首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J M Zhou  Z X Xue  Z Y Du  T Melese  P D Boyer 《Biochemistry》1988,27(14):5129-5135
Whether the tightly bound ADP that can cause a pronounced inhibition of ATP hydrolysis by the chloroplast ATP synthase and F1 ATPase (CF1) is bound at catalytic sites or at noncatalytic regulatory sites or both has been uncertain. We have used photolabeling by 2-azido-ATP and 2-azido-ADP to ascertain the location, with Mg2+ activation, of tightly bound ADP (a) that inhibits the hydrolysis of ATP by chloroplast ATP synthase, (b) that can result in an inhibited form of CF1 that slowly regains activity during ATP hydrolysis, and (c) that arises when low concentrations of ADP markedly inhibit the hydrolysis of GTP by CF1. The data show that in all instances the inhibition is associated with ADP binding without inorganic phosphate (Pi) at catalytic sites. After photophosphorylation of ADP or 2-azido-ADP with [32P]Pi, similar amounts of the corresponding triphosphates are present on washed thylakoid membranes. Trials with appropriately labeled substrates show that a small portion of the tightly bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling by an ADP moiety at a catalytic site. We also report the occurrence of a 1-2-min delay in the onset of the Mg2+-induced inhibition after addition of CF1 to solutions containing Mg2+ and ATP, and that this delay is not associated with the filling of noncatalytic sites. A rapid burst of Pi formation is followed by a much lower, constant steady-state rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
UV irradiation of rat liver F1 ATPase, previously exposed to Mg2+ and [beta, gamma-32P]-2-azido-ATP and separated from medium nucleotides, covalently modifies two tyrosine residues in adjacent tryptic peptides of the beta subunit. This results from the occupancy by 2-azido-ATP or 2-azido-ADP of two distinct types of nucleotide binding sites, the catalytic and noncatalytic sites. The two modified peptides are identical to the ones modified by 2-azido-adenine nucleotides in the beef heart F1 ATPase. Both catalytic and noncatalytic sites are labeled when the ATPase is exposed to [beta-32P]-2-azido-ADP in the presence or the absence of 5'-adenylyimidodiphosphate (AMP-PNP), showing that two distinct types of ADP binding sites are present on the liver enzyme. Similar incorporation of 2-azido-adenine nucleotides is obtained when membrane-bound rat liver F1 ATPase is incubated with Mg2+ and [beta, gamma-32P]-2-azido-ATP.  相似文献   

3.
Z X Xue  J M Zhou  T Melese  R L Cross  P D Boyer 《Biochemistry》1987,26(13):3749-3753
The photolabeling of chloroplast F1 ATPase, following exposure to Mg2+ and 2-azido-ATP and separation from medium nucleotides, results in derivatization of two separate peptide regions of the beta subunit. Up to 3 mol of the analogue can be incorporated per mole of CF1, with covalent binding of one moiety or two moieties per beta subunit that can be either AMP, ADP, or ATP derivatives. These results, the demonstration of noncovalent tight binding of at least four [3H]adenine nucleotides to the enzyme and the presence of three beta subunits per enzyme, point to six potential adenine nucleotide binding sites per molecule. The tightly bound 2-azido nucleotides on CF1, found after exposure of the heat-activated and EDTA-treated enzyme to Mg2+ and 2-azido-ATP, differ in their ease of replacement during subsequent hydrolysis of ATP. Some of the bound nucleotides are not readily replaced during catalytic turnover and covalently label one peptide region of the beta subunit. They are on noncatalytic sites. Other tightly bound nucleotides are readily replaced during catalytic turnover and label another peptide region of the beta subunit. They are at catalytic sites. No alpha-subunit labeling is detected upon photolysis of the bound 2-azido nucleotides. However, one or both of the sites could be at an alpha-beta-subunit interface with the 2-azido region close to the beta subunit, or both binding sites may be largely or entirely on the beta subunit.  相似文献   

