首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To characterize potentially important surface-exposed proteins of the phytoplasma causing chrysanthemum yellows (CY), new primers were designed based on the conserved regions of 3 membrane protein genes of the completely sequenced onion yellows and aster yellows witches' broom phytoplasmas and were used to amplify CY DNA. The CY genes secY, amp, and artI, encoding the protein translocase subunit SecY, the antigenic membrane protein Amp and the arginine transporter ArtI, respectively, were cloned and completely sequenced. Alignment of CY-specific secY sequences with the corresponding genes of other phytoplasmas confirmed the 16S rDNA-based classification, while amp sequences were highly variable within the 'Candidatus Phytoplasma asteris'. Five CY partial sequences were cloned into the pRSetC expression vector, and 3 of the encoded protein fragments (Amp 64/651, Amp 64/224, ArtI 131/512) were expressed as fusion antigens for the production of CY-specific polyclonal antibodies (A416 against Amp 64/224; A407 against ArtI 131/512). A416 recognized, in Western blots, the full-length Amp from CY-infected plants (periwinkle, daisy) and insect vectors (Euscelidius variegatus, Macrosteles quadripunctulatus). A416 also reacted to European aster yellows, to primula yellows phytoplasmas, to northern Italian strains of 'Ca. Phytoplasma asteris' from lettuce and gladiolus, but it did not react to American aster yellows phytoplasma.  相似文献   

2.
Chrysanthemum yellows (CY) phytoplasma has been transmitted with three leafhopper species: Euscelidius variegatus (Kirschbaum), Macrosteles quadripunctulatus (Kirschbaum) and Euscelis incisus (Kirschbaum): the first two species are reported as CY phytoplasma vectors for the first time. Leafhoppers were allowed to acquire the pathogen from the following source plants: Apium graveolens L., Catharanthus roseus L., Chrysanthemum carinatum Schousboe L. and C. frutescens L. DNA extracted from healthy or inoculative leafhoppers-exposed plants were analyzed by dot-blot and Southern hybridizations with a molecular probe constructed onto a fragment of European aster yellows phytoplasma DNA. The three leafhopper species were able to transmit CY phytoplasma after acquisition on chrysanthemum, but only M. quadripunctulatus and E. variegatus transmitted after feeding on periwinkle, and none acquired it from celery. All plant species tested were susceptible to CY, but while chrysanthemum and periwinkle were suitable for both inoculation and acquisition, celery did not seem to be a good source of phytoplasma for further inoculations. It is concluded that host plants influence leafhoppers' vectoring ability, possibly due to the different feeding behaviour of the insects on diverse plant species. Since CY, like several other phytoplasmas, can be transmitted by different insect species, it is likely that a close transmission specificity probably does not exist between phytoplasmas and their leafhopper vectors.  相似文献   

3.
DNA fragments of tomato big bud (BB) mycoplasmalike organism (MLO) in diseased periwinkle plants (Catharanthus roseus L.) were cloned to pSP6 plasmid vectors and amplified in Escherichia coli JM83. A nonradioactive method was developed and used to screen for MLO-specific recombinants. Cloned DNA probes were prepared by nick translation of the MLO recombinant plasmids by using biotinylated nucleotides. The probes all hybridized with nucleic acid from BB MLO-infected, but not healthy, plants. Results from dot hybridization analyses indicated that several MLOs, e.g., those of Italian tomato big bud, periwinkle little leaf, and clover phyllody, are closely related to BB MLO. The Maryland strain of aster yellows and maize bushy stunt MLOs are also related to BB MLO. Among the remaining MLOs used in this study, Vinca virescence and elm yellows MLOs may be very distantly related, if at all, to BB MLO. Potato witches' broom, clover proliferation, ash yellows, western X, and Canada X MLOs are distantly related to BB MLO. Southern hybridization analyses revealed that BB MLO contains extrachromosomal DNA that shares sequence homologies with extrachromosomal DNAs from aster yellows and periwinkle little leaf MLOs.  相似文献   

