首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described for construction of an in vitro flow model based on in vivo measurements of the lumen geometry of the human carotid bifurcation. A large-scale physical model of the vessel lumen was constructed using fused deposition modeling (a rapid prototyping technique) based on magnetic resonance (MR) images of the carotid bifurcation acquired in a healthy volunteer. The lumen negative was then used to construct a flow model for experimental studies that examined the hemodynamic environment of subject-specific geometry and flow conditions. The physical model also supplements physician insight into the three-dimensional geometry of the arterial segment, complementing the two-dimensional images obtained by MR. Study of the specific geometry and flow conditions in patients with vascular disease may contribute to our understanding of the relationship between their hemodvnamic environment and conditions that lead to the development and progression of arterial disease.  相似文献   

2.

Background

Ultrasound elasticity imaging provides biomechanical and elastic properties of vascular tissue, with the potential to distinguish between tissue motion and tissue strain. To validate the ability of ultrasound elasticity imaging to predict structurally defined physical changes in tissue, strain measurement patterns during angioplasty in four bovine carotid artery pathology samples were compared to the measured physical characteristics of the tissue specimens.

Methods

Using computational image-processing techniques, the circumferences of each bovine artery specimen were obtained from ultrasound and pathologic data.

Results

Ultrasound-strain-based and pathology-based arterial circumference measurements were correlated with an R2 value of 0.94 (p = 0.03). The experimental elasticity imaging results confirmed the onset of deformation of an angioplasty procedure by indicating a consistent inflection point where vessel fibers were fully unfolded and vessel wall strain initiated.

Conclusion

These results validate the ability of ultrasound elasticity imaging to measure localized mechanical changes in vascular tissue.  相似文献   

3.
Three-dimensional organization of the liver vascular bed in (C57B1/6 X CBA)F1 mice and rats was examined by scanning electron microscopy of injection replicas. The data have been obtained on the character of branching, diameter of injection replicas in arterial and venous vasculature and different types of microvascular surface relief, depending on their location in the vascular bed.  相似文献   

4.
目的:探讨利用CTA原始数据集构建在体女性盆腔静脉血管网数字化三维模型的方法及意义。方法:基于双源CTA技术,获取1例宫颈癌患者的Dicom 3.0原始二维断层图像数据集。利用Mimics 10.01软件分别对骨盆、盆腔动脉血管网以及盆腔静脉血管网进行三维重建并配准融合。结果:构建的盆腔静脉血管网数字化三维模型可以清楚地显示下腔静脉、髂总静脉、髂外静脉、髂内静脉及其初级属支,以及双侧卵巢静脉等。与重建的骨盆、盆腔动脉血管网配准融合后,各支静脉血管的解剖走形及引流区域变得更加清晰明确。结论:基于CTA的计算机三维重建技术是一种研究女性盆腔静脉血管网的好方法,具有较大的运用价值。  相似文献   

5.
Patient-specific haemodynamic computations have been used as an effective tool in researches on cardiovascular disease associated with haemodynamics such as atherosclerosis and aneurysm. Recent development of computer resource has enabled 3D haemodynamic computations in wide-spread arterial network but there are still difficulties in modelling vascular geometry because of noise and limited resolution in medical images. In this paper, an integrated framework to model an arterial network tree for patient-specific computational haemodynamic study is developed. With this framework, 3D vascular geometry reconstruction of an arterial network and quantification of its geometric feature are aimed. The combination of 3D haemodynamic computation and vascular morphology quantification helps better understand the relationship between vascular morphology and haemodynamic force behind 'geometric risk factor' for cardiovascular diseases. The proposed method is applied to an intracranial arterial network to demonstrate its accuracy and effectiveness. The results are compared with the marching-cubes (MC) method. The comparison shows that the present modelling method can reconstruct a wide-ranged vascular network anatomically more accurate than the MC method, particularly in peripheral circulation where the image resolution is low in comparison to the vessel diameter, because of the recognition of an arterial network connectivity based on its centreline.  相似文献   

