首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Follicle-stimulating hormone (FSH) is a heterodimeric glycoprotein hormone secreted by the anterior pituitary. It plays a very important role in folliculogenesis in females and is responsible for spermatogenesis in males. The alpha-subunit which is common within a species and the beta-subunit which is hormone-specific are held together by noncovalent association. This association is very essential for the biological activity of the hormone. Each of these subunits are highly cross-linked by disulfide bonds which appear to stabilize the tertiary structures required for the noncovalent association of the subunits to generate hormonal activity. This study was initiated to delineate the role of the disulfide bonds of hFSH beta in receptor binding of the hormone. Five intermolecular and one intramolecular disulfide peptides corresponding to the disulfide bonds found in hFSH beta were synthesized and screened along with their linear counterparts, for their ability to competitively inhibit the radiolabelled [125I]hFSH from binding to the FSH receptor containing membranes from the testis of immature rats. The disulfide peptides Cys28-Cys82 and Cys32-Cys84 were found to be the most potent in inhibiting radiolabelled hFSH from binding to its receptor. The results suggest the involvement of the regions around disulfide bonds Cys28-Cys82 and Cys32-Cys84 in receptor binding of the hormone. The studies also suggest the involvement of beta L2 and beta L3 loop regions in receptor binding of the hormone. This study is the first of its kind to use disulfide peptides rather than linear peptides to map the receptor binding regions of hFSH.  相似文献   

2.
Mouse epidermal growth factor (mEGF) and the beta subunit of follicle-stimulating hormone (hFSH) (hFSH-beta) have been shown to inhibit binding of intact hFSH to its testes membrane receptor in vitro. Both hFSH-beta and mEGF contain the tetrapeptide sequence Thr-Arg-Asp-Leu (TRDL). Previous results demonstrated that synthetic TRDL inhibited binding of intact hFSH to receptor. We therefore investigated the possibility that TRDL was located on an exposed region of FSH-beta using a polyclonal antiserum to hFSH [NHPP anti-hFSH batch 4 (AB4)] which recognized determinants on intact hFSH and its beta subunit, but not the alpha subunit. Pituitary FSH preparations from several mammalian species produced parallel inhibition curves in a heterologous [AB4 and 125I-labeled ovine FSH (125I-oFSH)] radioimmunoassay with relative potencies similar to those observed for the same preparations assayed by radioligand receptor assay. This antiserum also competitively inhibited 125I-FSH binding to receptor. Thus, AB4 appeared to recognize antigenic determinants that are highly conserved and located at or near regions involved with hormone recognition of receptor for FSH. Synthetic TRDL inhibited 50% of 125I-hFSH binding to antiserum at a concentration of 1.36 mg/tube (9 x 10(-3) M). Other tetrapeptides (Thr-Pro-Arg-Lys and Lys-Thr-Cys-Thr) had no inhibitory activity at comparable concentrations. A mixture of the free amino acids T, R, D, and L inhibited radioligand binding only at significantly higher concentrations than TRDL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We have isolated and sequenced a cDNA encoding the follicle stimulating hormone (FSH) receptor. The deduced amino acid sequence (678 residues) containing seven putative transmembrane segments which displays sequence similarity to G protein-coupled receptors. The receptor consists of 359 residue extracellular domain which contains four N-linked glycosylation sites. While the protein is 89% identical overall with the previously cloned rat FSH receptor, the most highly conserved regions are the putative transmembrane segments (95% similarity).  相似文献   

