首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A temperature sensitive mutant of vesicular stomatitis virus which does not mature properly when grown at 39 degrees C promoted extensive fusion of murine neuroblastoma cells at this nonpermissive temperature. Polykaryocytes apparently formed as a result of fusion from within the cells that requires low doses of infectious virions for its promotion and is dependent on viral protein synthesis. Although 90% of infected N-18 neuroblastoma cells were fused by 15 h after infection, larger polykaryocytes continued to form, leading to an average of 28 nuclei per polykaryocyte as a result of polykaryocytes fusing to each other. Two neuroblastoma cell lines have been observed to undergo fusion, whereas three other cell lines (BHK-21, CHO, and 3T3) were incapable of forming polykaryocytes, suggesting that nervous system-derived cells are particularly susceptible to vesicular stomatitis virus-induced fusion. Although the normal assembly of the protein components of this virus is deficient at 39 degrees C, the G glycoprotein was inserted into the infected cell membranes at this temperature. Two lines of evidence suggest that the expression of G at the cell surface promotes this polykaryocyte formation: (i) inhibition of glycosylation, which may be involved in the migration of the G protein to the cellular plasma membranes, will inhibit the cell fusion reaction; (ii) addition of antiserum, directed toward the purified G glycoprotein, will also inhibit cell fusion.  相似文献   

2.
Temperature-sensitive (ts) mutant tsD1 of vesicular stomatitis virus, New Jersey serotype, is the sole representative of complementation group D. Clones derived from this mutant exhibited three different phenotypes with respect to electrophoretic mobility of the G and N polypeptides of the virion in sodium dodecyl sulfate-polyacrylamide gel. Analysis of non-ts pseudorevertants showed that none of the three phenotypes was associated with the temperature sensitivity of mutant tsD1. Additional phenotypes, some also involving the NS polypeptide, appeared during sequential cloning, indicating that mutations were generated at high frequency during replication of tsD1. Furthermore, mutations altering the electrophoretic mobility of the G, N, NS, and M polypeptides were induced in heterologous viruses multiplying in the same cells as tsD1. These heterologous viruses included another complementing ts mutant of vesicular stomatitis virus New Jersey and ts mutants of vesicular stomatitis virus Indiana and Chandipura virus. Complete or incomplete virions of tsD1 appeared to be equally efficient inducers of mutations in heterologous viruses. Analysis of the progeny of a mixed infection of two complementing ts mutants of vesicular stomatitis virus New Jersey with electrophoretically distinguishable G, N, NS, and M proteins yielded no recombinants and excluded recombination as a factor in the generation of the electrophoretic mobility variants. In vitro translation of total cytoplasmic RNA from BHK cells indicated that post-translational processing was not responsible for the aberrant electrophoretic mobility of the N, NS, and M protein mutants. Aberrant glycosylation could account for three of four G protein mutants, however. Some clones of tsD1 had an N polypeptide which migrated faster in sodium dodecyl sulfate-polyacrylamide gel than did the wild type, suggesting that the polypeptide might be shorter by about 10 amino acids. Determination of the nucleotide sequence to about 200 residues from each terminus of the N gene of one of these clones, a revertant, and the wild-type parent revealed no changes compatible with synthesis of a shorter polypeptide by premature termination or late initiation of translation. The sequence data indicated, however, that the N-protein mutant and its revertant differed from the parental wild type in two of the 399 nucleotides determined. These sequencing results and the phenomenon of enhanced mutability associated with mutant tsD1 reveal that rapid and extensive evolution of the viral genome can occur during the course of normal cytolytic infection of cultured cells.  相似文献   

3.
4.
Synthesis of the vesicular stomatitis virus membrane matrix protein and the glycoprotein is inhibited to a greater extent than the synthesis of the nucleocapsid protein, the nonstructural protein, and the large protein when the rate of peptide chain initiation is reduced by exposure of vesicular stomatitis virus-infected cells to hypertonic medium. It is concluded that the relative sensitivity of individual viral polypeptide synthesis to hypertonic initiation block is independent of the site of synthesis, i.e., whether on membrane-associated or free polyribosomes.  相似文献   