6.
Optical techniques for functional imaging in mice have a number of key advantages over other common imaging modalities such as magnetic resonance imaging, positron emission tomography or computed tomography, including high resolution, low cost and an extensive library of available contrast agents and reporter genes. A major challenge to such work is the limited penetration depth imposed by tissue turbidity. We describe a window chamber technique by which these limitations can be avoided. This facilitates the study of a wide range of processes, with potential endpoints including longitudinal gene expression, vascular remodeling and angiogenesis, and tumor growth and invasion. We further describe several quantitative imaging and analysis techniques for characterizing in vivo fluorescence properties and functional endpoints, including vascular morphology and oxygenation. The procedure takes ~2 h to complete, plus up to several weeks for tumor growth and treatment procedures.  相似文献   

7.
Commonly, attempts have been made to learn about the structure and function of the pulmonary vascular bed from measurements of arterial and venous pressures and blood flow rate under steady-state conditions (e.g., from pressure vs. flow data) or dynamic conditions (e.g., from vascular occlusion data). Zhuang et al. (J. Appl. Physiol. 55: 1341-1348, 1983) have presented a detailed model of steady-state cat lung hemodynamics based on direct measurements of anatomical and elasticity data. This model provides an opportunity to better understand the information content of the hemodynamic data. Therefore, in the present study we carried out a series of steady-state and dynamic experiments on isolated cat lungs. We then compared the results with those predicted by the model. We found that the model provided a good fit to the steady-state data. However, to fit the dynamic data, some modifications were necessary to account for the viscous behavior of the vessel walls and to move the first moment of the distribution of vascular resistance toward the arterial end of the vascular bed relative to that of the distribution of vascular compliance. Due to the sensitivity of the vascular resistance to small changes in vessel diameters and branching ratio, the modifications in morphometry represent small changes in morphometric data and are probably within the range of uncertainty in such data. The modifications had little effect on the steady-state model simulations but substantially improved the dynamic model simulations, suggesting that the dynamic data are quite sensitive to small changes in the relative distributions of vessel diameters and elasticity.  相似文献   

8.
We describe a versatile optical projection tomography system for rapid three-dimensional imaging of microscopic specimens in vivo. Our tomographic setup eliminates the in xy and z strongly asymmetric resolution, resulting from optical sectioning in conventional confocal microscopy. It allows for robust, high resolution fluorescence as well as absorption imaging of live transparent invertebrate animals such as C. elegans. This system offers considerable advantages over currently available methods when imaging dynamic developmental processes and animal ageing; it permits monitoring of spatio-temporal gene expression and anatomical alterations with single-cell resolution, it utilizes both fluorescence and absorption as a source of contrast, and is easily adaptable for a range of small model organisms.  相似文献   

9.
A major drawback of conventional impression techniques used for customizing facial prostheses is the fact that pressure applied deforms soft tissue, thus reducing accuracy and causing patient discomfort. A possible solution is the use of optical 3-D coordinate measuring techniques, such as the fringe projection technique, which enables precise and contact-free recording of facial surfaces. The application of this method is demonstrated on a patient who lost his left eye and part of the jaw bone during surgery for cancer. 3-D CAD software that supports the construction of a facial prosthesis from the data obtained has been developed. For this purpose, spline functions are used to define border curves, and the intact half of the face is used as a model for the prosthetic surface. The resulting digital data are used to construct first a model made of synthetic resin, and then a final wax model with the aid of rapid prototyping techniques.  相似文献   