4.
Glycoprotein hormone receptors contain large N-terminal extracellular domains (ECDs) that distinguish these receptors from most other G protein-coupled receptors. Each glycoprotein hormone receptor ECD consists of a curved leucine-rich repeat domain flanked by N- and C-terminal cysteine-rich regions. Selectivity of the different glycoprotein hormone receptors for their cognate hormones is exclusively determined by their ECDs and, in particular, their leucine-rich repeat domain. To identify human (h)FSH-selective determinants we used a gain-of-function mutagenesis strategy in which beta-strands of the hLH receptor (hLH-R) were substituted with their hFSH receptor (hFSH-R) counterparts. Introduction of hFSH-R beta-strand 1 into hLH-R conferred responsiveness to hFSH, whereas hLH-R mutants harboring one of the other hFSH-R beta-strands displayed none or very limited sensitivity to hFSH. However, combined substitution of hFSH-R beta-strand 1 and some of the other hFSH-R beta-strands further increased the sensitivity of the mutant hLH-R to hFSH. The apparent contribution of multiple hFSH-R beta-strands in providing a selective hormone binding interface corresponds well with their position in relation to hFSH as recently determined in the crystal structure of hFSH in complex with part of the hFSH-R ECD.  相似文献   

5.
The rat FSH receptor (rFSHR) shares considerable homology with the rat LH receptor (rLHR), yet binds human FSH (hFSH) with high fidelity, suggesting that the binding determinant encoded by the rFSHR gene shares no homology with the analogous rLHR primary sequence, thereby affording specificity of ligand binding. Two such regions of primary sequence have been previously identified and studied by peptide challenge tests and immunoneutralization studies. We therefore implemented site-directed mutagenesis to delete the regions S9-N30 and D300-F315 of the mature rFSHR sequence. The mutant receptor (DeltarFSHR) cDNAs were expressed in insect cells. The large deletion DeltarFSHRS9-N30 and a smaller deletion, DeltarFSHRS9-S18, did not bind (125)I-hFSH. However, DeltarFSHRK19-R29 and DeltarFSHRD300-F315 bound (125)I-hFSH with an affinity indistinguishable from wild-type rFSHR. The deletion mutants DeltarFSHR S9-N30 or DeltarFSHRS9-S18 were not detectable on the cell surface by flow cytometry unless cells were sheared. Although (125)I-hFSH binding to DeltarFSHRK19-R29 was normal, this form of the receptor was defective for signal transduction whereas DeltarFSHRD300-F315 was not. Furthermore, neither region seems to be a specificity determinant, since their removal did not result in high-affinity binding of hCG to DeltarFSHR.  相似文献   

6.
Human follicle-stimulating hormone (hFSH) was acylated with N-hydroxysuccinimidyl-4-azidobenzoate (HSAB) and radioiodinated (55 microCi/micrograms) for use as a photoaffinity probe to investigate the subunit structure of the FSH receptor in calf testis. After incubation with the photoaffinity probe and photolysis with UV light, the cross-linked hormone-receptor complex was solubilized from the membrane and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence and absence of the reducing agent dithiothreitol. Autoradiography of the polyacrylamide gels revealed two major bands, 64 kDa and 84 kDa. These were equivalent in molecular mass to those observed in a previous study (Branca, A. A., Sluss, P. M., Smith, A. A., and Reichert, L. E., Jr. (1985) J. Biol. Chem. 260, 9988-9993) in which performed hormone-receptor complexes were solubilized with detergent prior to formation of covalent cross-linkages through the use of homobifunctional cross-linking reagents. Reduction with dithiothreitol resulted in the loss of radioactivity from the 84-kDa band with a concomitant increase in the intensity of the 64-kDa band. Since dithiothreitol increases the dissociation of intact radioiodinated azidobenzoyl-FSH into subunits, it is suggested that the conversion of the 84-kDa band to the 64-kDa band by dithiothreitol is due to the loss of non-cross-linked hFSH subunit from the 84-kDa band and that the two bands observed after photoaffinity labeling arise from covalent bond formation between hFSH and a receptor subunit having a relative molecular weight (Mr) of 48,000. In addition to the predominant photolabeling of the receptor to yield the 64-kDa and 84-kDa bands, several other, less intense bands (54 kDa, 76 kDa, 97 kDa, and 116 kDa) were also consistently observed on autoradiographs. The appearance of all bands, however, was inhibited by the inclusion of unlabeled hFSH in the initial binding incubation mixtures. The results of this study indicate that the calf testis FSH receptor has a multimeric structure containing at least one 48-kDa subunit and suggest the presence of other nonidentical receptor subunit proteins.  相似文献   