4.
When heat-activated F1-ATPase from chloroplasts was repeatedly exposed to Mg2+ and 2-azido-ATP, followed by separation from medium nucleotides and photolysis, a total of two sites per enzyme, both catalytic and noncatalytic, were labeled. In a coupled assay with pyruvate kinase about half the activity was lost when one site per enzyme was modified. However, increased modification resulted in no further loss of activity. In contrast, methanol-sulfite activation of the enzyme showed a loss of most of the catalytic capacity when one site per enzyme was modified. Predominant labeling of either one catalytic or one noncatalytic site caused a loss of most of the activity in either assay. An indication that the enzyme modified at one site retained some catalytic activity was verified by measurement of the [18O]Pi species formed when [gamma-18O]ATP was hydrolyzed by partially derivatized enzyme. With either catalytic or noncatalytic site modification, the distributions of [18O]Pi species formed showed that the modified enzyme had different catalytic characteristics. An interpretation is that with modification by azido nucleotides at either catalytic or noncatalytic sites, capacity for rapid catalysis is largely lost but the remaining sites retain weak modified catalytic properties.  相似文献   

5.
M B Murataliev 《Biochemistry》1992,31(51):12885-12892
The evidence is presented that the ADP- and Mg(2+)-dependent inactivation of MF1-ATPase during MgATP hydrolysis requires binding of ATP at two binding sites: one is catalytic and the second is noncatalytic. Binding of the noncatalytic ATP increases the rate of the inactive complex formation in the course of ATP hydrolysis. The rate of the enzyme inactivation during ATP hydrolysis depends on the medium Mg2+ concentration. High Mg2+ inhibits the steady-state activity of MF1-ATPase by increasing the rate of formation of inactive enzyme-ADP-Mg2+ complex, thereby shifting the equilibrium between active and inactive enzyme forms. The Mg2+ needed for MF1-ATPase inactivation binds from the medium independent from the MgATP binding at either catalytic or noncatalytic sites. The inhibitory ADP molecule arises at the MF1-ATPase catalytic site as a result of MgATP hydrolysis. Exposure of the native MF1-ATPase with bound ADP at a catalytic site to 1 mM Mg2+ prior to assay inactivates the enzymes with kinact 24 min-1. The maximal inactivation rate during ATP hydrolysis at saturating MgATP and Mg2+ does not exceed 10 min-1. The results show that the rate-limiting step of the MF1-ATPase inactivation during ATP hydrolysis with excess Mg2+ precedes binding of Mg2+ and likely is the rate of formation of enzyme with ADP bound at the catalytic site without bound P(i). This complex binds Mg2+ resulting in inactive MF1-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Modification of Tyr-345 at a catalytic site in a single beta subunit of the bovine heart mitochondrial F1-ATPase (MF1) by 5'-p-fluorosulfonylbenzoylinosine did not affect subsequent labeling of noncatalytic sites at Tyr-368 and His-427 in three copies of the beta subunit by 5'-p-fluorosulfonylbenzoyladenosine (FSBA). These results clearly show that the beta subunit contains at least parts of the catalytic and noncatalytic nucleotide binding sites. Inactivation of MF1 by 96% with FSBA was accompanied by a decrease in the endogenous ADP content from 1.86 to 0.10 mol per mol of MF1. Decrease in the endogenous ADP content during the inactivation of the enzyme with FSBA paralleled loss in activity in a manner which suggests that the reaction of FSBA with an open noncatalytic site promoted release of ADP from another noncatalytic site until the third site reacted with FSBA. Two pKa values of about 5.9 and 7.6 were observed on the acid side of the pH optimum in the pH-rate profile for ATP hydrolysis catalyzed by MF1 in neutral acid buffers. In contrast, a single pKa of 5.9 was present in the pH-rate profile for ITP hydrolysis catalyzed by the enzyme in the same buffers. The augmented rate observed for ATP hydrolysis at pH 8.0, over that observed at pH 6.5, was lost as the enzyme was inactivated by FSBA in a manner suggesting that modulation is lost as the third noncatalytic site is modified. This suggests that ATP hydrolysis by MF1 is modulated in a pH-dependent manner by ATP binding to an open noncatalytic site. Two other modulations associated with binding of adenine nucleotides to noncatalytic sites, ADP-induced hysteretic inhibition and apparent negative cooperativity reflected by the Hill coefficient for the hydrolysis of 50-3000 microM ATP at pH 8.0, also disappeared as the third noncatalytic site reacted with FSBA.  相似文献   