10.
目的评估经股动脉穿刺超选造影、静脉造影、心脏穿刺造影和左侧耳中央动脉穿刺造影方法显示弹性酶诱导的兔囊状动脉瘤的可行性。方法取10只新西兰兔,采用弹性酶诱导方法制作兔右侧颈总动脉起始部囊状动脉瘤模型。术后3周对所有动物分别进行经股动脉穿刺超选造影、静脉造影、心脏穿刺造影和左侧耳中央动脉穿刺造影,根据造影结果测量动脉瘤短径、长径和瘤颈宽。采用重复测量设计的方差分析方法比较不同造影方法显示的动脉瘤相关参数测量结果差异。结果采用经股动脉穿刺超选造影、静脉造影、心脏穿刺造影和左侧耳中央动脉穿刺造影方法均能较清楚的显示的动脉瘤,比较不同造影方法测量的动脉瘤短径、长径和瘤颈宽均无统计学差异(P值分别是0.646,0.427和0.625)。结论不同的造影方法均能较准确显示弹性酶诱导的兔囊状动脉瘤大小,根据不同的实验目的和条件可选用不同的造影方法。  相似文献   

11.
Atherosclerosis is a leading cause of death in the U.S. Because there is a potential to prevent coronary and arterial disease through early diagnosis, there is a need for methods to image arteries in the subclinical stage as well as clinical stage using various noninvasive techniques, including magnetic resonance imaging (MRI). We describe a development of a novel MRI contrast agent targeted to plaques that will allow imaging of lesion formation. The contrast agent is directed to macrophages, one of the earliest components of developing plaques. Macrophages are labeled through the macrophage scavenger receptor A, a macrophage specific cell surface protein, using an MRI contrast agent derived from scavenger receptor ligands. We have synthesized and characterized these contrast agents with a range of relaxivities. In vitro studies show that the targeted contrast agent accumulates in macrophages, and solution studies indicate that micromolar concentrations are sufficient to produce contrast in an MR image. Cell toxicity and initial biodistribution studies indicate low toxicity, no detectable retention in normal blood vessels, and rapid clearance from blood. The promising performance of this contrast agent targeted toward vascular inflammation opens doors to tracking of other inflammatory diseases such as tumor immunotherapy and transplant acceptance using MRI.  相似文献   

12.
The purpose of our studies is to better understand the morphology and functioning of the arteries and their changes in pathogenesis. The most frequently used imaging techniques are intravascular ultrasound, magnetic resonance imaging, and optical coherence tomography. These methods do not image cell-level structural details and only provide biomechanical properties indirectly. We present a new protocol for imaging the endothelial surface and measuring elastic properties of vascular tissue by scanning force microscopy. Full-thickness sections of native pig coronary arteries were prepared. In addition, cultured human umbilical vein endothelial cells were studied as an in vitro model system and for comparison. We encountered a variety of difficulties mostly due to the softness of vascular tissue which required significant adaptations of standard equipment: (i) a new specimen holder designed to stably immobilize the coronary arteries; (ii) a phase-contrast microscope incorporated for assessing the status of the cultured endothelial cells and positioning the scanning force microscope (SFM) tip at a site of interest; and (iii) a continuous exchange of the culture medium at 37 degrees C to assure viability of the cells in the SFM over extended times. We were thus able to investigate both fresh arterial tissue and living endothelial cells in a near-physiological environment. We present initial SFM images of vascular tissue at a spatial resolution similar to scanning electron microscopy, but which also provide a closer view of the bona fide structure of native tissue. Novel morphological features such as distinct granular particles were observed. Moreover, we report initial measurements of vascular tissue surface stiffness, obtained by indentation-type SFM.  相似文献   

13.
In this study, a constitutive law based on a nearly incompressible transversely isotropic hyperelastic potential is proposed to describe the mechanical behaviour of the anterior cruciate ligament (ACL). The constitutive formulation is valid for arbitrary kinematics (finite elasticity) and is thermodynamically admissible. Based on anatomic measurements performed on a human cadaveric knee specimen, a three-dimensional continuum finite element model of the ACL was developed. The numerical model was used to simulate clinical procedures such as the Lachman and drawer tests, which are performed to assess the existence and severity of an ACL injury. Finite element analyses showed that the two procedures have distinct effects on the behaviour of the ACL and provided new insights into the stress distributions. Moreover, good qualitative and quantitative agreement was found between the present study and results obtained experimentally in comparable conditions.  相似文献   

