首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individual leaves of potato (Solanum tuberosum L. W729R), a C3 plant, were subjected to various irradiances (400-700 nm), CO2 levels, and temperatures in a controlled-environment chamber. As irradiance increased, stomatal and mesophyll resistance exerted a strong and some-what paralleled regulation of photosynthesis as both showed a similar decrease reaching a minimum at about 85 neinsteins·cm−2·sec−1 (about ½ of full sunlight). Also, there was a proportional hyperbolic increase in transpiration and photosynthesis with increasing irradiance up to 85 neinsteins·cm−2·sec−1. These results contrast with many C3 plants that have a near full opening of stomata at much less light than is required for saturation of photosynthesis.  相似文献   

2.
Photoinhibition and P700 in the Marine Diatom Amphora sp   总被引:3,自引:1,他引:2       下载免费PDF全文
The marine diatom Amphora sp. was grown at a light intensity of 7.0 × 1015 quanta centimeter−2 second−1. Light saturation of photosynthesis for these cells was between 6.0 and 7.0 × 1016 quanta centimeter−2 second−1. At light intensities greater than saturation, photosynthetic 14CO2 fixation was depressed, while P700 unit size (chlorophyll a concentration/P700 activity) increased and number of P700 units per cell decreased. After a 1-hour exposure of Amphora sp. to a photoinhibitory light intensity of 2.45 × 1017 quanta centimeter−2 second−1, there was a 45 to 50% decrease in the rate of 14CO2 fixation relative to the rate at the culture light intensity. There also was a 25% increase in P700 unit size and a 30% reduction in the number of P700 units per cell but no change in total chlorophyll a concentration. Following this period of photoinhibition, the cells were returned to a light regime similar to that in the original culture conditions. Within 1 hour, both number of P700 units per cell and P700 unit size returned to levels similar to those of cells which were kept at the culture light intensity. The rates of photosynthesis did not recover as rapidly, requiring 2 to 3 hours to return to the rate for the nonphotoinhibited cells. Our results indicate that a decrease in P700 activity (with a resultant increase in P700 unit size) may be partially responsible for the photoinhibition of algal photosynthetic carbon dioxide fixation.  相似文献   

3.
Ulva lactuca L. var. latissima (L.) DeCandolle has a circadian rhythm of visible light transmittance change which is caused by chloroplast orientation. With a continuously recording microphotometer system, clear rhythms could be monitored for up to 10 days. Measuring beam intensity effects on the free running period were seen down to 10−7 w cm−2. While these effects complicate the measuring process, they demonstrate that Ulva is very sensitive to light. The free running period in constant darkness at 20 C is 24 to 25 hours. The position in the cell occupied by the chloroplasts when the rhythm damps out can be influenced by light. A method is described by which the times of rhythm maxima can be calculated accurately and objectively from a relatively small number of points.  相似文献   

4.
A circadian rhythm in the intracellular level of K+ in Gonyaulax polyedra is reported. When axenic cultures of Gonyaulax in continuous light (60-75 fot candles) are exposed for 4 hours to 0.1 or 0.2% ethanol, the subsequent free-running rhythm in stimulated bioluminescence is phase-shifted, the amount and direction of the shift being dependent on the time in the circadian cycle when cells are treated. The phase-response curve for ethanol closely resembles that for light in similarly maintained cells. When valinomycin (0.1 or 0.2 μg ml−1) is present in addition to ethanol, the phase of the bioluminescence rhythm is returned to that of an untreated cell suspension. Valinomycin thus negates the effect of ethanol on phase. The intracellular K+ level immediately after treatment of a cell suspension for 4 hours with ethanol (0.1%) is about half that of untreated cells. If valinomycin (0.1 μg ml−1) is also present during the 4-hour treatment, the intracellular K+ is only slightly lower than in untreated cells. Increasing the external concentration of K+ or Na+ for 4 hours has no effect on the rhythm of stimulated bioluminescence. These results are interpreted as support for the hypothesis that the mechanism by which circadian oscillations are generated involves changes in membrane properties.  相似文献   

