首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Sequence dependence of DNA conformational flexibility   总被引:9,自引:0,他引:9  
A Sarai  J Mazur  R Nussinov  R L Jernigan 《Biochemistry》1989,28(19):7842-7849
By using conformational free energy calculations, we have studied the sequence dependence of flexibility and its anisotropy along various conformational variables of DNA base pairs. The results show the AT base step to be very flexible along the twist coordinate. On the other hand, homonucleotide steps, GG(CC) and AA(TT), are among the most rigid sequences. For the roll motion that would correspond to a bend, the TA step is most flexible, while the GG(CC) step is least flexible. The flexibility of roll is quite anisotropic; the ratio of fluctuations toward the major and minor grooves is the largest for the GC step and the smallest for the AA(TT) and CG steps. Propeller twisting of base pairs is quite flexible, especially of A.T base pairs; propeller twist can reach 19 degrees by thermal fluctuation. We discuss the effect of electrostatic parameters, comparison with available experimental results, and biological relevance of these results.  相似文献   

2.
3.
Every AE  Russu IM 《Biopolymers》2007,87(2-3):165-173
Aromatic stacking and hydrogen bonding between nucleobases are two of the key interactions responsible for stabilization of DNA double-helical structures. The present work aims at defining the specific contributions of these interactions to the stability of individual base pairs in DNA. The two DNA double helices investigated are formed, respectively, by the palindromic base sequences 5'-dCCAACGTTGG-3' and 5'-dCGCAGATCTGCG-3'. The strength of the N==H...N inter-base hydrogen bond in each base pair is characterized from the measurement of the protium-deuterium fractionation factor of the corresponding imino proton using NMR spectroscopy. The structural stability of each base pair is evaluated from the exchange rate of the imino proton, measured by NMR. The results reveal that the fractionation factors of the imino protons in the two DNA double helices investigated fall within a narrow range of values, between 0.92 and 1.0. In contrast, the free energies of structural stabilization for individual base pairs span 3.5 kcal/mol, from 5.2 to 8.7 kcal/mol (at 15 degrees C). These findings indicate that, in the two DNA double helices investigated, the strength of N==H...N inter-base hydrogen bonds does not change significantly depending on the nature or the sequence context of the base pair. Hence, the variations in structural stability detected by proton exchange do not involve changes in the strength of inter-base hydrogen bonds. Instead, the results suggest that the energetic identity of a base pair is determined by the number of inter-base hydrogen bonds, and by the stacking interactions with neighboring base pairs.  相似文献   

4.
5.
Energy decomposition analyses based on the block-localized wave-function (BLW-ED) method are conducted to explore the nature of the hydrogen bonds in DNA base pairs in terms of deformation, Heitler–London, polarization, electron-transfer and dispersion-energy terms, where the Heitler–London energy term is composed of electrostatic and Pauli-exchange interactions. A modest electron-transfer effect is found in the Watson–Crick adenine–thymine (AT), guanine–cytosine (GC) and Hoogsteen adenine-thymine (H-AT) pairs, confirming the weak covalence in the hydrogen bonds. The electrostatic attraction and polarization effects account for most of the binding energies, particularly in the GC pair. Both theoretical and experimental data show that the GC pair has a binding energy (−25.4 kcal mol−1 at the MP2/6-31G** level) twice that of the AT (−12.4 kcal mol−1) and H-AT (−12.8 kcal mol−1) pairs, compared with three conventional N-H···O(N) hydrogen bonds in the GC pair and two in the AT or H-AT pair. Although the remarkably strong binding between the guanine and cytosine bases benefits from the opposite orientations of the dipole moments in these two bases assisted by the π-electron delocalization from the amine groups to the carbonyl groups, model calculations demonstrate that π-resonance has very limited influence on the covalence of the hydrogen bonds. Thus, the often adopted terminology “resonance-assisted hydrogen bonding (RHAB)” may be replaced with “resonance-assisted binding” which highlights the electrostatic rather than electron-transfer nature of the enhanced stabilization, as hydrogen bonds are usually regarded as weak covalent bonds. Figure Electron density difference (EDD) maps for the GC pair: a shows the polarization effect (isodensity 1.2×10−3 a.u.); b shows the charge transfer effect (isodensity 2×10−4 a.u.) Dedicated to Professor Paul von Ragué Schleyer on the occasion of his 75th birthday  相似文献   