7.
Previously we have shown that beef heart mitochondrial F1 contains a total of six adenine nucleotide binding sites. Three "catalytic" sites exchange bound ligand rapidly during hydrolysis of MgATP, whereas three "noncatalytic" sites do not. The noncatalytic sites behave asymmetrically in that a single site releases bound ligand upon precipitation of F1 with ammonium sulfate. In the present study, we find this same site to be the only noncatalytic site that undergoes rapid exchange of bound ligand when F1 is incubated in the presence of EDTA at pH 8.0. Following 1000 catalytic turnovers/F1, the site retains the unique capacity for EDTA-induced exchange, indicating that the asymmetric determinants are permanent and that the three noncatalytic sites on soluble F1 do not pass through equivalent states during catalysis. Measurements of the rate of ligand binding at the unique noncatalytic site show that uncomplexed nucleotide binds preferentially. At pH 7.5, in the presence of Mg2+, the rate constant for ADP binding is 9 X 10(3) M-1 s-1 and for dissociation is 4 X 10(-4) s-1 to give a Kd = 50 nM. The rate of dissociation is 10 times faster in the presence of EDTA or during MgATP hydrolysis, and it increases rapidly at pH below 7. EDTA-induced exchange is inhibited by Mg2+, Mn2+, Co2+, and Zn2+ but not by Ca2+ and is unaffected by dicyclohexylcarbodiimide modification. The unique noncatalytic site binds 2-azido-ADP. Photolysis results in the labeling of the beta subunit. Photolabeling of a single high-affinity catalytic site under conditions for uni-site catalysis also results in the labeling of beta, but a different pattern of labeled peptides is obtained in proteolytic digests. The results demonstrate the presence of two different nucleotide binding domains on the beta subunit of mitochondrial F1.  相似文献   

8.
J G Wise  B J Hicke  P D Boyer 《FEBS letters》1987,223(2):395-401
Under appropriate conditions tight, noncovalent binding of 2-azido-adenine nucleotides to either catalytic or noncatalytic binding sites on the E. coli F1-ATPase occurs. After removal of unbound ligands, UV-irradiation results primarily in the covalent incorporation of nucleotide moieties into the beta-subunit in both catalytic and noncatalytic site labeling experiments. Minor labeling of the alpha-subunit was also observed. After trypsin digestion and purification of the labeled peptides, microsequencing studies identified two adjacent beta-subunit tryptic peptides labeled by 2-azido-ADP or -ATP. These beta-subunit peptides were labeled on tyrosine-331 (catalytic sites) and tyrosine-354 (noncatalytic sites) in homology with the labeling patterns of the mitochondrial and chloroplast enzymes.  相似文献   

9.
Although the binding of nucleotides at the noncatalytic sites of F1-ATPase has been regarded as probably having some type of regulatory function, only limited observations have been reported that support such a role. We present here results showing that the presence of ATP at noncatalytic sites can give a fivefold enhancement of the rate of GTP hydrolysis by the chloroplast F1-ATPase. Heat-activation of the chloroplast F1-ATPase in the presence of ATP, followed by column separation from the medium nucleotides gives an enzyme with two of the three noncatalytic sites filled with ATP. In contrast, heat-activation in the presence of ADP gives an enzyme with only one noncatalytic site filled with ADP. Such an enzyme with two noncatalytic sites empty catalyzes MgGTP hydrolysis only very slowly. The filling of a second noncatalytic site with ATP by exposure of the enzyme to ATP without Mg2+ present, followed by column separation, markedly increases the rate of GTP hydrolysis. A further increase occurs when a third noncatalytic site is filled by exposure to Mg2+ and ATP. The rate of MgATP hydrolysis is the same for the enzyme heat-activated in the presence of ATP or ADP, probably because MgATP, unlike MgGTP, rapidly binds to both catalytic and noncatalytic sites.  相似文献   