7.
The interaction of 125I-labelled hFSH with primate testicular tissue from 4 species of adult monkeys (Macaca mulatta, M. nemestrina, M. fascicularis and Papio cynocephalus) was investigated. 125I-labelled hFSH binding to a particulate fraction (P1, 40 000 g) of frozen testes was highly specific and saturable. Displacement curves generated using the P1 fraction of testes from the 4 species and 125I-labelled hFSH and unlabelled FSH were very similar. The binding of FSH to the monkey testicular receptor was not species specific because purified FSH from heterologous species such as horse, sheep, pig and rat were very effective in competing with 125I-labelled hFSH for binding. The equine FSH was about 10 times more active than hFSH in this respect. Similarly, 125I-labelled ovine FSH bound as well as labelled hFSH to the testes fractions of all 4 monkey species. In marked contrast to the high binding of 125I-labelled hFSH, binding of 125I-labelled hCG with rhesus monkey testis homogenates and P1 fractions was very low. The FSH receptor in the adult rhesus monkey testis was present in much larger quantity than the LH receptor and was more readily detectable. Our studies show that frozen primate testis can be utilized for investigating testicular-FSH interactions.  相似文献   

8.
The human follicle-stimulating hormone (hFSH) belongs to a family of glycoprotein hormones which contains two non-identical subunits. This paper describes the design and synthesis of a series of synthetic hFSH constructs as putative ligands for the receptor. The design of these constructs is based on the crystal structure of hCG and molecular modelling using the program package Insight II/Discover. The designed constructs contain peptides ranging from 7 to 48 amino acid residues, disulphide bridges and glycan residues. All the synthetic peptides were synthesized by the stepwise solid-phase method using Fmoc chemistry. Two of the synthetic peptides contain the glycosylated amino acid, Asn(GlcNAc-GlcNAc) and both were prepared using fully protected glycosylated building blocks in the solid-phase peptide synthesis. The disulphide bridges were formed from acetamidomethyl-protected glycopeptides and peptides by a direct deprotection/oxidation method using thallium(III) trifluoroacetate. Mass spectroscopy and amino acid analysis were used for characterization of the synthetic hFSH glycopeptides and peptides. The synthetic hFSH constructs were tested for binding activity on FSH receptor assays but none showed improved binding properties compared with the naturally occurring hormone. It was finally demonstrated that non-related peptides showed non-specific binding at the same level as reported for specific peptides. © 1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
The difference in hormone selectivity between the human follicle-stimulating hormone receptor (hFSH-R) and human luteinizing hormone/chorionic gonadotropin receptor (hLH-R) is determined by their approximately 350 amino acid-long N-terminal receptor exodomains that allow the mutually exclusive binding of human follicle-stimulating hormone (hFSH) and human luteinizing hormone (hLH) when these hormones are present in physiological concentrations. The exodomains of each of these receptors consist of a nine-leucine-rich repeat-containing subdomain (LRR subdomain) flanked by N- and C-terminal cysteine-rich subdomains. Chimeric receptors, in which the structural subdomains of the hFSH-R exodomain were substituted with those of the hLH-R, showed a similar high responsiveness to human chorionic gonadotropin (hCG) and hLH as long as they harbored the LRR subdomain of the hLH-R. In addition, these chimeric receptors showed no responsiveness to hFSH. The LRR subdomains of the gonadotropin receptor exodomains are predicted to adopt a horseshoe-like conformation, of which the hormone-binding concave surface is composed of nine parallel beta-strands. Receptors in which individual beta-strands of the hFSH-R were replaced with the corresponding hLH-R sequences revealed that hCG and hLH selectivity is predominantly determined by hLH-R beta-strands 3 and 6. A mutant receptor in which the hFSH-R beta-strands 3 and 6 were substituted simultaneously with their hLH-R counterparts displayed a responsiveness to hCG and hLH similar to that of the wild type hLH-R. Responsiveness to hFSH was not affected by most beta-strand substitutions, suggesting the involvement of multiple low-impact determinants for this hormone.  相似文献   

