEBS Lett. 524, 183-187). This mechanism is the presumed recognition step for the vesicular packaging of memapsin 2 for its transport to endosomes. The phosphorylation of a serine residue within the ACDL motif has been reported to regulate the recycling of memapsin 2 from early endosomes back to the cell surface. Here, we report a study on the memapsin 2/VHS domain interaction. Using isothermal titration calorimetry, the dissociation constant, K(d), values are 4.0 x 10(-4), 4.1 x 10(-4), and 3.1 x 10(-4) M for VHS domains from GGA1, GGA2, and GGA3, respectively. With the serine residue replaced by phosphoserine, the K(d) decreased about 10-, 4-, and 14-fold for the same three VHS domains. A crystal structure of the complex between memapsin 2 phosphoserine peptide and GGA1 VHS was solved at 2.6 A resolution. The side chain of the phosphoserine group does not interact with the VHS domain but forms an ionic interaction with the side chain of the C-terminal lysine of the ligand peptide. Energy calculation of the binding of native and phosphorylated peptides to VHS domains suggests that this intrapeptide ionic bond in solution may reduce the change in binding entropy and thus increase binding affinity.  相似文献   

8.
Memapsin 2 (BACE1, β‐secretase), a membrane aspartic protease, functions in the cleavage of brain β‐amyloid precursor protein (APP) leading to the production of β‐amyloid. Because the excess level of β‐amyloid in the brain is a leading factor in Alzheimer's disease (AD), memapsin 2 is a major therapeutic target for inhibitor drugs. The substrate‐binding cleft of memapsin 2 accommodates 12 subsite residues, from P8 to P4′. We have determined the hydrolytic preference as relative kcat/KM (preference constant) in all 12 subsites and used these data to establish a predictive algorithm for substrate hydrolytic efficiency. Using the sequences from 12 reported memapsin 2 protein substrates, the predicted and experimentally determined preference constants have an excellent correlation coefficient of 0.97. The predictive model indicates that the hydrolytic preference of memapsin 2 is determined mainly by the interaction with six subsites (from P4 to P2′), a conclusion supported by the crystal structure B‐factors calculated for the various residues of transition‐state analogs bound to different memapsin 2 subsites. The algorithm also predicted that the replacement of the P3, P2, and P1 subsites of APP from Val, Lys, and Met, respectively, to Ile, Asp, and Phe, respectively, (APPIDF) would result in a highest hydrolytic rate for β‐amyloid‐generating APP variants. Because more β‐amyloid was produced from cells expressing APPIDF than those expressing APP with Swedish mutations, this designed APP variant may be useful in new memapsin 2 substrates or transgenic mice for AD studies.  相似文献   

9.
We have previously reported structure-based design of memapsin 2 (beta-secretase) inhibitors with high potency. Here we show that two such inhibitors covalently linked to a "carrier peptide" penetrated the plasma membrane in cultured cells and inhibited the production of beta-amyloid (Abeta). Intraperitoneal injection of the conjugated inhibitors in transgenic Alzheimer's mice (Tg2576) resulted in a significant decrease of Abeta level in the plasma and brain. These observations verified that memapsin 2 is a therapeutic target for Abeta reduction and also establish that transgenic mice are suitable in vivo models for the study of memapsin 2 inhibition.  相似文献   

10.
The enzyme BACE (beta-site APP-cleaving enzyme) has recently been identified as the beta-secretase that cleaves the amyloid precursor protein (APP) to produce the N terminus of the Abeta peptide found in plaques in the brains of Alzheimer's disease patients. BACE is an aspartic protease similar to pepsin and renin. Comparative modeling of the three-dimensional structure of BACE in complex with its substrate shows that several residues confer specificity of the enzyme for APP. In particular, Arg296 forms a salt-bridge with the P1' Asp of the APP substrate, explaining the unusual preference of BACE among aspartic proteases for a P1' residue that is negatively charged. Several hydrophobic residues in the enzyme form a pocket for the P1 hydrophobic residue (Met in wild-type APP and Leu in APP with the "Swedish mutation" associated with early-onset of Alzheimer's disease). Inhibitors that can bind to the BACE active site may prove useful for drugs to treat and prevent Alzheimer's disease.  相似文献   