6.
The mechanisms of cold and pressure denaturation of proteins are a matter of debate, but it is commonly accepted that water plays a fundamental role in the process. It has been proposed that the denaturation process is related to an increase of hydrogen bonds among hydration water molecules. Other theories suggest that the causes of denaturation are the density fluctuations of surface water, or the destabilization of hydrophobic contacts as a consequence of water molecule inclusions inside the protein, especially at high pressures. We review some theories that have been proposed to give insight into this problem, and we describe a coarse-grained model of water that compares well with experiments for proteins’ hydration water. We introduce its extension for a homopolymer in contact with the water monolayer and study it by Monte Carlo simulations in an attempt to understand how the interplay of water cooperativity and interfacial hydrogen bonds affects protein stability.  相似文献   

7.
8.
Apart from its role in insulin receptor (IR) activation, the C terminus of the B-chain of insulin is also responsible for the formation of insulin dimers. The dimerization of insulin plays an important role in the endogenous delivery of the hormone and in the administration of insulin to patients. Here, we investigated insulin analogues with selective N-methylations of peptide bond amides at positions B24, B25, or B26 to delineate their structural and functional contribution to the dimer interface. All N-methylated analogues showed impaired binding affinities to IR, which suggests a direct IR-interacting role for the respective amide hydrogens. The dimerization capabilities of analogues were investigated by isothermal microcalorimetry. Selective N-methylations of B24, B25, or B26 amides resulted in reduced dimerization abilities compared with native insulin (K(d) = 8.8 μM). Interestingly, although the N-methylation in [NMeTyrB26]-insulin or [NMePheB24]-insulin resulted in K(d) values of 142 and 587 μM, respectively, the [NMePheB25]-insulin did not form dimers even at high concentrations. This effect may be attributed to the loss of intramolecular hydrogen bonding between NHB25 and COA19, which connects the B-chain β-strand to the core of the molecule. The release of the B-chain β-strand from this hydrogen bond lock may result in its higher mobility, thereby shifting solution equilibrium toward the monomeric state of the hormone. The study was complemented by analyses of two novel analogue crystal structures. All examined analogues crystallized only in the most stable R(6) form of insulin oligomers (even if the dimer interface was totally disrupted), confirming the role of R(6)-specific intra/intermolecular interactions for hexamer stability.  相似文献   

9.
Petrella RJ  Karplus M 《Proteins》2004,54(4):716-726
Although most side-chain torsion angles correspond to low-energy rotameric positions, deviations occur with significant frequency. One striking example arises in Trp residues, which have an important role in stabilizing protein structures because of their size and mixed hydrophobic/hydrophilic character. Ten percent of Trp side-chains have unexplained conformations with chi(2) near 0 degrees instead of the expected 90 degrees. The current work is a structural and energetic analysis of these conformations. It is shown that many Trp residues with these orientations are stabilized by three-center carbon-donor hydrogen bonds of the form C-H...X...H-C, where X is a polar hydrogen-bond acceptor in the environment of the side-chain. The bridging hydrogen bonds occur both within the Trp side-chain and between the side-chain and the local protein backbone. Free energy maps of an isolated Trp residue in an explicit water environment show a minimum corresponding to the off-rotamer peak observed in the crystallographic data. Bridging carbon-donor hydrogen bonds are also shown to stabilize on-rotamer Trp conformations, and similar bridging hydrogen bonds also stabilize some off-rotamer Asp conformations. The present results suggest a previously unrecognized role for three-center carbon-donor hydrogen bonds in protein structures and support the view that the off-rotamer Trp side-chain orientations are real rather than artifacts of crystallographic refinements. Certain of the off-rotamer Trp conformations appear to have a functional role.  相似文献   