10.
The recent finding that the presence of ATP at non-catalytic sites of chloroplast F1-ATPase (CF1) is necessary for ATPase activity (Milgrom, Y. M., Ehler, L. L., and Boyer, P. D. (1990) J. Biol. Chem. 265,18725-18728) prompted more detailed studies of the effect of noncatalytic site nucleotides on catalysis. CF1 containing at noncatalytic sites less than one ADP or about two ATP was prepared by heat activation in the absence of Mg2+ and in the presence of ADP or ATP, respectively. After removal of medium nucleotides, the CF1 preparations were used for measurement of the time course of nucleotide binding from 10 to 100 microM concentrations of 3H-labeled ADP, ATP, or GTP. The presence of Mg2+ strongly promotes the tight binding of ADP and ATP at noncatalytic sites. For example, the ADP-heat-activated enzyme in presence of 1 mM Mg2+ binds ADP with a rate constant of 0.5 x 10(6) M-1 min-1 to give an enzyme with two ADP at noncatalytic sites with a Kd of about 0.1 microM. Upon exposure to Mg2+ and ATP the vacant noncatalytic site binds an ATP rapidly and, as an ADP slowly dissociates, a second ATP binds. The binding correlates with an increase in the ATPase activity. In contrast the tight binding of [3H]GTP to noncatalytic sites gives an enzyme with no ATPase activity. The three noncatalytic sites differ in their binding properties. The noncatalytic site that remains vacant after the ADP-heat-activated CF1 is exposed to Mg2+ and ADP and that can bind ATP rapidly is designated as site A; the site that fills with ATP as ADP dissociates when this enzyme is exposed to Mg2+ and ATP is called site B, and the site to which ADP remains bound is called site C. Procedures are given for attaining CF1 with ADP at sites B and C, with GTP at sites A and/or B, and with ATP at sites A, B, and/or C, and catalytic activities of such preparations are measured. For example, little or no ATPase activity is found unless ATP is at site A, but ADP can remain at site C with no effect on ATPase. Maximal GTPase activity requires ATP at site A but about one-fifth of maximal GTPase is attained when GTP is at sites A and B and ATP at site C. Noncatalytic site occupancy can thus have profound effects on the ATPase and GTPase activities of CF1.  相似文献   

11.
Ahnert F  Schmid R  Altendorf K  Greie JC 《Biochemistry》2006,45(36):11038-11046
P-Type ATPases catalyze the transport of cations across the cell envelope via site-specific hydrolysis of ATP. Modulation of enzyme activity by additional small subunits and/or a second regulatory nucleotide binding site is still a subject of discussion. In the K(+)-transporting KdpFABC complex of Escherichia coli, KdpB resembles the catalytic P-type ATPase subunit, but ATP binding also occurs in the essential but noncatalytic subunit, KdpC. For further characterization, the soluble portion of KdpC (KdpC(sol), residues Asn39-Glu190) was synthesized separately and purified to homogeneity via affinity and size exclusion chromatography. Protein integrity was confirmed by N-terminal sequencing, mass spectrometry, and circular dichroism spectroscopy, which revealed an alpha-helical content of 44% together with an 8% beta-sheet conformation consistent with the values deduced from the primary sequence. The overall protein structure was not affected by the addition of ATP to a concentration of up to 2 mM. In contrast, labeling of KdpC(sol) with the photoreactive ATP analogue 8-azido-ATP resulted in the specific incorporation of one molecule of 8-azido-ATP per peptide. No labeling could be observed upon denaturation of the protein with 0.2% sodium dodecyl sulfate, which suggests the presence of a structured nucleotide binding site. Labeling could be inhibited by preincubation with either ATP, ADP, AMP, GTP, or CTP, thus demonstrating a low specificity for nucleotides. Following 8-azido-ATP labeling and tryptic digestion of KdpC(sol), mass spectrometry showed that ATP binding occurred within the Val144-Lys161 peptide located within the C-terminal part of KdpC, thereby further demonstrating a defined nucleotide binding site. On the basis of these findings, a cooperative model in which the soluble part of KdpC activates catalysis of KdpB is suggested.  相似文献   