11.
Ermolieff J  Loy JA  Koelsch G  Tang J 《Biochemistry》2000,39(40):12450-12456
Memapsin 2 (beta-secretase), a membrane-anchored aspartic protease, is involved in the cleavage of beta-amyloid precursor protein to form beta-amyloid peptide. The primary structure of memapsin 2 suggests that it is synthesized in vivo as pro-memapsin 2 and converted to memapsin 2 by an activating protease [Lin et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 1456-1460]. To simulate this activation mechanism and to produce stable mature memapsin 2 for kinetic/specificity studies, we have investigated the activation of recombinant pro-memapsin 2 by several proteases with trypsin-like specificity. Clostripain, kallikrein, and trypsin increased the activity of pro-memapsin 2. Clostripain activation was accompanied by the cleavage of the pro region to form mainly two activation products, Leu(30p)- and Gly(45p)-memapsin 2. Another activation product, Leu(28p)-memapsin 2, was also purified. Kinetics of the activated memapsin 2 were compared with pro-memapsin 2 using two new fluorogenic substrates, Arg-Glu(5-[(2-aminoethyl)amino]naphthalene-1-sulfonic acid (EDANS))-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys(4-(4-dimethylaminophe nyl azo)benzoic acid (DABCYL))-Arg and (7-methoxycoumarin-4-yl)acetyl (MCA))-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys(2,4-dinitrophenyl (DNP)). These results establish that the activity of pro-memapsin 2 stems from a part-time and reversible uncovering of its active site by its pro region. Proteolytic removal of part of the pro-peptide at Leu(28p) or Gly(45p), which diminishes the affinity of the shortened pro-peptide to the active site, results in activated memapsin 2. These results also suggest that Glu(33p)-memapsin 2 observed in the cells expressing this enzyme [Vassar et al. (1999) Science 286, 735-741; Yan et al. (1999) Nature 402, 533-537] is an active intermediate of in vivo activation, or that the peptide Glu(33p)-Arg(44p) may serve a regulatory role.  相似文献   

12.
beta-Site APP-cleaving enzyme (BACE) initiates the processing of the amyloid precursor protein (APP) leading to the generation of beta-amyloid, the main component of Alzheimer's disease senile plaques. BACE (Asp2, memapsin 2) is a type I transmembrane aspartyl protease and is responsible for the beta-secretase cleavage of APP producing different endoproteolytic fragments referred to as the carboxy-terminal C99, C89 and the soluble ectodomain sAPPbeta. Here we describe two transgenic mouse lines expressing human BACE in the brain. Overexpression of BACE augments the amyloidogenic processing of APP as demonstrated by decreased levels of full-length APP and increased levels of C99 and C89 in vivo. In mice expressing huBACE in addition to human APP wild-type or carrying the Swedish mutation, the induction of APP processing characterized by elevated C99, C89 and sAPPbeta, results in increased brain levels of beta-amyloid peptides Abeta40 and Abeta42 at steady-state.  相似文献   

13.
A series of novel macrocyclic amide-urethanes was designed and synthesized based upon the X-ray crystal structure of our lead inhibitor (1, OM99-2 with eight residues) bound to memapsin 2. Ring size and substituent effects have been investigated. Cycloamide-urethanes containing 14- to 16-membered rings exhibited low nanomolar inhibitory potencies against human brain memapsin 2 (beta-secretase).  相似文献   

14.
Hong L  Turner RT  Koelsch G  Shin D  Ghosh AK  Tang J 《Biochemistry》2002,41(36):10963-10967
The structure of the catalytic domain of human memapsin 2 bound to an inhibitor OM00-3 (Glu-Leu-Asp-LeuAla-Val-Glu-Phe, K(i) = 0.3 nM, the asterisk denotes the hydroxyethylene transition-state isostere) has been determined at 2.1 A resolution. Uniquely defined in the structure are the locations of S(3)' and S(4)' subsites, which were not identified in the previous structure of memapsin 2 in complex with the inhibitor OM99-2 (Glu-Val-Asn-LeuAla-Ala-Glu-Phe, K(i) = 1 nM). Different binding modes for the P(2) and P(4) side chains are also observed. These new structural elements are useful for the design of new inhibitors. The structural and kinetic data indicate that the replacement of the P(2)' alanine in OM99-2 with a valine in OM00-3 stabilizes the binding of P(3)' and P(4)'.  相似文献   

15.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leu(m)-Pro-Glu-Ala-Leu(n) (m = 0-4, n = 0-3). Neither Pro-Glu-Ala-Leu (m = 0) nor Leu-Pro-Glu-Ala (n = 0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leu(m)-Pro-Glu-Ala-Leu increased with the increase of m = 1 to 2 and 3, but was however, essentially same with the increase of m = 3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leu(n) increased with the increase of n = 0 to 1 and 2, but was essentially same with the increase of n = 2 to 3. Then, it was concluded that cucumisin has a S5-S3' subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1' position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1' positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