10.
The follicle-stimulating hormone (FSH) receptor purified from calf bovine testis membranes appears to be an oligomeric glycoprotein, consisting of 4 disulfide-linked monomers of molecular weight about 60,000 each. Polyclonal antibodies to the hormone binding sites of the receptor have been developed. FSH interaction with the receptor seems to involve multiple discrete binding regions, which include amino acids 34-37 and 49-52 of the human FSH beta subunit. The interaction between FSH and the membrane-bound receptor is reversible at low temperatures but becomes increasingly irreversible as the temperature increases. FSH interaction with the soluble receptor is reversible over a wider temperature range. The hydrophobic effect is a significant factor in the initial hormone receptor interaction in each system. FSH bound to membrane receptors on cultured immature rat Sertoli cells is internalized and degraded to the level of amino acids. Current evidence suggests that the membrane receptor may exist as free receptor, and complexed with G-protein. A functional receptor/G-protein/adenylate cyclase complex has been reconstituted in liposomes. The G-protein of testis membranes contains both high and low affinity guanosine triphosphate (GTP) binding sites. Both are capable of modulating FSH receptor binding, whereas only the high affinity sites seem to be required for activation of adenylate cyclase. Although testis membranes contain a phosphatidylinositide hydrolysis system, the latter is not directly influenced by FSH.  相似文献   

11.
Human follicle-stimulating hormone receptor (hFSHR) belongs to family I of G protein-coupled receptors. FSHR extracellular domain (ECD) is predicted to have 8-9 alphabeta or leucine-rich repeat motif elements. The objective of this study was to identify elements of the FSHR ECD involved in ligand binding. Preincubation of recombinant hFSHR ECD with rabbit antisera raised against synthetic peptides of hFSHR ECD primary sequence abolished follitropin binding primarily in the region of amino acids 150-254. Accessibility of hFSHR ECD after hormone binding, captured by monoclonal antibodies against either ECD or FSH, was decreased for the region of amino acids 150-220 but additionally for amino acids 15-100. Thus, when hFSH bound first, accessibility of antibody binding was decreased to a much larger extent than if antibody was bound first. This suggestion of a conformational change upon binding was examined further. Circular dichroism spectra were recorded for purified single chain hFSH, hFSHR ECD, and hFSHR ECD-single chain hFSH complex. A spectral change indicated a small but consistent conformational change in the ECD.FSH complex after hormone binding. Taken together, these data demonstrate that FSH binding requires elements within the leucine-rich repeat motifs that form a central region of hFSHR ECD, and a conformational change occurs upon hormone binding.  相似文献   