4.
Phytoplasmas are cell-wallless Gram-positive low G + C bacteria belonging to the Mollicutes that inhabit the cytoplasm of plants and insects. Although phytoplasmas possess two ribosomal RNA (rrn) operons, only one has been fully sequenced. Here, we determined the complete nucleotide sequence of both rrn operons (designated rrnA and rrnB) of onion yellows (OY) phytoplasma. Both operons have rRNA genes organized as 5'-16S-23S-5S-3' with very highly conserved sequences; the 16S, 23S, and 5S rRNA genes are 99.9, 99.8, and 99.1% identical between the two operons. However, the organization of tRNA genes in the upstream region from 16S rRNA gene and in the downstream region from 5S rRNA gene differs markedly. Several promoter candidates were detected upstream from both operons, which suggests that both operons are functional. Interestingly, both have a tRNA(Ile) gene in the 16S-23S spacer region, while the reported rrnB operon of loofah witches' broom phytoplasma does not, indicating heterogenous gene organization of rrnB within phytoplasmas. The phytoplasma tRNA gene organization is similar to that of acholeplasmas, a closely related mollicute, and different from that of mycoplasmas, another mollicute. Moreover, the organization suggests that the rrn operons were derived from that of a related nonmollicute bacterium, Bacillus subtilis. This data should shed light on the evolutionary relationships and phylogeny of the mollicutes.  相似文献   

5.
Chromosomal DNA fragments from the mycoplasma-like organisms (MLOs) associated with American aster yellows, apple proliferation, clover phyllody, and vaccinium witches' broom were cloned. Several MLO-specific fragments from each of these four isolates and a sequence from the 16S rRNA gene of an aster yellows MLO were used in Southern blot hybridizations to investigate the taxonomic relationships of 26 pathologically and geographically diverse MLOs. These MLOs were divided into four categories according to the symptoms induced in periwinkle. Genotypically, these isolates represented four groups (16S RFLP groups) of a classification based on restriction fragment length polymorphisms (RFLP) and sequencing data of the 16S rRNA gene. Probes from three isolates of one symptom category hybridized with isolates from all symptom categories. This result indicates that classification of MLOs by symptomatology does often not coincide with genetic relationships. The hybridization results confirmed the findings, of the 16S RFLP classification that most MLOs from herbaceous plants, especially those inducing virescence in periwinkle, are interrelated. These isolates, which were assigned to one 16S RFLP group, could be further differentiated in this study. Itcould be shown that aster yellows, clover phyllody, stolbur, and safflower phyllody and sandal spike are caused by distinct MLOs. The MLOs associated with apple proliferation, vaccinium witches' broom, and witches' broom of lime as well as two isolatesfrom, stone fruits could also be recognized as distinct organisms.  相似文献   

6.
The pear decline, European stone fruit yellows and rubus stunt agents as well as the phytoplasmas causing Picris echioides (bristly oxtongue) yellows and cotton (Gossypium hirsutum) phyllody, respectively, were transmitted from naturally infected plants to the experimental host Catharanthus roseus (periwinkle) via dodder (Cuscuta spp.) bridges. The identities of the dodder-transmitted phytoplasmas were confirmed by restriction length fragment polymorphism analysis of polymerase chain reaction-amplified ribosomal DNA. On the basis of restriction profiles the cotton phyllody agent could be differentiated from the phytoplasma causing faba bean phyllody, a disease previously thought to be induced by the same organism as cotton phyllody.  相似文献   

7.
Two independent surveys were performed in Peru during February and November 2007 to detect the presence of phytoplasmas within any crops showing symptoms resembling those caused by phytoplasmas. Molecular identifications and characterisations were based on phytoplasma 16S and 23S rRNA genes using nested PCR and terminal restriction fragment length polymorphism (T‐RFLP). The surveys indicated that phytoplasmas were present in most of the locations sampled in Peru in both cultivated crops, including carrots, maize, native potatoes, improved potato, tomato, oats, papaya and coconut, and in other plants such as dandelion and the ornamental Madagascar periwinkle (Catharanthus roseus). Phylogenetic analysis of the sequences confirmed that while most of the isolates belong to the 16SrI aster yellows group, which is ubiquitous throughout other parts of South America, one isolate from potato belongs to the 16SrII peanut witches’ broom group, and one isolate from tomato and one from dandelion belong to the 16SrIII X‐disease group. The use of T‐RFLP was validated for the evaluation of phytoplasma‐affected field samples and provided no evidence for mixed infection of individual plants with more than one phytoplasma isolate. These data represent the first molecular confirmation of the presence of phytoplasmas in a broad range of crops in Peru.  相似文献   