12.
The F1-ATPase from chloroplasts (CF1) lacks catalytic capacity for ATP hydrolysis if ATP is not bound at noncatalytic sites. CF1 heat activated in the presence of ADP, with less than one ADP and no ATP at non-catalytic sites, shows a pronounced lag in the onset of ATP hydrolysis after exposure to 5-20 microM ATP. The onset of activity correlates well with the binding of ATP at the last two of the three noncatalytic sites. The dependence of activity on the presence of ATP at non-catalytic sites is shown at relatively low or high free Mg2+ concentrations, with or without bicarbonate as an activating anion, and when the binding of ATP at noncatalytic sites is slowed 3-4-fold by sulfate. The latent CF1 activated by dithiothreitol also requires ATP at noncatalytic sites for ATPase activity. A similar requirement by other F1-ATPases and by ATP synthases seems plausible.  相似文献   

13.
F1-ATPase, the catalytic sector of Fo-F1 ATPases-ATPsynthases, displays an apparent negative cooperativity for ATP hydrolysis at high ATP concentrations which involves noncatalytic and catalytic nucleotide binding sites. The molecular mechanism of such cooperativity is currently unknown. To get further insights, we have investigated the structural consequences of the single mutation of two residues: Q173L in the alpha-subunit and Q170Y in the beta-subunit of the F1-ATPase of the yeast Schizosaccharomyces pombe. These residues are localized in or near the Walker-A motifs of each subunit and their mutation produces an opposite effect on the negative cooperativity. The betaQ170 residue (M167 in beef heart) is located close to the binding site for the phosphate-Mg moiety of the nucleotide. Its replacement by tyrosine converts this site into a close state with increased affinity for the bound nucleotide and leads to an increase of negative cooperativity. In contrast, the alphaQ173L mutation (Q172 in beef heart) abolishes negative cooperativity due to the loss of two H-bonds: one stabilizing the nucleotide bound to the noncatalytic site and the other linking alphaQ173 to the adjacent betaT354, localized at the alpha(DP)-beta(TP) interface. The properties of these mutants suggest that negative cooperativity occurs through interactions between neighbor alpha- and beta-subunits. Indeed, in the beef heart enzyme, (i) the alpha(DP)-beta(TP) interface is stabilized by a vicinal alphaR171-betaD352 salt bridge (ii) betaD352 and betaT354 belong to a short peptidic stretch close to betaY345, the aromatic group of which interacts with the adenine moiety of the nucleotide bound to the catalytic site. We therefore propose that the betaY345-betaT354 stretch (beef heart numbering) constitutes a short link that drives structural modifications from a noncatalytic site to the neighbor catalytic site in which, as a result, the affinity for ADP is modulated.  相似文献   