5.
Leaf resistance for water vapor (total diffusion resistance minus boundary layer resistance), transpiration, and leaf temperature were measured in attached leaves of greenhouse-grown Xanthium strumarium L. plants that had been pretreated for 72 hours with high (40 C day, 35 C night), or low (10 C day, 5 C night) air temperatures. Measurements were made in a wind tunnel at light intensity of 1.15 cal cm−2 min−1, air temperatures between 5 and 45 C, and wind speed of 65 cm sec−1. Leaf resistances in low temperature pretreated plants were higher (8 to 27 sec cm−1) than in controls or high temperature pretreated plants (0.5 to 3 sec cm−1) at leaf temperatures between 5 and 25 C. Thus, the pretreatment influenced stomatal aperture.  相似文献   

6.
Light acclimation during and after leaf expansion in soybean   总被引:10,自引:7,他引:3       下载免费PDF全文
Soybean plants (Glycine max var. Ransom) were grown at light intensities of 850 and 250 μeinsteins m−2 sec−1 of photosynthetically active radiation. A group of plants was shifted from each environment into the other environment 24 hours before the beginning of the experiment. Net photosynthetic rates and stomatal conductances were measured at 2,000 and 100 μeinsteins m−2 sec−1 photosynthetically active radiation on the 1st, 2nd, and 5th days of the experiment to determine the time course of photosynthetic light adaptation. The following factors were also measured: dark respiration, leaf water potential, leaf thickness, internal surface area per external surface area, chlorophyll content, photosynthetic unit size and number, specific leaf weight, and activities of malate dehydrogenase, and glycolate oxidase. Comparisons were made with plants maintained in either 850 or 250 μeinsteins m−2 sec−1 environments. Changes in photosynthesis, stomatal conductance, leaf anatomy, leaf water potential, photosynthetic unit size, and glycolate oxidase activity occurred upon altering the light environment, and were complete within 1 day, whereas chlorophyll content, numbers of photosynthetic units, specific leaf weight, and malate dehydrogenase activity showed slower changes. Differences in photosynthetic rates at high light were largely accounted for by internal surface area differences with low environmental light associated with low internal area and low photosynthetic rate. An exception to this was the fact that plants grown at 250 μeinsteins m−2 sec−1 then switched to 850 μeinsteins m−2 sec−1 showed lower photosynthesis at high light than any other treatment. This was associated with higher glycolate oxidase and malate dehydrogenase activity. Photosynthesis at low light was higher in plants kept at or switched to the lower light environment. This increased rate was associated with larger photosynthetic unit size, and lower dark respiration and malate dehydrogenase activity. Both anatomical and physiological changes with environmental light occurred even after leaf expansion was complete and both were important in determining photosynthetic response to light.  相似文献   

7.
Photosynthesis, growth, and the role of chloride   总被引:5,自引:3,他引:2       下载免费PDF全文
Previous studies with isolated chloroplasts have indicated that Cl is an essential cofactor for photosynthesis. Considerable support for the postulated Cl requirement in photosynthesis came from the observation that Cl is essential for growth. Data are presented which show that a 60% reduction in growth which occurred in Cl -deficient sugar beet (Beta vulgaris L.) was not due to an effect of Cl on the rate of photosynthesis in vivo (net CO2 uptake per unit area of attached leaves). The principal effect of Cl deficiency was to lower cell multiplication rates in leaves, thus slowing down their growth and ultimately decreasing their area. The absence of an effect of Cl on photosynthesis in vivo was unlikely to have been due to Cl retention by the chloroplasts because their Cl concentration (measured after nonaqueous isolation) decreased progressively with decrease in leaf Cl.  相似文献   