10.
Many natural and biological systems including collagen and DNA polymers are formed by a process of molecular self-assembly. In this paper, we developed two novel structural models and built heterogeneous DNA/collagen complexes through a preferable arrangement of multiple hydrogen bonds (H-bonds) between DNA and collagen molecules. The simulation results based on three sets of criteria indicate that one of the models with five collagen molecules, which are positioned around each strand of DNA molecules emerged to form a suitable polymer complex with the maximum number of H-bonds. Our predictions quantitatively validated and agreed with the molecular structure reported by Mrevlishvili and Svintradze [2005. Int. J. Biol. Macromol. 36, 324-326].  相似文献   

11.
A systematic analysis has been carried out to examine all the stereochemically possible bifurcated hydrogen bonds including those of cross strand type between propeller twisted base pairs in DNA double helices by stereochemical considerations involving base pairs alone and by molecular mechanics studies on dimer and trimer duplexes. The results show that there are limited number of combinations of adjacent base pairs that would facilitate bifurcated cross-strand hydrogen bond (CSH). B-type helices concomitant with negative propeller twist seem to be more favored for the occurrence of CSH than canonical A-type helices because of slide in the latter. The results also demonstrate that helices with appropriate sequences may possess continuous run of these propeller twist driven cross strand hydrogen bonds indicating that they may in fact be considered as yet another general structural feature of DNA helices.  相似文献   

12.
The role of classical hydrogen bonds in the structural stability of biological macro-molecules is well understood. In the present study, we explore the influence of C-H...O interactions in relation to other environmental preferences in interleukins. Main chain-main chain interactions are predominant. Pro residues might stabilize helices and strands by C-H...O H-bonds in interleukins. Majority of the C-H...O interacting residues were solvent exposed. 62% of C-H...O interactions was long-range interactions. The results presented in this study might be useful for structural stability studies in interleukins.  相似文献   

13.
Empirical criteria for identification of hydrogen bonds were analyzed to produce a set of geometrically consistent criteria. For a data set of 30 structures, application of a set of purely geometrical criteria, along with exclusion of abnormal backbone conformations, also excluded a common interaction of Ser/Thr side chains with Asp/Glu side chains ([ST]/[DE] pairs). These interactions were termed "bifurcated hydrogen bonds", which implies delocalization of a positively charged hydrogen of hydroxyl between the two acceptor atoms of the carboxylic group. These "bifurcated" interactions are among the most common packing patterns for [ST]/[DE] pairs of side chains. Therefore, the identification of hydrogen bonds cannot be based on geometrical criteria only and requires introduction of some physico-chemical criteria.  相似文献   

14.
A statistical mechanistic approach to evaluate the sequence-dependent thermodynamic stability of nucleosomes is proposed. The model is based on the calculation of the DNA intrinsic curvature, obtained by integrating the nucleotide step deviations from the canonical B-DNA structure, and on the evaluation of the first order elastic distortion energy to reach the nucleosomal superstructure. Literature data on the free energy of nucleosome formation as obtained by competitive nucleosome reconstitution of a significant pool of different DNA sequences were compared with the theoretical results, and a satisfactorily good correlation was found. A striking result of the comparison is the emergence of two opposite roles of the DNA intrinsic curvature and flexibility in determining nucleosome stability. Finally, the obtained results suggest that the curvature-dependent DNA hydration should play a relevant role in the sequence-dependent nucleosome stability.  相似文献   