12.
Rat testis tissue receptor assays were utilized to study the kinetics of dissociation of human follicle-stimulating hormone (hFSH) and luteinizing hormone (hLH) under varying conditions of urea concentration and pH. In these competitive protein binding assays, 125I-hFSH and 125I-hLH were the radioligands and hormone dissociation was followed by a decrease in the ability of the dissociating hormone to inhibit uptake of the radioligand by tissue receptors. Rate data for dissociation of the gonadotropins were analyzed for quality of fit to first or second order integrated rate equations by nonlinear regression analysis. Treatment of hFSH with 4 M urea at pH 8 and 25 degrees for 22 hours did not result in significant dissociation, whereas in 8 M urea, over 90% dissociation was observed. The rate of dissociation of hFSH in 8 M urea was increased approximately 4-fold by raising the temperature from 25 to 37 degrees. Similar results were obtained when dissociation of hFSH was followed through use of an accepted whole animal bioassay for FSH, thus confirming the reliability of the tissue receptor assay for such dissociation studies. Kinetic studies showed that hFSH was undissociated by incubation in 6 M urea of pH 8 after 4 hours at 25 degrees. In contrast, hLH was 90% dissociated under similar conditions. This differential rate of inactivation of hLH allowed preparation of hFSH having significant reduced levels of contaminating LH activity, as determined by tissue receptor assays and by whole animal bioassays. Marked differences were noted in the rate of dissociation of hFSH and hLH under acid conditions. hFSH completely dissociated after approximately 2 min of incubation of pH 2 (25 degrees), and over 90% dissociated after 15 min of incubation at pH 3. In contrast, hLH was dissociated 60% after 20 min of incubation at pH 2 (25 degrees) and 40% dissociated after 60 min at pH 3. Neither hormone was significantly dissociated at pH 4.4 after 60 min, but hFSH showed a slightly greater rate of dissociation than did LH in the period between 1 and 23 hours of incubation at that pH. hFSH and hLH were relatively resistant to dissociation after incubation at pH 12 for 1 hour, bu;t dissociated significantly after incubation for 22 hours at that pH. The time course for dissociation of hFSH or hLH under the various conditions described above did not conform clearly to either first or second order kinetics, indicating that the over-all dissociation process represents a mixed order reaction. It appears that urea or acid-induced denaturation of one or both subunits of hLH and hFSH may occur prior to their dissociation. The very rapid rate of dissociation at acid pH values, particularly of hFSH, indicate that ionic interactions contribute importantly to the subunit association phenomenon.  相似文献   

13.
The follicle-stimulating hormone is critical to reproductive success and is an important target for development of novel reproductive therapies. We have recently reported the development of thiazolidinone positive allosteric modulators of the follicle-stimulating hormone receptor. Here, we demonstrate that discrete modifications in the chemical structure of the thiazolidinone agonists produced compounds with different pharmacological properties. Positive allosteric modulators activated adenylate cyclase signaling (Gs). Using an ADP-ribosylation assay we found that both differing glycosylated variants of human FSH (hFSH) and selected thiazolidinone allosteric modulators of the FSHR induce activation of the Gi signaling pathway. Additionally, we observed that some analogs of this class could activate both pathways. These data suggest that the pharmacological activity of thiazolidinone modulators to the FSHR may be due to the ability of these compounds to induce association of the FSHR with either Gs or Gi signaling pathways in an analog-specific manner.  相似文献   

14.
15.
Three-dimensional structure of human follicle-stimulating hormone   总被引:8,自引:0,他引:8  
The crystal structure of a betaThr26Ala mutant of human follicle-stimulating hormone (hFSH) has been determined to 3.0 A resolution. The hFSH mutant was expressed in baculovirus-infected Hi5 insect cells and purified by affinity chromatography, using a betahFSH-specific monoclonal antibody. The betaThr26Ala mutation results in elimination of the betaAsn24 glycosylation site, yielding protein more suitable for crystallization without affecting the receptor binding and signal transduction activity of the glycohormone. The crystal structure has two independent hFSH molecules in the asymmetric unit and a solvent content of about 80%. The alpha- and betasubunits of hFSH have similar folds, consisting of central cystine-knot motifs from which three beta-hairpins extend. The two subunits associate very tightly in a head-to-tail arrangement, forming an elongated, slightly curved structure, similar to that of human chorionic gonadotropin (hCG). The hFSH heterodimers differ only in the conformations of the amino and carboxy termini and the second loop of the beta-subunit (L2beta). Detailed comparison of the structures of hFSH and hCG reveals several differences in the beta-subunits that may be important with respect to receptor binding specificity or signal transduction. These differences include conformational changes and/or differential distributions of polar or charged residues in loops L3beta (hFSH residues 62-73), the cystine noose, or determinant loop (residues 87-94), and the carboxy-terminal loop (residues 94-104). An additional interesting feature of the hFSH structure is an extensive hydrophobic patch in the area formed by loops alphaL1, alphaL3, and betaL2. Glycosylation at alphaAsn52 is well known to be required for full signal transduction activity and heterodimer stability. The structure reveals an intersubunit hydrogen bonding interaction between this carbohydrate and betaTyr58, an indication of a mechanism by which the carbohydrate may stabilize the heterodimer.  相似文献   