8.
Light influences sleep and alertness either indirectly through a well-characterized circadian pathway or directly through yet poorly understood mechanisms. Melanopsin (Opn4) is a retinal photopigment crucial for conveying nonvisual light information to the brain. Through extensive characterization of sleep and the electrocorticogram (ECoG) in melanopsin-deficient (Opn4−/−) mice under various light–dark (LD) schedules, we assessed the role of melanopsin in mediating the effects of light on sleep and ECoG activity. In control mice, a light pulse given during the habitual dark period readily induced sleep, whereas a dark pulse given during the habitual light period induced waking with pronounced theta (7–10 Hz) and gamma (40–70 Hz) activity, the ECoG correlates of alertness. In contrast, light failed to induce sleep in Opn4−/− mice, and the dark-pulse-induced increase in theta and gamma activity was delayed. A 24-h recording under a LD 1-h1-h schedule revealed that the failure to respond to light in Opn4−/− mice was restricted to the subjective dark period. Light induced c-Fos immunoreactivity in the suprachiasmatic nuclei (SCN) and in sleep-active ventrolateral preoptic (VLPO) neurons was importantly reduced in Opn4−/− mice, implicating both sleep-regulatory structures in the melanopsin-mediated effects of light. In addition to these acute light effects, Opn4−/− mice slept 1 h less during the 12-h light period of a LD 1212 schedule owing to a lengthening of waking bouts. Despite this reduction in sleep time, ECoG delta power, a marker of sleep need, was decreased in Opn4−/− mice for most of the (subjective) dark period. Delta power reached after a 6-h sleep deprivation was similarly reduced in Opn4−/− mice. In mice, melanopsin's contribution to the direct effects of light on sleep is limited to the dark or active period, suggesting that at this circadian phase, melanopsin compensates for circadian variations in the photo sensitivity of other light-encoding pathways such as rod and cones. Our study, furthermore, demonstrates that lack of melanopsin alters sleep homeostasis. These findings call for a reevaluation of the role of light on mammalian physiology and behavior.  相似文献   

9.
Light influences sleep and alertness either indirectly through a well-characterized circadian pathway or directly through yet poorly understood mechanisms. Melanopsin (Opn4) is a retinal photopigment crucial for conveying nonvisual light information to the brain. Through extensive characterization of sleep and the electrocorticogram (ECoG) in melanopsin-deficient (Opn4−/−) mice under various light–dark (LD) schedules, we assessed the role of melanopsin in mediating the effects of light on sleep and ECoG activity. In control mice, a light pulse given during the habitual dark period readily induced sleep, whereas a dark pulse given during the habitual light period induced waking with pronounced theta (7–10 Hz) and gamma (40–70 Hz) activity, the ECoG correlates of alertness. In contrast, light failed to induce sleep in Opn4−/− mice, and the dark-pulse-induced increase in theta and gamma activity was delayed. A 24-h recording under a LD 1-h∶1-h schedule revealed that the failure to respond to light in Opn4−/− mice was restricted to the subjective dark period. Light induced c-Fos immunoreactivity in the suprachiasmatic nuclei (SCN) and in sleep-active ventrolateral preoptic (VLPO) neurons was importantly reduced in Opn4−/− mice, implicating both sleep-regulatory structures in the melanopsin-mediated effects of light. In addition to these acute light effects, Opn4−/− mice slept 1 h less during the 12-h light period of a LD 12∶12 schedule owing to a lengthening of waking bouts. Despite this reduction in sleep time, ECoG delta power, a marker of sleep need, was decreased in Opn4−/− mice for most of the (subjective) dark period. Delta power reached after a 6-h sleep deprivation was similarly reduced in Opn4−/− mice. In mice, melanopsin''s contribution to the direct effects of light on sleep is limited to the dark or active period, suggesting that at this circadian phase, melanopsin compensates for circadian variations in the photo sensitivity of other light-encoding pathways such as rod and cones. Our study, furthermore, demonstrates that lack of melanopsin alters sleep homeostasis. These findings call for a reevaluation of the role of light on mammalian physiology and behavior.  相似文献   