15.
Fis is an abundant bacterial DNA binding protein that functions in many different reactions. We show here that Fis subunits rapidly exchange between dimers in solution by disulfide cross-linking mixtures of Fis mutants with different electrophoretic mobilities and by monitoring energy transfer between fluorescently labeled Fis subunits upon heterodimer formation. The effects of detergents and salt concentrations on subunit exchange imply that the dimer is predominantly stabilized by hydrophobic forces, consistent with the X-ray crystal structures. Specific and nonspecific DNA strongly inhibit Fis subunit exchange. In all crystal forms of Fis, the separation between the DNA recognition helices within the Fis dimer is too short to insert into adjacent major grooves on canonical B-DNA, implying that conformational changes within the Fis dimer and/or the DNA must occur upon binding. We therefore investigated the functional importance of dimer interface flexibility for Fis-DNA binding by studying the DNA binding properties of Fis mutants that were cross-linked at different positions in the dimer. Flexibility within the core dimer interface does not appear to be required for efficient DNA binding, Fis-DNA complex dissociation, or Fis-induced DNA bending. Moreover, FRET-based experiments provided no evidence for a change in the spatial relationship between the two helix-turn-helix motifs in the Fis dimer upon DNA binding. These results support a model in which the unusually short distance between DNA recognition helices on Fis is accommodated primarily through bending of the DNA.  相似文献   

16.
We develop a simple elastic model to study the conformation of DNA in the nucleosome core particle. In this model, the changes in the energy of the covalent bonds that connect the base pairs of each strand of the DNA double helix, as well as the lateral displacements and the rotation of adjacent base pairs are considered. We show that because of the rigidity of the covalent bonds in the sugar-phosphate backbones, the base pair parameters are highly correlated, especially, strong twist-roll-slide correlation in the conformation of the nucleosomal DNA is vividly observed in the calculated results. This simple model succeeds to account for the detailed features of the structure of the nucleosomal DNA, particularly, its more important base pair parameters, roll and slide, in good agreement with the experimental results.  相似文献   

17.
Knowledge of the architecture of DNA ligase IV (LigIV) and interactions with XRCC4 and XLF-Cernunnos is necessary for understanding its role in the ligation of double-strand breaks during nonhomologous end joining. Here we report the structure of a subdomain of the nucleotidyltrasferase domain of human LigIV and provide insights into the residues associated with LIG4 syndrome. We use this structural information together with the known structures of the BRCT/XRCC4 complex and those of LigIV orthologs to interpret small-angle X-ray scattering of LigIV in complex with XRCC4 and size exclusion chromatography of LigIV, XRCC4, and XLF-Cernunnos. Our results suggest that the flexibility of the catalytic region is limited in a manner that affects the formation of the LigIV/XRCC4/XLF-Cernunnos complex.  相似文献   

18.
We report the first pre-steady-state kinetic studies of DNA replication in the absence of hydrogen bonds. We have used nonpolar nucleotide analogues that mimic the shape of a Watson-Crick base pair to investigate the kinetic consequences of a lack of hydrogen bonds in the polymerase reaction catalyzed by the Klenow fragment of DNA polymerase I from Escherichia coli. With a thymine isostere lacking hydrogen-bonding ability in the nascent pair, the efficiency (k(pol)/Kd) of the polymerase reaction is decreased by 30-fold, affecting the ground state (Kd) and transition state (k(pol)) approximately equally. When both thymine and adenine analogues in the nascent pair lack hydrogen-bonding ability, the efficiency of the polymerase reaction is decreased by about 1000-fold, with most of the decrease attributable to the transition state. Reactions using nonpolar analogues at the primer-terminal base pair demonstrated the requirement for a hydrogen bond between the polymerase and the minor groove of the primer-terminal base. The R668A mutation of Klenow fragment abolished this requirement, identifying R668 as the probable hydrogen-bond donor. Detailed examination of the kinetic data suggested that Klenow fragment has an extremely low tolerance of even minor deviations of the analogue base pairs from ideal Watson-Crick geometry. Consistent with this idea, some analogue pairings were better tolerated by Klenow fragment mutants having more spacious active sites. In contrast, the Y-family polymerase Dbh was much less sensitive to changes in base pair dimensions and more dependent upon hydrogen bonding between base-paired partners.  相似文献   

19.
20.
We describe and discuss the stability conditions of a naked double stranded DNA molecule starting from the evaluation of condensation or compactness fluctuation of this molecule embedded in pure water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号