8.
Stylosanthes sp. exhibiting characteristic symptoms such as little leaf, witches' broom and floral abnormalities were collected from north Queensland and the Northern Territory, Australia. Previous studies have shown that sweet potato little leaf V4 (SPLL-V4), tomato big bud (TBB), stylosanthes little leaf (StLL) and pigeon pea little leaf (PLL) phytoplasmas are associated with this disease. The detection of an additional phytoplasma type, vigna little leaf (ViLL) is reported herein. The range and severity of symptoms expressed by affected plants is highly variable and is not associated with a particular phytoplasma type. Similarly, host plants infected with a complex of two phytoplasmas did not have unique or more severe symptoms. Of the phytoplasmas associated with stylosanthes little leaf disease, StLL is unique because it lacks the tRNAIle gene which is normally situated in the 16S-23S rRNA intergenic spacer region. This phytoplasma was shown to have a second operon containing the expected tRNAIle gene in all StLL samples examined. Sequence analysis suggests that the two 16S rRNA genes amplified by polymerase chain reaction from StLL samples originate from the same phytoplasma. This the first report of a phytoplasma having ribosomal operons both with and without an intergenic tRNAIle gene.  相似文献   

9.
Three real-time PCR systems for direct detection of phytoplasmas associated to Flavescence dorée (FD), Bois noir (BN) and aster yellows (AY) diseases were developed. TaqMan probes and primers were designed on the 16S ribosomal RNA sequences of phytoplasma genome. A further TaqMan assay, targeting a grapevine gene encoding for the chloroplast chaperonin 21, was developed in order to check the DNA quality and to verify the absence of PCR inhibition. A comparison between real-time PCR and conventional nested-PCR methods for phytoplasma detection was carried out on several reference samples from grapevine, periwinkle, other host plants and insect species. Detection of FD, BN and AY phytoplasma DNA on infected specimens was rapid, specific and reproducible. Sensitivity was as high as nested-PCR assay. The two procedures were then used on about 450 samples collected from grapevines showing yellows symptoms. The results showed that real-time PCR approach for phytodiagnostic purposes was more advantageous than nested-PCR method with regard to rapidity of the assay and reduced risk of sample cross contamination. These new protocols represent an improvement of existing analytical methods and could be used as a reliable diagnostic procedure in certification and control programs.  相似文献   

10.
Phytoplasmas ("Candidatus Phytoplasma," class Mollicutes) cause disease in hundreds of economically important plants and are obligately transmitted by sap-feeding insects of the order Hemiptera, mainly leafhoppers and psyllids. The 706,569-bp chromosome and four plasmids of aster yellows phytoplasma strain witches' broom (AY-WB) were sequenced and compared to the onion yellows phytoplasma strain M (OY-M) genome. The phytoplasmas have small repeat-rich genomes. This comparative analysis revealed that the repeated DNAs are organized into large clusters of potential mobile units (PMUs), which contain tra5 insertion sequences (ISs) and genes for specialized sigma factors and membrane proteins. So far, these PMUs appear to be unique to phytoplasmas. Compared to mycoplasmas, phytoplasmas lack several recombination and DNA modification functions, and therefore, phytoplasmas may use different mechanisms of recombination, likely involving PMUs, for the creation of variability, allowing phytoplasmas to adjust to the diverse environments of plants and insects. The irregular GC skews and the presence of ISs and large repeated sequences in the AY-WB and OY-M genomes are indicative of high genomic plasticity. Nevertheless, segments of approximately 250 kb located between the lplA and glnQ genes are syntenic between the two phytoplasmas and contain the majority of the metabolic genes and no ISs. AY-WB appears to be further along in the reductive evolution process than OY-M. The AY-WB genome is approximately 154 kb smaller than the OY-M genome, primarily as a result of fewer multicopy sequences, including PMUs. Furthermore, AY-WB lacks genes that are truncated and are part of incomplete pathways in OY-M.  相似文献   

11.
In southern and central Italy, a witches’broom and decline disease of Sarothamnus scoparius has been observed. In affected plants, phytoplasmas were detected by PCR amplification of ribosomal DNA. Restriction fragment length polymorphism analysis of PCR-amplified DNA revealed that the diseased plants were infected by a phytoplasma that is closely related to the spartium witches’broom phytoplasma, a member of the apple proliferation group.  相似文献   

12.
C.-P. Kuan    M.-M. Kuan    M.-C. Hsu    M.-L. Li 《Journal of Phytopathology》2008,156(5):293-296
Loofah (Luffa cylindrical) is a common vegetable crop in Taiwan and other Asian countries. Reported here is a novel rapid approach for detecting loofah witches’ broom (LfWB) phytoplasma in single leafhoppers. Field samples of suspected diseased plants and potential vectors from southern Taiwan were processed to test for the presence of the LfWB phytoplasmas using both strain‐specific DNA hybridization (DH) and polymerase chain reaction (PCR) assays. The commonest pathogen causing loofah disease in southern Taiwan is LfWB phytoplasma. Leafhoopers collected at nine locations near LfWB‐infected plants were found to be positive for LfWB by PCR / DH at an incidence of 28.5–40.0%. Of the different leafhopper species tested, only Hishimonus concavus was positive for LfWB, suggesting that H. concavus is a natural vector of LfWB in Taiwan. Using our proposed primers in this PCR assay, a single LfWB‐infected leafhopper can be detected rapidly and directly.  相似文献   