5.
Model for Vesicular Stomatitis Virus   总被引:4,自引:18,他引:4       下载免费PDF全文
Vesicular stomatitis virus contains single-stranded ribonucleic acid of molecular weight 3.6 x 10(6) and three major proteins with molecular weights of 75 x 10(3), 57 x 10(3), and 32.5 x 10(3). The proteins have been shown to be subunits of the surface projections, ribonucleoprotein, and matrix protein, respectively. From these values and from estimates of the proportions of the individual proteins, it has been calculated that the virus has approximately 500 surface projections, 1,100 protein units on the ribonucleoprotein strand, and 1,600 matrix protein units. Possible models of the virus are proposed in which the proteins are interrelated.  相似文献   

6.
The identity of the glycoprotein of vesicular stomatitis virus (VSV) as the spike protein has been confirmed by the removal of the spikes with a protease from Streptomyces griseus, leaving bullet-shaped particles bounded by a smooth membrane. This treatment removes the glycoprotein but does not affect the other virion proteins, apparently because they are protected from the enzyme by the lipids in the viral membrane. The proteins of phenotypically mixed, bullet-shaped virions produced by cells mixedly infected with VSV and the parainfluenza virus simian virus 5 (SV5) have been analyzed by polyacrylamide gel electrophoresis. These virions contain all the VSV proteins plus the two SV5 spike proteins, both of which are glycoproteins. The finding of the SV5 spike glycoproteins on virions with the typical morphology of VSV indicates that there is not a stringent requirement that only the VSV glycoprotein can be used to form the bullet-shaped virion. On the other hand, the SV5 nucleocapsid protein and the major non-spike protein of the SV5 envelope were not detected in the phenotypically mixed virions, and this suggests that a specific interaction between the VSV nucleocapsid and regions of the cell membrane which contain the nonglycosylated VSV envelope protein is necessary for assembly of the bullet-shaped virion.  相似文献   

7.
Polyadenylation of Vesicular Stomatitis Virus mRNA   总被引:2,自引:8,他引:2  
  相似文献   

8.
Carbohydrate Composition of Vesicular Stomatitis Virus   总被引:4,自引:11,他引:4       下载免费PDF全文
Analysis by gas-liquid chromatography of the trimethylsilylated sugar residues of purified vesicular stomatitis virus grown in L cells or chick embryo cells revealed the presence in the whole virion of four hexoses (glucose, galactose, mannose, and fucose), two hexosamines (glucosamine and galactosamine), and 34 to 40% neuraminic acid. The isolated viral glycoprotein was devoid of galactosamine and fucose, both of which sugars were present in whole virions presumably as part of the membrane glycolipids.  相似文献   

9.
Abstract: Temperature-sensitive mutant G3 1 of vesicular stomatitis virus induces mouse neuroblastoma N-18 cells to fuse during infections that are nonpermissive for virus replication, but BHK-21 cells do not undergo the viral glycoprotein-mediated cell fusion. The viral glycoprotein was expressed at the cell surface of both N-18 and BHK-21 cells; therefore, the host cell specificity did not stem from an absence of the viral glycoprotein at the surface of BHK-21 cells. Cell fusion readily occurred between infected and uninfected N-18 cells in mixed cultures, demonstrating that the viral glycoprotein was interacting with an uninfected cell for the initial cell-cell interaction of the cell fusion. Mixing infected BHK-21 cells with uninfected N-18 cells resulted in cell fusion initiated by BHK-21 cell-synthesized viral glycoprotein, but 88% of the nucleiin polykaryocytes were N-18 nuclei. The N-18 cell fusion specificity was readily apparent when infected N-18 cells were mixed with uninfected BHK-21 cells; 98% of the nuclei in polykaryocytes were N-18 nuclei. Similar results also were obtained with mixed cultures of N-18 cells and primary astroglial cells. Thus, the viral glycoprotein synthesized in any of the cell types could initiate cell fusion, but the properties of plasma membranes of neuroblastoma cells appeared to be much more suitable for cell-cell fusion.  相似文献   