14.
A spin-labeled photoaffinity ATP analog, 2-N3-2',3'-SL-ATP (2-N3-SL-ATP) was specifically loaded at catalytic (exchangeable) or noncatalytic (nonexchangeable) nucleotide-binding sites on nucleotide-depleted mitochondrial F1-ATPase. Photolysis of the enzyme complexes resulted in the specific modification of beta-Tyr-345 when the catalytic sites were occupied and beta-Tyr-368 when noncatalytic sites were filled. These are the same amino acid assignments that were made previously using 2-N3ATP. The results demonstrate that the attachment of a spin label moiety to the ribose ring does not prevent proper binding of the analog at both types of nucleotide sites on F1-ATPase and suggest that the probe can be used for investigations of the nucleotide-binding sites using ESR spectroscopy. Enzyme that is in complex with the 2-N3-SL-ATP exhibits an ESR spectrum that is typical for highly immobilized nitroxyl radicals both in the dark or after photolysis. Additional peaks in the high- and low-field regions arise due to dipolar spin interactions most likely involving a pair of catalytic and noncatalytic sites. The two sites are calculated to be approximately 15 A apart. This distance, obtained through ESR spectroscopy, combined with the finding that the 2 labeled amino acids are only 23 residues apart from each other, further supports an adenylate kinase-like arrangement of nucleotide binding sites on F1-ATPase where catalytic and noncatalytic sites are in close proximity (Vogel, P. D., and Cross, R. L. (1991) J. Biol. Chem. 266, 6101-6105).  相似文献   

15.
Mitochondrial F1 from the yeast Schizosaccharomyces pombe exhibits an intrinsic tryptophan fluorescence sensitive to adenine nucleotides and inorganic phosphate [Divita, G., Di Pietro, A., Deléage, G., Roux, B., & Gautheron, D.C. (1991) Biochemistry 30, 3256-3262]. The present results indicate that the intrinsic fluorescence is differentially modified by nucleotide binding to either catalytic or noncatalytic sites. Guanine or hypoxanthine nucleotides, which selectively bind to the catalytic site, produce a hyperbolic saturation monitored by fluorescence quenching at 332 nm, the maximal emission wavelength. On the contrary, adenine nucleotides, which bind to both catalytic and noncatalytic sites, exhibit a biphasic saturation. High-affinity ATP binding produces a marked quenching as opposed to the lower-affinity one. In contrast, ADP exhibits a sigmoidal saturation, with high-affinity binding producing no quenching but responsible for positive cooperativity of binding to the lower-affinity site. The catalytic-site affinity for GDP is almost 20-fold higher at pH 5.0 as compared to pH 9.0, and the high sensitivity of the method allows detection of the 10-fold lower-affinity GMP binding. In contrast, high-affinity binding of ADP, or AMP, is not pH-dependent. The selective catalytic-site saturation induces a F1 conformational change decreasing the Stern-Volmer constant for acrylamide and the tryptophan fraction accessible to iodide. ATP saturation of both catalytic and noncatalytic sites produces an additional reduction of the accessible fraction to acrylamide.  相似文献   

16.
The binding of ADP and ATP to noncatalytic sites of dithiothreitol-modified chloroplast ATP synthase was studied. Selective binding of nucleotides to noncatalytic sites was provided by preliminary light incubation of thylakoid membranes with [14C]ADP followed by its dissociation from catalytic sites during dark ATP hydrolysis stimulated by bisulfite ions (“cold chase”). Incorporation of labeled nucleotides increased with increasing light intensity. Concentration-dependent equilibrium between free and bound nucleotides was achieved within 2–10 min with the following characteristic parameters: the maximal value of nucleotide incorporation was 1.5 nmol/mg of chlorophyll, and the dissociation constant was 1.5 μM. The dependence of nucleotide incorporation on Mg2+ concentration was slight and changed insignificantly upon substituting Ca2+ for Mg2+. Dissociation of nucleotide from noncatalytic sites was illumination dependent. The dissociation kinetics suggested the existence of at least two nucleotide-binding sites with different dissociation rate constants. __________ Translated from Biokhimiya, Vol. 70, No. 11, 2005, pp. 1514–1520. Original Russian Text Copyright ? 2005 by Malyan.  相似文献   