13.
The objective of our research was to assess if arbuscular mycorrhizal (AM) fungal colonization can modify the effect of infection by two aster yellows phytoplasma strains (AY1, AYSim) in Catharanthus roseus plants. Both phytoplasma strains had a negative effect on the root fresh weight, but they differed in symptoms appearance and in their influence on photosynthetic and transpiration rates of the periwinkle plants. AM plants showed significantly reduced shoot fresh weight, while the transpiration rate was significantly increased. AM fungal colonization significantly affected shoot height and fresh weight of the plants infected by each phytoplasma strains as well as the root system of plants infected with the more aggressive AYSim phytoplasma strain. Double inoculation did not reduce the negative effects induced with phytoplasma alone on the photosynthetic activity of phytoplasma-infected plants.  相似文献   

14.
During 2010–2013 surveys for the presence of phytoplasma diseases in Yazd province (Iran), a parsley witches’ broom (PrWB) disease was observed. Characteristic symptoms were excessive development of short spindly shoots from crown buds, little leaf, yellowing, witches’ broom, stunting, flower virescence and phyllody. The disease causative agent was dodder transmitted from symptomatic parsley to periwinkle and from periwinkle to periwinkle by grafting inducing phytoplasma‐type symptoms. Expected length DNA fragments of nearly 1800 and 1250 bp were, respectively, amplified from naturally infected parsley and experimentally inoculated periwinkle plants in direct polymerase chain reaction (PCR) using phytoplasma primer pair P1/P7 or nested PCR using the same primer pair followed by R16F2n/R16R2 primers. Restriction fragment length polymorphism and phylogenetic analyses of 16S rRNA gene sequences showed that the phytoplasma associated with PrWB disease in Yazd province belong to 16SrII‐D phytoplasma subgroup. This is the first report of association of a 16SrII‐related phytoplasma with PrWB disease in Iran.  相似文献   

15.
Aims: To test the effect of auxin‐treatment on plant pathogenic phytoplasmas and phytoplasma‐infected host. Methods and Results: In vitro grown periwinkle shoots infected with different ‘Candidatus Phytoplasma’ species were treated with indole‐3‐acetic acid (IAA) or indole‐3‐butyric acid (IBA). Both auxins induced recovery of phytoplasma‐infected periwinkle shoots, but IBA was more effective. The time period and concentration of the auxin needed to induce recovery was dependent on the ‘Candidatus Phytoplasma’ species and the type of auxin. Two ‘Candidatus Phytoplasma’ species, ‘Ca. P. pruni’ (strain KVI, clover phyllody from Italy) and ‘Ca. P. asteris’ (strain HYDB, hydrangea phyllody), were susceptible to auxin‐treatment and undetected by nested PCR or detected only in the second nested PCR in the host tissue. ‘Ca. P. solani’ (strain SA‐I, grapevine yellows) persisted in the host tissue despite the obvious recovery of the host plant and was always detected in the direct PCR. Conclusions: Both auxins induced recovery of phytoplasma‐infected plants and affected tested ‘Candidatus Phytoplasma’ species in the same manner, implying that the mechanism involved in phytoplasma elimination/survival is common to both, IAA and IBA. Significance and Impact of the Study: The results imply that in the case of some ‘Candidatus Phytoplasma’ species, IBA‐treatment could be used to eliminate phytoplasmas from in vitro grown Catharanthus roseus shoots.  相似文献   

16.
Melia azedarach var. japonica trees with leaf yellowing, small leaves and witches' broom were observed for the first time in Korea. A phytoplasma from the symptomatic leaves was identified based on the 16Sr DNA sequence as a member of aster yellows group, ribosomal subgroup 16SrI‐B. Sequence analyses of more variable regions such as 16S–23S intergenic spacer region, secY gene, ribosomal protein (rp) operon and tuf gene showed 99.5?100% nucleotide identity to several GenBank sequences of group 16SrI phytoplasmas. Phylogenetic analysis confirmed that the Melia azedarach witches' broom phytoplasma belongs to aster yellows group.  相似文献   