10.
Treatment of suspensions of vesicular stomatitis virus with Tween-ether results in a rapid and considerable loss of infectivity (ca. 4 logs in 2 min), but the residual infectivity is comparatively stable to further treatment with ether. The infectivity remaining after the short exposure to Tween-ether is not due to virus for the following reasons. (i) It is much less infective for tissue cultures than for mice, whereas the intact virion is equally infective for both hosts. (ii) The residual infectivity is much less stable than virus infectivity in both sucrose and tartrate gradients. (iii) Virus immune serum does not neutralize its activity. (iv) The infectivity is associated with material which sediments further in sucrose gradients and has a greater buoyant density in tartrate gradients than the virion. Experiments with (32)P-labeled virion showed that the infective substructure contains ribonucleic acid with the same sedimentation characteristics as that extracted from the virion. Electron microscopy shows that the infective component has the same overall bullet-like structure as the virion but lacks the outer envelope and fringe structure.  相似文献   

11.
The production of infectious vesicular stomatitis (VSV) and Newcastle disease virus can be completely inhibited by 2-deoxy-d-glucose in pyruvate-containing medium, if virus either grown in pyruvate-containing medium or dialyzed against phosphate-buffered saline is used for infection. Under these conditions, the synthesis of all VSV proteins is reduced. VSV RNA, which is synthesized at reduced rates, seems to be unstable. The effect is completely reversible. If virus grown in glucose-containing medium is used for infection, the production of both viruses is not significantly inhibited by 2-deoxy-d-glucose. Under these conditions the production of the VSV glycoprotein is specifically impaired, but does not lead to a marked reduction of the yield of infectious virus.  相似文献   

12.
The inhibition of protein synthesis in L cells by vesicular stomatitis virus (VSV) requires the synthesis of new protein subsequent to virus infection. However, two mechanisms may be involved in the inhibition of cell protein synthesis by VSV: an initial, multiplicity-dependent, ultraviolet-insensitive inhibition and a progressive, ultraviolet-sensitive inhibition.  相似文献   

13.
A temperature-sensitive (ts) mutant of vesicular stomatitis virus (VSV), tsG31, produces a prolonged central nervous system disease in mice with pathological features similar to those of slow viral diseases. tsG31 and the subsequent virus recovered from the central nervous system (tsG31BP) of mice infected with tsG31 were compared with the parental wild-type (WT) VSV for plaque morphology, growth kinetics, thermal sensitivity of the virions, and viral protein synthesis and maturation. Several properties of the central nervous system isolate distinguished this virus from the original tsG31 and the WT VSV. The WT VSV produced clear plaques with complete cell lysis, and the tsG31 produced diffuse plaques and incomplete cell lysis, whereas the tsG31BP had clear plaques similar to those of the WT VSV. Although plaque morphology suggested that tsG31BP virus was a revertant to the WT, growth kinetics in either BHK-21 or neuroblastoma (N-18) cells indicated that this virus was similar to tsG31, with a productive cycle at 31 degrees C and no infectious virus at 39 degrees C. At 37 degrees C, however, the tsG31BP matured much slower than did the original tsG31 (and produced only 1% of the yield measured at 31 degrees C). WT VSV produced similar quantities of infectious virions at 31, 37, and 39 degrees C. The lack of infectious virions at 39 degrees C for the ts mutants was presumably not due to a greater rate of inactivation at 39 degrees C. Unlike WT VSV, which synthesized viral proteins equally well at all three temperatures, tsG31 had a reduced synthesis of all the structural proteins at 37 and 39 degrees C, compared with that at 31 degrees C; the formation of the M protein was most temperature sensitive. In addition, fractionation of the infected cells indicated that the incorporation of the M and N proteins into the cellular membranes was also disrupted at the higher, nonpermissive temperatures. Several characteristics of protein synthesis during tsG31BP infection at 39 degrees C distinguished this virus from tsG31: (i) no mature viral proteins were detected at 39 degrees C; (ii) several host proteins were [ill], suggesting that the virus was incapable of completely depressing host macromolecular synthesis; and (iii) a great proportion of the incorporated radioactivity was found in unusually high-molecular-weight proteins. In addition, at 37 degrees C, the tsG31BP virus showed a decreased synthesis of viral proteins and reduced assembly of the viral structural proteins.  相似文献   