16.
Immature pig Sertoli cells, cultured in a chemically defined medium, are able to maintain many of their functional characteristics for at least two weeks. This model was used to investigate the binding, internalization and degradation of 125I-labelled human follitropin (hFSH) and the effects of pig FSH (pFSH) on its own receptors. The binding of 125I-labelled hFSH was dependent on time, temperature and concentration. At 4 degrees C, the apparent steady state was reached in 8-12 h and remained constant for at least 24 h, whereas at 33 degrees C the apparent equilibrium was reached in 4-6 h. Thereafter the total binding declined and by 24 h it was less than 50% of the maximum binding. At 33 degrees C the binding for the hormone to its surface receptor was followed by internalization of the hormone (half-life approximately equal to 1 h) and its degradation (half-life approximately equal to 3 h). The receptor-mediated internalization of hFSH was blocked by phenylarsine oxide. In the presence of the ionophore monensin (20 microM) the rates of binding and internalization were not modified but the degradation rate was much lower (half-life approximately equal to 18 h). Thus, in the presence of monensin, maximum binding increased twofold to threefold, and remained constant for 24 h. This increase was mainly due to an increase of the internalized hormone. When Sertoli cells were exposed to pFSH there was a loss of its own receptor, which was both dose-dependent (ED50 = 250 ng/ml) and time-dependent (t 1/2 = 14 h). Cycloheximide did not modify the FSH-induced down-regulation, whereas monensin enhanced the down-regulation process. These results show that FSH, like other ligands, is internalized and degraded by its target cells and indicate that the hormone-mediated down-regulation is related to the internalization process. However, the discrepancy between the rate of internalization and of hormone-induced down-regulation, suggests that some of the internalized receptors are recycled.  相似文献   

17.
The rat follitropin receptor (rFSHR) is an unusual G protein-coupled receptor in that agonist-induced activation leads to the phosphorylation of the first and third intracellular loops instead of the C-terminal tail. To determine regions of G protein-coupled receptors that affect internalization independently of phosphorylation we examined the effects of truncations of the C-terminal tail of the rFSHR on agonist-induced internalization. Our studies show that progressive truncations of a region flanked by residues 642 and 651 enhance the internalization of human follicle-stimulating hormone (hFSH). Further characterization of a mutant truncated at residue 649 (designated rFSHR-t649) and another mutant in which the 642-651 region was deleted in the context of the full-length rFSHR, designated rFSHR(Delta642-651), showed that both of them internalized hFSH at rates that were 2-3 times faster than rFSHR-wild type (wt). Like rFSHR-wt, however, the internalization of hFSH mediated by rFSHR-t649 and rFSHR(Delta642-651) can be inhibited with dominant-negative mutants of the non-visual arrestins or dynamin. Alanine-scanning mutagenesis of the 642-651 region suggests that the effects on internalization are not mediated by a single residue, however. In an attempt to understand the molecular basis of the enhanced internalization of hFSH mediated by these mutants we used an assay that can be readily used to assess the association of the rFSHR with the arrestin-3 in co-transfected cells. Using this assay we were able to show that, when compared with rFSHR-wt, rFSHR(Delta642-651) displays an approximately 4-fold enhancement in binding affinity for arrestin-3 and an approximately 1.7-fold reduction in maximal arrestin-3 binding capacity. We conclude that a short linear sequence present in the C-terminal tail of the rFSHR (642SATHNFHARK651) that is not phosphorylated limits internalization by lowering the affinity of the rFSHR for the endogenous non-visual arrestins.  相似文献   