10.
11.
Photophosphorylation and oxygen evolution were measured in 8-day-old dark-grown bean leaves (Phaseolus vulgaris) after various times of greening in far red light and in white light. The sequence of development was the same for both greening regimes, but the processes were much more rapid in white light. The capacity for photophosphorylation, as assayed by the firefly luciferase assay, appeared after 12 hours in far red light. At this stage and for times up to 24 hours, photophosphorylation was not inhibited by 10−5m 3-(3,4-dichlorophenyl)-1,1-dimethylurea. At 24 hours, the capacity for oxygen evolution appeared and photophosphorylation became partially inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea at concentrations which inhibited oxygen evolution. In white light photophosphorylation appeared after 15 minutes, and oxygen evolution at one hour. Photophosphorylation became partially sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea when oxygen evolution appeared. Carbonylcyanide m-chlorophenyl-hydrazone inhibited photophosphorylation and photosynthesis at low concentrations, 10−5m, with immature leaves, but the leaves developed resistance to carbonylcyanide m-chlorophenyl-hydrazone as they greened.  相似文献   

12.
A Persistent Daily Rhythm in Photosynthesis   总被引:9,自引:1,他引:8       下载免费PDF全文
The luminescent marine dinoflagellate, Gonyaulax polyedra, exhibits a diurnal rhythm in the rate of photosynthesis and photosynthetic capacity measured by incorporation of C14O2, at different times of day. With cultures grown on alternating light and dark periods of 12 hours each, the maximum rate is at the 8th hour of the light period. Cultures transferred from day-night conditions to continuous dim light continue to show the rhythm of photosynthetic capacity (activity measured in bright light) but not of photosynthesis (activity measured in existing dim light). Cultures transferred to continuous bright light, however, do not show any rhythm. Several other properties of the photosynthetic rhythm are similar to those of previously reported rhythms of luminescence and cell division. This similarity suggests that a single mechanism regulates the various rhythms.  相似文献   

13.
The response of foliar gas exchange to exogenously applied ethylene   总被引:3,自引:1,他引:2       下载免费PDF全文
The responsiveness to ethylene of net photosynthesis and stomatal conductance to water vapor in intact plants was investigated in 13 herbaceous species representing seven plant families. Exposures were conducted in an open, whole-plant exposure system providing controlled levels of irradiance, air temperature, CO2, relative humidity, and ethylene concentration. Net photosynthesis and stomatal conductance to water vapor in units of moles per square meter per second were measured on recently expanded leaves in control and ethylene-treated plants using a remotely operated single-leaf cuvette. The ethylene concentration was either 0 or 210 micromoles per cubic meter and was maintained for 4 hours. Species varied substantially in the response of their foliar gas exchange to ethylene. In 7 of the 13 species, net photosynthesis was inhibited statistically by 4 hours of ethylene exposure. As a function of the rate in control plants, the responses were most pronounced and statistically significant in Arachis hypogaea (−51.1%), Gossypium hirsutum (−31.7%), Glycine max (−24.8%), Cucurbita pepo (−20.4%), Phaseolus vulgaris (−18.4%), Setaria viridis (−17.5%), and Raphanus sativus (−4.4%). Whereas the responsiveness of net photosynthesis to ethylene among the 13 species showed no specific taxonomic associations, the responsiveness was positively correlated with the intrinsic rate of net photosynthesis. Stomatal conductance to water vapor after 4 hours of ethylene exposure declined statistically in 6 of the 13 species. As a function of control rates, the most marked and statistically significant responses of stomatal conductance were in Glycine max (−53.6%), Gossypium hirsutum (−51.2%), Arachis hypogaea (−42.7%), Phaseolus vulgaris (−38.6%), Raphanus sativus (−26.8%), and Solanum tuberosum (−23.4%). Although ethylene-induced changes in net photosynthesis and stomatal conductance were positively correlated, there were species-specific exceptions in which net photosynthesis declined after 4 hours of exposure without a concurrent change in stomatal conductance, stomatal conductance declined without a change in net photosynthesis, and the decline in stomatal conductance substantially exceeded the corresponding decline in net photosynthesis. Thus, the responsiveness to ethylene of net photosynthesis and stomatal conductance to water vapor were not consistently synchronous or equivalent among the 13 species. It is concluded that foliar gas exchange is responsive to exogenously applied ethylene in many plant species. The sensitivity of foliar gas exchange to ethylene may play a role in general plant response to environmental stress in which one of the physiological sites of action for endogenously produced stress ethylene in the leaf is the plant's photosynthetic capacity and/or stomatal conductance to water vapor.  相似文献   