14.
Observation of three-dimensional (3D) morphology changes of a single mammalian cell is very useful to understand cell response for various stimuli. Conventional techniques to evaluate morphology changes with sufficient precision and high temporal resolution are limited. For example, the confocal fluorescence microscope is available to take 3D morphology changes, whereas fluorescence microscopic observation requires labeling the cells with fluorescence dye. Recently, a novel imaging method based on digital holography was developed for nonlabeling microscopic observation of 3D morphology. Digital holographic microscopy has high potentiality in digital focusing properties, video-frequency capability, noninvasive operation, and so forth. It obtains a quantitative phase image of a living cell from a single recorded hologram, with interferometric accuracy, and surveys the rapid morphology change of a single cell. In this study, digital holographic microscopy was applied to monitor the 3D morphology change of an individual PC12 cell, a nerve model cell, subjected to high K(+) stimulation. Phase images of the rapidly swelling cell were acquired, and time lapse reconstruction of 3D cell morphology was performed from phase images. Our results demonstrate that digital holographic imaging is a powerful new tool for evaluation of cell response against various stimulants without any labeling reagent.  相似文献   

15.
Functional diagnostic parameters such as Fractional Flow Reserve (FFR), which is calculated from pressure measurements across stenosed arteries, are often used to determine the functional severity of coronary artery stenosis. This study evaluated the effect of arterial wall-stenosis compliance, with limiting scenarios of stenosis severity, on the diagnostic parameters. The diagnostic parameters considered in this study include an established index, FFR and two recently developed parameters: Pressure Drop Coefficient (CDP) and Lesion Flow Coefficient (LFC). The parameters were assessed for rigid artery (RR; signifying high plaque elasticity), compliant artery with calcified plaque (CC; intermediate plaque elasticity) and compliant artery with smooth muscle cell proliferation (CS; low plaque elasticity), with varying degrees of epicardial stenosis. A hyperelastic Mooney-Rivlin model was used to model the arterial wall and plaque materials. Blood was modeled as a shear thinning, non-Newtonian fluid using the Carreau model. The arterial wall compliance was evaluated using the finite element method. The present study found that, with an increase in stenosis severity, FFR decreased whereas CDP and LFC increased. The cutoff value of 0.75 for FFR was observed at 78.7% area stenosis for RR, whereas for CC and CS the cutoff values were obtained at higher stenosis severities of 81.3% and 82.7%, respectively. For a fixed stenosis, CDP value decreased and LFC value increased with a decrease in plaque elasticity (RR to CS). We conclude that the differences in diagnostic parameters with compliance at intermediate stenosis (78.7-82.7% area blockage) could lead to misinterpretation of the stenosis severity.  相似文献   

16.
A procedure for dissolving and handling replicas of cutinized leaves and other plant tissues is described. This technique yields comparatively large replicas which can include vascular tissue, epidermal cells and the cuticle. Dissolution of the tissue involves the sequential use of alcoholic KOH, sulfuric acid and chromic acid. The use of clean, uncoated grids for transfer of the tissue and replicas results in rapid, easy handling with a minimum of breakage or loss. The procedure is more efficient than previous methods and produces large replicas. This allows tissue orientation and more positive identification of cell types for better correlation of freeze fracture results with thin sections of similar material.  相似文献   

17.
Preoperative angiography is frequently used in the planning of microsurgical reconstruction. However, several potentially devastating complications can result from angiography, including arterial occlusion and pseudoaneurysm. Computed tomographic angiography is a relatively new technique that can provide detailed information about vascular anatomy as well as soft and bony tissue without the risks of traditional angiography. In addition, three-dimensional image reconstruction uniquely demonstrates anatomical relationships among blood vessels, bones, and soft tissue. Fourteen computed tomographic angiograms were obtained in 10 patients undergoing microsurgical reconstruction of the head and neck, lower extremity, or upper extremity. The average patient age was 46.9 years (range, 22 to 67 years). Charges related to the computed tomographic procedure were compared with those of conventional preoperative imaging for microsurgical repair. At our institution, the average computed tomographic angiogram charge was 1140 US dollars, whereas the average charge for traditional arteriography was 3900 US dollars. When compared with intraoperative evaluation, computed tomographic angiograms demonstrated clinically relevant surgical anatomy. No complications were noted for the radiographic procedure or after free flap reconstruction. Computed tomographic angiography provides high-resolution, three-dimensional arterial, venous, and soft-tissue imaging without the risks of traditional angiogram and at a lower cost.  相似文献   

18.