18.
Chemical deglycosylation of gonadotropins with hydrogen fluoride (HF) has facilitated the investigation of the structure-function relationship of the individual peptide and oligosaccharide moieties in the mechanism of hormone action. These studies have dealt almost exclusively with lutropin or human choriogonadotropin. We report here the chemical characterization and biological properties of deglycosylated human follitropin (degly hFSH). Results indicate that deglycosylation of hFSH by HF removes 89% of the total carbohydrate without disruption of the peptide chain or significant loss of amino acid residues. However, a change in the conformation of the molecule was observed by measurement of the far-ultraviolet circular dichroic spectrum. The degly hFSH showed a 44% reduction in binding when tested in a FSH radioimmunoassay utilizing a polyclonal antibody. Binding of the degly hFSH to FSH-responsive tissues showed that the altered hormone bound with equal or better avidity than the intact hormone while the association constants were approximately the same for both preparations. The degly hFSH alone did not stimulate the FSH-stimulatable adenylyl cyclase (AC) activity of cellular homogenates of small follicle porcine granulosa cells. Furthermore, degly hFSH was a potent antagonist of hFSH-stimulatable AC activity when coincubated with intact hFSH. In intact granulosa cells, both the hFSH and the degly hFSH stimulated cAMP production and release by these cells. However, the degly hFSH was one-tenth as effective as the intact hormone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Homobifunctional cross-linkers were utilized to characterize high affinity (Ka = 2.2 X 10(-10) M-1) follitropin (FSH) receptors in immature bovine testis. Following the formation of radioiodinated human FSH (125I-hFSH)-receptor complexes, the membranes were solubilized with Triton X-100 or beta-octyl glucoside and the supernatants from ultracentrifugation (220,000 X g) subjected to gel filtration (Sephadex G-200) to separate the labeled hormone-receptor complexes from the unbound 125I-hFSH. The appearance of a high molecular weight (greater than or equal to 200,000) radioactive component in the elution profile was abolished when an excess of unlabeled hFSH was included in the initial incubation. After concentration by ultrafiltration, the 125I-hFSH-receptor complex, as well as the free hormone, was treated with a variety of chemical cross-linkers and subjected to analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Bands of Mr = 65,000 and 83,000 observed in the autoradiograph of the hormone-receptor complex was not present in autoradiographs of free 125I-hFSH, nor were they present when an excess of unlabeled hFSH was included in the initial binding incubation mixtures. The 65,000 and 83,000 Mr bands were, therefore, considered to represent cross-linked complexes of labeled hFSH (Mr = 38,000) or its subunits (hFSH alpha, Mr = 16,000; hFSH beta, Mr = 21,000) and components of the FSH receptor. The bands were observed on autoradiographs when the extraction of the membranes was performed with either Triton X-100 or beta-octyl glucoside and when cross-linking was accomplished with disuccinimidyl suberate, ethylene glycol bis(succinimidyl succinate), or bis[2-(succinimido oxycarbonyl)oxyethyl]sulfone. The Mr of the native FSH receptor in the calf testis has been estimated at 146,000. Our studies demonstrate the multimeric nature of the FSH receptor. However, FSH is also composed of subunits, so that due to the complexity of the system, it was not possible to arrive at a precise assessment of the Mr or quaternary structure of the receptor subunits.  相似文献   

20.
An original, nonradiometric method has been developed for studying the binding parameters of native follicle-stimulating hormone (FSH) to its specific receptors in human ovarian granulosa cells. After binding and washing of the cells, hFSH was desorbed from its receptors and quantitatively measured by a specific enzyme immunoassay (EIA) in which nonspecific binding was estimated in the presence of an excess of equine chorionic gonadotropin (eCG/PMSG), which binds to human FSH receptors but does not interfere in the hFSH EIA. This method makes use of native nonmodified hFSH molecules (in contrast to radiometric methods) and permits direct estimation of the binding parameters (Kd and total number of sites). The Kd of hFSH for its human granulosa receptors measured by this technique (4.8 +/- 0.3 x 10(-10) M) is close to that determined by other methods. However, we found a total number of specific FSH receptors per granulosa cell (1 to 6 x 10(4) higher than that reported by others by Scatchard analysis of competition dose-response curves in radioreceptor assays. The method is also sensitive enough to measure the in vivo occupancy of receptors by endogenous hFSH, which was found to be less than 6% in women undergoing hormonal treatment for in vitro fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号