14.
Photosynthetic CO2 assimilation, transpiration, ribulose-1,5-bisphosphate carboxylase (RuBPCase), and soluble protein were reduced in leaves of water-deficit (stress) `Valencia' orange (Citrus sinensis [L.] Osbeck). Maximum photosynthetic CO2 assimilation and transpiration, which occurred before midday for both control and stressed plants, was 58 and 40%, respectively, for the stress (−2.0 megapascals leaf water potential) as compared to the control (−0.6 megapascals leaf water potential). As water deficit became more severe in the afternoon, with water potential of −3.1 megapascals for the stressed leaves vs. −1.1 megapascals for control leaves, stressed-leaf transpiration declined and photosynthetic CO2 assimilation rapidly dropped to zero. Water deficit decreased both activation and total activity of RuBPCase. Activation of the enzyme was about 62% (of fully activated enzyme in vitro) for the stress, compared to 80% for the control. Water deficit reduced RuBPCase initial activity by 40% and HCO3/Mg2+-saturated activity by 22%. However, RuBPCase for both stressed and control leaves were similar in Kcat (25 moles CO2 per mole enzyme per second) and Km for CO2 (18.9 micromolar). Concentrations of RuBPCase and soluble protein of stressed leaves averaged 80 and 85%, respectively, of control leaves. Thus, reductions in activation and concentration of RuBPCase in Valencia orange leaves contributed to reductions in enzyme activities during water-deficit periods. Declines in leaf photosynthesis, soluble protein, and RuBPCase activation and concentration due to water deficit were, however, recoverable at 5 days after rewatering.  相似文献   

15.
Excised green leaves of mung bean (Phaseolus aureus L. var. Mungo) were used to determine the effect of light on the rate of endogenous respiration via the tricarboxylic acid cycle. Illumination with white light at an intensity of 0.043 gram calories cm−2min−1 (approximately 8600 lux) of visible radiation (400-700 nm) gave a rate of apparent photosynthesis, measured as net CO2 uptake, of 21 mg CO2 dm−2hr−1 which was about 11-fold greater than the rate of dark respiration. The feeding of 14CO2 or 14C-labeled acids of the tricarboxylic acid cycle in the dark for 2 hours was established as a suitable method for labeling mitochondrial pools of cycle intermediates.  相似文献   

16.
Forti G  Gerola P 《Plant physiology》1977,59(5):859-862
Cyanide and azide inhibit photosynthesis and catalase activity of isolated, intact spinach (Spinacia oleracea) chloroplasts. When chloroplasts are illuminated in the presence of CN or N3, accumulation of H2O2 is observed, parallel to inhibition of photosynthesis. Photosynthetic O2 evolution is inhibited to the same extent, under saturating light, whether CO2 or phosphoglycerate is present as electron acceptor.  相似文献   