16.
Wounding of tomato leaves results in the accumulation of an exoprotease called leucine aminopeptidase (LAP-A) that preferentially hydrolyzes amino acid-p-nitroanilide and -beta-naphthylamide substrates with N-terminal Leu, Met and Arg residues. To determine the substrate specificity of LAP-A on more natural substrates, the rates of hydrolysis of 60 dipeptide and seven tripeptide substrates were determined. For comparison, the specificities of the porcine and Escherichia coli LAPs were evaluated in parallel. Several marked differences in substrate specificities for the animal, plant and prokaryotic LAP enzymes were observed. Substrates with variable N-terminal (P1) residues (Xaa) were evaluated; these substrates had Leu or Gly in the penultimate (P1') position. The plant, animal, and prokaryotic LAPs hydrolyzed dipeptides with N-terminal nonpolar aliphatic (Leu, Val, Ile, and Ala), basic (Arg), and sulfur-containing (Met) residues rapidly, while P1 Asp or Gly were cleaved inefficiently from peptides. Significant differences in the cleavage of dipeptides with P1 aromatic residues (Phe, Tyr, and Trp) were noted. To systematically evaluate the impact of the P1' residue on cleavage of dipeptides, three series of dipeptides (Leu-Xaa, Gly-Xaa, and Arg-Xaa) were evaluated. The P1' residue strongly influenced hydrolysis of dipeptides and the magnitude of its effect was dependent on the P1 residue. P1' Pro, Asp, Lys and Gly slowed the hydrolysis rates of the tomato LAP-A, porcine LAP, and E. coli PepA markedly. Analysis six Arg-Gly-Xaa tripeptides showed that more diversity was tolerated in the P2' position. P2' Arg inhibited tripeptide cleavage by all three enzymes, while P2' Asp enhanced hydrolysis rates for the porcine and prokaryotic LAPs.  相似文献   

17.
The solubility, stability, and activity of native subtilisin 72 and of its complex with SDS were comparatively studied in a number of polar organic solvents. Subtilisin was found to catalyze peptide bond formation when suspended in acetonitrile or solubilized as a complex with SDS in ethanol and isopropanol. Tripeptide Z-Ala-Ala-Leu-pNA, tetrapeptides A-Ala-Ala-P1-P1'-B, where A = Z or Abz; P1 = Leu, Phe, Met, Trp, Ile, Tyr, Phe(NO2), or Glu(OMe), P1' = Leu, Phe, Glu, Ala, Ile, Val, or Arg; B = NH2, pNA, or 2-(2,4-dinitrophenyl)aminoethylamine residue (Ded); pentapeptides Z-Ala-Ala-Leu-Ala-Ala-pNA and Z-Ala-Ala-Leu-Ala-Phe-pNA; and hexapeptide Abz-Val-Ala-Phe-Phe-Ala-Ala-Ded were synthesized using the SDS-subtilisin complex. The complex also efficiently catalyzed the oligomerization of tripeptide H-Phe-Ala-Leu-OCH3 in ethanol, which resulted in a 63:37 mixture of trioligomer and tetraoligomer. It was demonstrated that SDS-subtilisin is a much more efficient catalyst than the suspension of native enzyme.  相似文献   

18.
Mempasin 2, a beta-secretase, is the membrane-anchored aspartic protease that initiates the cleavage of amyloid precursor protein leading to the production of beta-amyloid and the onset of Alzheimer's disease. Thus memapsin 2 is a major therapeutic target for the development of inhibitor drugs for the disease. Many biochemical tools, such as the specificity and crystal structure, have been established and have led to the design of potent and relatively small transition-state inhibitors. Although developing a clinically viable mempasin 2 inhibitor remains challenging, progress to date renders hope that memapsin 2 inhibitors may ultimately be useful for therapeutic reduction of beta-amyloid.  相似文献   

19.
The environment of Trp residues of the recombinant human interferons has been studied by the analysis of the emission spectra of native and denatured proteins at pH 1.5-8.5 and temperature 10-65 degrees C in the presence and absence of the anionic, cationic and neutral to charge contact quenchers--KI, CsCl and acrylamide, respectively. The obtained data allow to suppose that in IFN-alpha A and IFN-beta 1 Trp141 interacts with Arg145 and one or several from the following residues--Phe124, Ile127, Tyr130, Leu131, whereas Trp77--with Arg33 and Phe36, Phe78, Leu81 or Leu82 (Ile81 or Val82 for IFN-beta 1).  相似文献   

20.
The subsite specificity of rat nardilysin was investigated using fluorogenic substrates of the type 2-aminobenzoyl-GGX(1)X(2)RKX(3)GQ-ethylenediamine-2,4- dinitrophenyl, where P(2), P(2)', and P(3) residues were varied. (The nomenclature of Schechter and Berger (Schechter, I., and Berger, A. (1967) Biochem. Biophys. Res. Commun. 27, 157-162) is used where cleavage of a peptide occurs between the P(1) and P(1)' residues, and adjacent residues are designated P(2), P(3), P(2)', P(3)', etc.) There was little effect on K(m) among different residues at any of these positions. In contrast, residues at each position affected k(cat), with P(2) residues having the greatest effect. The S(3), S(2), and S(2)' subsites differed in their amino acid preference. Tryptophan and serine, which produced poor substrates at the P(2) position, were among the best P(2)' residues. The specificity at P(3) was generally opposite that of P(2). Residues at P(2), and to a lesser extent at P(3), influenced the cleavage site. At the P(2) position, His, Phe, Tyr, Asn, or Trp produced cleavage at the amino side of the first basic residue. In contrast, a P(2) Ile or Val produced cleavage between the dibasic pair. Other residues produced intermediate effects. The pH dependence for substrate binding showed that the enzyme prefers to bind a protonated histidine. A comparison of the effect of arginine or lysine at the P(1)' or P(1) position showed that there is a tendency to cleave on the amino side of arginine and that this cleavage produces the highest k(cat) values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号