14.
15.
16.
Entry of Vesicular Stomatitis Virus into L Cells   总被引:3,自引:10,他引:3       下载免费PDF全文
Early stages of the entry of vesicular stomatitis (VS) virus into L cells were followed by electron microscopy with the aid of ferritin antibody labeling. Cells which were infected at 0 C and incubated for 10 min at 37 C were reacted first with antiviral-antiferritin hybrid antibody and then with ferritin or fluorescein-labeled apoferritin. Extensive ferritin labeling of the cell surface was detected by both electron and fluorescence microscopy. The labeled regions of the cell surface were continuous with and indistinguishable from the rest of the host cell membrane, suggesting incorporation of viral antigens into the cell surface during viral penetration. Fusion of parental viral membrane with host cell membrane was further demonstrated by examining the localization of (3)H-labeled viral structural proteins in cells infected at 0 C and incubated for short periods at 37 C. Viral nucleoprotein was found in a soluble fraction of the cells which was derived primarily from the cytoplasm, whereas a particulate fraction from the cells was enriched in viral envelope proteins. Cytoplasmic membrane was isolated from these cells, and this membrane contained viral envelope proteins. These results suggest that penetration by VS virus occurs by fusion of the viral and cellular membranes followed by release of nucleo-protein into the cytoplasm.  相似文献   

17.
18.
19.
20.
Vesicular stomatitis virus ribonucleoproteins (RNP) obtained by a detergent treatment of purified virus (vRNP) or from infected HeLa cell cytoplasm (icRNP) were examined by sedimentation in sucrose or Renografin gradients in the presence or absence of EDTA. It was shown that vRNP and icRNP sediment at the same rate in sucrose and Renografin in the absence of EDTA; however, icRNP sedimented more slowly in the presence of EDTA than did vRNP. Polyacrylamide gel electrophoresis of the proteins of vRNA and icRNP recovered from EDTA-containing gradients demonstrated that both RNP structures contained L, N, and NS proteins in the same proportion. Electron microscopy of both RNP structures, in the absence of EDTA, demonstrated that both exist as helical structures ~20 by 700 nm. However, in the presence of EDTA the icRNP was completely uncoiled with a mean length of 4,095 nm, whereas vRNP was hardly affected. The addition of excess Mg2+ or Mn2+ to uncoiled icRNP preparations partially restored the coiled configuration. These observations suggest that the change in sedimentation of icRNP in the presence of EDTA is due to a change from a coiled to an uncoiled conformation, that icRNP and vRNP are not structurally identical, and that icRNP must undergo a conformational change during maturation of VSV from the 20-by-700-nm intracellular form to the 50-by-175-nm form found in intact virus. The icRNP containing L, N, and NS proteins (icRNPL,N,NS) and icRNP containing only N protein (icRNPN), prepared by centrifugation of icRNPL,N,NS in CsCl to remove L and NS, were compared by cosedimentation in sucrose gradients. There was a decrease in sedimentation rate of icRNPN due to loss of L and NS. This sedimentation difference was also apparent in the presence of EDTA; however, both icRNPL,N,NS and icRNPN sedimented at a much slower rate in the presence of EDTA, and by electron microscopy both were completely uncoiled. These observations suggest that N protein alone is responsible for the 20-by-700-nm coiled structure and that the divalent cation interactions disrupted by EDTA are N-N or N-RNA interactions. These results are discussed with regard to vesicular stomatitis virus maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号