17.
To clarify the phytoplasma associated with Huanglongbing (HLB), a detection survey of phytoplasma in field citrus trees was performed using the standardized nested PCR assay with primer set P1/16S‐Sr and R16F2n/R16R2. The HLB‐diseased citrus trees with typical HLB symptoms showed a high detection of 89.7% (322/359) of HLB‐Las, while a low detection of phytoplasma at 1.1% (4/359) was examined in an HLB‐affected Wentan pummelo (Citrus grandis) tree (1/63) and Tahiti lime (C. latifolia) trees (3/53) that were co‐infected with HLB‐Las. The phytoplasma alone was also detected in a healthy Wentan pummelo tree (1/60) at a low incidence total of 0.3% (1/347). Healthy citrus plants were inoculated with the citrus phytoplasma (WP‐DL) by graft inoculation with phytoplasma‐infected pummelo scions. Positive detections of phytoplasma were monitored only in the Wentan pummelo plant 4 months and 3.5 years after inoculation, and no symptoms developed. The citrus phytoplasma infected and persistently survived in a low titre and at a very uneven distribution in citrus plants. Peanut witches' broom (PnWB) phytoplasma (16SrII‐A) and periwinkle leaf yellowing (PLY) phytoplasma belonging to the aster yellows group (16SrI‐B) maintained in periwinkle plants were inoculated into healthy citrus plants by dodder transmission. The PnWB phytoplasma showed infection through positive detection of the nested PCR assay in citrus plants and persistently survived without symptom expression up to 4 years after inoculation. Positive detections of the phytoplasma were found in a low titre and several incidences in the other inoculated citrus plants including Ponkan mandarin, Liucheng sweet orange, Eureka lemon and Hirami lemon. None of the phytoplasma‐infected citrus plants developed symptoms. Furthermore, artificial inoculation of PLY phytoplasma (16SrI‐B) into the healthy citrus plants demonstrated no infection. The citrus symptomless phytoplasma was identified to belong to the PnWB phytoplasma group (16SrII‐A).  相似文献   

18.
In 1999–2000 a severe disease was observed on plants of four Magnolia spp. cultivated in a commercial nursery in Poland. Affected plants showed a progressive loss of vigour, were stunted, and had severely malformed leaves, leaf necrosis and witches' broom. Phytoplasma was detected in magnolias with severe symptoms and in dodder-inoculated Catharanthus roseus seedlings by nested polymerase chain reaction (PCR) assay with primer pair R16F1/R0 followed by universal (rA/fA) and group specific (R16(I)F1/R1) primer pairs which amplified a fragment of phytoplasma 16S rDNA. The PCR products (560 bp or 1.1 kb) of all samples used for restriction fragment length polymorphism analysis after digestion with endonuclease enzymes Alu I and Mse I produced the same profile which corresponded to that of an aster yellows phytoplasma reference strain. Phytoplasma DNA was detected throughout the growing season in roots, stems and young but not mature leaves. Electron microscope examination of the ultra-thin sections of the leaf and stem of diseased magnolias showed collapsed and degenerated sieve tube elements with wall thickening. The reduced lumen of these sieve elements contained numerous vesicles and membrane-bound structures, but no typical phytoplasma cells. This is the first report of aster yellows phytoplasma in magnolia identified by molecular assays.  相似文献   

19.
20.
In the summer of 1999, typical yellows-type symptoms were observed on garlic and green onion plants in a number of gardens and plots around Edmonton, Alberta, Canada. DNA was extracted from leaf tissues of evidently healthy and infected plants. DNA amplifications were conducted on these samples, using two primer pairs, R16F2n/R2 and R16(1)F1/R1, derived from phytoplasma rDNA sequences. DNA samples of aster yellows (AY), lime witches'-broom (LWB) and potato witches'-broom (PWB) phytoplasmas served as controls and were used to determine group relatedness. In a direct polymerase chain reaction (PCR) assay, DNA amplification with universal primer pair R16F2n/R2 gave the expected amplified products of 1.2 kb. Dilution (1/40) of each of the latter products were used as template and nested with specific primer pair R16(1)F1/R1. An expected PCR product of 1.1 kb was obtained from each phytoplasma-infected garlic and green onion samples, LWB and AY phytoplasmas but not from PWB phytoplasma. An aliquot from each amplification product (1.2 kb) with universal primers was subjected to PCR-based restriction fragment length polymorphism (RFLP) to identify phytoplasma isolates, using four restriction endonucleases (AluI, KpnI, MseI and RsaI). DNA amplification with specific primer pair R16(1)F1/R1 and RFLP analysis indicated the presence of AY phytoplasma in the infected garlic and green onion samples. These results suggest that AY phytoplasma in garlic and green onion samples belong to the subgroup 16Sr1-A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号