17.
The interactions between the pyrophosphate (PPi) binding sites and the nucleotide binding sites on mitochondrial F1-ATPase have been investigated, using F1 preparations containing different numbers of catalytic and noncatalytic nucleotide-binding sites occupied by ligands. In all cases, the total number of moles of bound nucleotides and PPi per mole of F1 was less than or equal to six. F1 preparations containing either three or two filled noncatalytic sites and no filled catalytic sites (referred as F1[3,0] and F1[2,0]) were found to bind 3 mol of PPi/mol of F1. Tight binding of ADP-fluoroberyllate complexes to two of the catalytic sites of F1 converted the three heterogeneous PPi-binding sites into three homogeneous binding sites, each exhibiting the same affinity for PPi. The addition of PPi at saturating concentrations to F1 containing GDP bound to two catalytic sites (F1[2,2]) resulted in the release of 1 mol of GDP. Furthermore, the addition of PPi to F1 filled with ADP-fluoroberyllate at the catalytic sites resulted in the release of 1 mol of tightly bound ADP/mol of F1. Taken together, these results indicate that PPi binds to specific sites that interact with both the catalytic and the noncatalytic nucleotide-binding sites of F1.  相似文献   

18.
Light-dependent binding of labeled ADP and ATP to noncatalytic sites of chloroplast ATP synthase and the effect of light-exposed thylakoid membrane preincubation with ADP or ATP on ATPase activity were studied. ADP binding during the preincubation was shown to inactivate the chloroplast ATPase, whereas ATP binding caused its activation. The rate and equilibrium constants of ATPase inactivation and activation were close to those of ADP and ATP binding to a noncatalytic site, with K d values of 38 and 33 μM, respectively. It is suggested that ADP- or ATP-binding to one of the noncatalytic sites affects the ATPase activity of chloroplast ATP synthase through a mechanism that modulates tightness of ADP binding to a catalytic site.  相似文献   

19.
The interaction between sulfite, an efficient Mg2+-dependent F1-ATPase activator, and chloroplast CF1-ATPase was studied. The sulfite anion was shown to inhibit ADP and ATP binding to the noncatalytic sites of CF1. The stimulating activity of sulfite persists when all noncatalytic sites are nucleotide-occupied. Phosphate, a competing candidate for binding to CF1 catalytic sites, suppresses this activity. These results support the suggestion that the stimulation of Mg2+-dependent ATPase activity of CF1 is caused by sulfite binding to its catalytic sites.  相似文献   

20.
Nucleotide-depleted mitochondrial F1-ATPase (F1[0,0]) is inhibited by the diadenosine oligophosphate compounds, AP4A, AP5A, and AP6A (where APxA stands for 5',5'-diadenosine oligophosphates having a chain of x phosphoryl groups linking the two adenosine moieties). When F1[0,0] is preincubated with these compounds and then assayed for ATP hydrolysis activity under conditions that normally allow turnover at all three catalytic sites, the maximal level of inhibition observed is 80%. However, when assayed at lower ATP concentrations under conditions that allow simultaneous turnover at only two of the three sites, no inhibition is observed. A decrease in the number of phosphoryl groups that links the adenosine moieties to less than 4 (AP3A, AP2A) converts the compound to an activator of ATP hydrolysis, similar in effect to that obtained when one mol of ADP or 2-azido-ADP binds at a catalytic site on F1[0,0]. Inhibition by the compounds requires the presence of at least one vacant noncatalytic site. Evidence is provided that the probes also interact with a catalytic site. The stoichiometry for maximal inhibition by AP4A is 0.94 mol/mol of F1. The data presented support a model for the structure of nucleotide-binding sites on F1 that places catalytic and noncatalytic sites in close proximity in an orientation analogous to the ATP and AMP binding sites on adenylate kinase. Inhibition of the enzyme by the dinucleotide compounds can be explained by the cross-bridging of one of the catalytic sites to a noncatalytic site in analogy to the inhibition of adenylate kinase by AP5A. The residual capacity for bi-site catalysis indicates that the second and third catalytic sites remain catalytically active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号