17.
Cobalamin is essential for growth of Euglena gracilis and photosynthesis. Methylcobalamin in Euglena chloroplasts (Y Isegawa, Y Nakano, S Kitaoka, 1984 Plant Physiol 76: 814-818) functions as a coenzyme of methionine synthetase. The requirement of cobalamin for photosynthesis appeared remarkably high in Euglena grown under the dark-precultured condition. The required amount of cobalamin for normal photosynthetic activity was 7.4 × 10−11 molar, while 7.4 × 10−10 molar cobalamin was required for normal growth. The lowered photosynthetic activity in cobalamin-limited cells was restored 20 hours after feeding cyanocobalamin or methionine to cobalamin-limited cells. Lowering of photosynthetic activity was due to loss of photosystem I activity. This photosynthetic activity was recovered after supplementation by methionine or cobalamin. The results suggest that methionine serves for the stabilization of photosystem I. This paper is the first report of the physiological function of cobalamin in chloroplasts of photosynthetic eukaryotes.  相似文献   

18.
The ribulose 1,5-diphosphate carboxylase from Gonyaulax polyedra Stein. has a half-life of about four hours in buffer, but can be stabilized by the addition of 50% glycerol. The optimum pH is 7.8 to 8.0 and the optimum Mg2+ concentration is 3 mm. Heavy metal ions (Cu2+, Hg2+, Ni2+, Zn2+), EDTA, pyrophosphate, and adenosine triphosphate were strongly inhibitory. Ribulose 1,5-diphosphate carboxylase from Gonyaulax was not cold-sensitive or activated by light activation factor from tomato or Gonyaulax. No difference in the activity of this enzyme was detected when extracts prepared at the maximum and the minimum of the circadian rhythm of photosynthesis were compared. The Km of HCO3 was also the same (16 to 19 mm).  相似文献   

19.
An experiment was conducted to investigate the reduction of endogenous NO3, which had been taken up by plants in darkness, during the course of the subsequent light period. Vegetative, nonnodulated soybean plants (Glycine max [L]. Merrill, `Ransom') were exposed to 1.0 millimolar 15NO3 for 12 hours in darkness and then returned to a solution containing 1.0 millimolar 14NO3 for the 12 hours `chase' period in the light. Another set of plants was exposed to 15NO3 during the light period to allow a direct comparison of contributions of substrate from the endogenous and exogenous sources. At the end of the 15NO3 exposure in the dark, 70% of the absorbed 15NO3 remained unreduced, and 83% of this unreduced NO3 was retained in roots. The pool of endogenous 15NO3 in roots was depleted at a steady rate during the initial 9 hours of light and was utilized almost exclusively in the formation of insoluble reduced-N in leaves. Unlabeled endogenous NO3, which had accumulated in the root prior to the previous dark period, also was depleted in the light. When exogenous 15NO3 was supplied during the light period, the rate of assimilation progressively increased, reflecting an increased rate of uptake and decreased accumulation of NO3 in the root tissue. The dark-absorbed endogenous NO3 in the root was the primary source of substrate for whole-plant NO3 reduction in the first 6 hours of the light period, and exogenous NO3 was the primary source of substrate thereafter. It is concluded that retention of NO3 in roots in darkness and its release in the following light period is an important whole-plant regulatory mechanism which serves to coordinate delivery of substrate with the maximal potential for NO3 assimilation in photosynthetic tissues.  相似文献   

20.
Boyer JS 《Plant physiology》1971,48(5):532-536
The inhibition of photosynthesis at low leaf water potentials was studied in soil-grown sunflower to determine the degree to which photosynthesis under high light was affected by stomatal and nonstomatal factors. Below leaf water potentials of −11 to −12 bars, rates of photosynthesis at high light intensities were insensitive to external concentrations of CO2 between 200 and 400 microliters per liter. Photosynthesis also was largely insensitive to leaf temperature between 10 and 30 C. Changes in CO2 concentration and temperature had negligible effect on leaf diffusive resistance. The lack of CO2 and temperature response for both photosynthesis and leaf diffuse resistance indicates that rates of photosynthesis were not limited by either CO2 diffusion or a photosynthetic enzyme. It was concluded that photosynthesis under high light was probably limited by reduced photochemical activity of the leaves at water potentials below −11 to −12 bars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号