We present a novel framework for investigating the role of vascular structure on arterial haemodynamics in large vessels, with a special focus on the human common carotid artery (CCA). The analysis is carried out by adopting a three-dimensional (3D) derived, fibre-reinforced, hyperelastic structural model, which is coupled with an axisymmetric, reduced order model describing blood flow. The vessel transmural pressure and lumen area are related via a Holzapfel–Ogden type of law, and the residual stresses along the thickness and length of the vessel are also accounted for. After a structural characterization of the adopted hyperelastic model, we investigate the link underlying the vascular wall response and blood-flow dynamics by comparing the proposed framework results against a popular tube law. The comparison shows that the behaviour of the model can be captured by the simpler linear surrogate only if a representative value of compliance is applied. Sobol’s multi-variable sensitivity analysis is then carried out in order to identify the extent to which the structural parameters have an impact on the CCA haemodynamics. In this case, the local pulse wave velocity (PWV) is used as index for representing the arterial transmission capacity of blood pressure waveforms. The sensitivity analysis suggests that some geometrical factors, such as the stress-free inner radius and opening angle, play a major role on the system’s haemodynamics. Subsequently, we quantified the differences in haemodynamic variables obtained from different virtual CCAs, tube laws and flow conditions. Although each artery presents a distinct vascular response, the differences obtained across different flow regimes are not significant. As expected, the linear tube law is unable to accurately capture all the haemodynamic features characterizing the current model. The findings from the sensitivity analysis are further confirmed by investigating the axial stretching effect on the CCA fluid dynamics. This factor does not seem to alter the pressure and flow waveforms. On the contrary, it is shown that, for an axially stretched vessel, the vascular wall exhibits an attenuation in absolute distension and an increase in circumferential stress, corroborating the findings of previous studies. This analysis shows that the new model offers a good balance between computational complexity and physics captured, making it an ideal framework for studies aiming to investigate the profound link between vascular mechanobiology and blood flow.

  相似文献   

19.
It was previously observed that at the beginning of a 10 sec multiple arterial haemorrhage, vascular elasticity induces an increase of coronary vascular resistance, which in the late part of the haemorrhage is counteracted by the relaxation of the vascular smooth muscle fibres. In the present study the effect of multiple arterial haemorrhage on the coronary vascular resistance was studied after beta-adrenergic receptor blockade. The results suggest that also in these circumstances an elastic mechanism precedes a myogenic mechanism in the regulation of coronary vascular resistance.  相似文献   

20.
Previous in vitro models of the airways are either rigid or, if flexible, have not matched in vivo compliance characteristics. Rapid prototyping provides a quickly evolving approach that can be used to directly produce in vitro airway models using either rigid or flexible polymers. The objective of this study was to use rapid prototyping to directly produce a flexible hollow model that matches the biomechanical compliance of the trachea. The airway model consisted of a previously developed characteristic mouth–throat region, the trachea, and a portion of the main bronchi. Compliance of the tracheal region was known from a previous in vivo imaging study that reported cross-sectional areas over a range of internal pressures. The compliance of the tracheal region was matched to the in vivo data for a specific flexible resin by iteratively selecting the thicknesses and other dimensions of tracheal wall components. Seven iterative models were produced and illustrated highly non-linear expansion consisting of initial rapid size increase, a transition region, and continued slower size increase as pressure was increased. Thickness of the esophageal interface membrane and initial trachea indention were identified as key parameters with the final model correctly predicting all phases of expansion within a value of 5% of the in vivo data. Applications of the current biomechanical model are related to endotracheal intubation and include determination of effective mucus suctioning and evaluation of cuff sealing with respect to gases and secretions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号